
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

3

A New Ant Colony Optimization Approach for
the Degree-Constrained Minimum Spanning
Tree Problem Using Prüfer and Blob Codes

Tree Coding

Yoon-Teck Bau, Chin-Kuan Ho and Hong-Tat Ewe
Faculty of Information Technology, Multimedia University

Malaysia

1. Introduction

This chapter describes a novel ACO algorithm for the degree-constrained minimum
spanning tree (d-MST) problem. Instead of constructing the d-MST directly on the
construction graph, ants construct the encoded d-MST. Two well-known tree codings are
used: the Prüfer code, and the more recent Blob code (Picciotto, 1999). Both of these tree
codings are bijective because they represent each spanning tree of the complete graph on
|V| labelled vertices as a code of |V|-2 vertex labels. Each spanning tree corresponds to a
unique code, and each code corresponds to a unique spanning tree. Under the proposed
approach, ants will select graph vertices and place them into the Prüfer code or Blob code
being constructed. The use of tree codings such as Prüfer code or Blob code makes it easier
for the proposed ACO to solve another variant of the d-MST problem with both lower and
upper bound constraints on each vertex (lu-dMST). A general lu-dMST problem formulation
is given. This general lu-dMST problem formulation could be used to denote d-MST
problem formulation also. Subsequently, Prüfer code and Blob code tree encoding and
decoding are presented and then followed by the design of two ACO approaches using
these tree codings to solve d-MST and lu-dMST problems. Next, results from these ACO
approaches are compared on structured hard (SHRD) graph data set for both d-MST and lu-
dMST problems, and important findings are reported.

2. Problem Formulation

In this chapter, a special case of degree-constrained minimum spanning tree where the
lower and upper bound of the number of edges is imposed on each vertex is considered.
This similar to the problem being solved by Chou et al. (2001), and is named lu-dMST in this
chapter. Chou et al. (2001) named this problem as DCMST. The d-MST problem is different
since it has only the upper bound constraint. Chou et al. (2001) also proposed the following
notation to be used for the lu-dMST problem formulation:
G = (V, E) connected weighted undirected graph.
i, j = index of labelled vertices i, j = 0, 1, 2, …, |V – 1|.

Source: Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, Book edited by: Felix T. S. Chan and Manoj
Kumar Tiwari, ISBN 978-3-902613-09-7, pp. 532, December 2007, Itech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 38

V = {v0, v1, ..., v|V|-1} is a finite set of vertices in the G.

E = {eij | i ∈ V, j ∈ V, i ≠ j} is a finite set of edges in the G.
T = set of all spanning trees corresponding to the G.
x = a subgraph of G.
Cij = nonnegative real number edge cost that connect vertex i and vertex j.
Ld(i) is lower bound degree constraint on vertex i. Lower bound can vary from vertex to
vertex.
Ud(i) is upper bound degree constraint on vertex i. Upper bound can vary from vertex to
vertex.

∈
<

=x

,

() .min ij ij

i j V
i j

z C X (1)

subject to:

(), .ij d

j V
i j

X L i i V
∈
≠

≥ ∈ (2)

(), .ij d

j V
i j

X U i i V
∈
≠

≤ ∈ (3)

,

1, .ij

i j N
i j

X N N V
∈

<

≤ − ⊂ (4)

,

1.ij

i j V
i j

X V
∈

<

= − (5)

 1, if edge is part of the subgraph | , , ;

0, otherwise.

ij

ij

e i j V T
X

∈ ∈
=

x x
 (6)

The objective function (1) seeks to minimize the total connection cost between vertices. The
total cost could be distance, material cost, or customers’ requirement cost. The subconstraint

(i < j) shows that graph is symmetric because vertex i must be less than vertex j where i, j ∈

V. Constraints (2) and (3) specify the lower and upper bounds degree constraints on the
number of edges connecting to a vertex. The lower and upper bounds can vary from vertex
to vertex. In the d-MST problem, there is only a degree constraint on each vertex. This is
given by a constant value d. For the d-MST problem, the lower bound equals 1 and the
upper bound equals d on each vertex. Therefore the lu-dMST problem formulation is a
generalization of d-MST. At the same time, the lu-dMST problem is also NP-hard because
the lu-dMST problem is a general problem formulation that can be used to represent d-MST
problem (Garey & Johnson, 1979; Sipser, 2006).
Constraint (4) is an anticycle constraint and constraint (5) indicates that the number of edges
in a spanning tree is always equal to the number of vertices minus one. At the same time,
the designed networks should not have self-loop, cycles and missing vertices. Equation (6)
expresses the binary decision variable Xij equals to one if the edge between vertices i to j is
part of the subgraph x, and x is a spanning tree in T; zero, otherwise. A subgraph x of G is
said to be a spanning tree in T if x:

A New Ant Colony Optimization Approach for the Degree-Constrained
Minimum Spanning Tree Problem Using Prüfer and Blob Codes Tree Coding 39

a. contains all the vertices of G and the vertices can be in non-order form;
b. is connected and graph contains no cycles.
Note that in a complete graph having |V| vertices, the number of edges, |E|, is |V|(|V|-
1)/2, and the number of spanning trees is |V||V|-2.

3. Prüfer code and Blob code tree codings

The Prüfer code of spanning trees is based on Prüfer’s constructive proof of Cayley’s Formula.
Cayley showed that the number of distinct spanning trees in a complete undirected graph on
|V| vertices is |V||V|-2 (Cayley, 1889; Gross & Yellen, 2006). Prüfer described a one-to-one
mapping between these trees and strings of length |V|-2 over an integer of |V| vertex labels
(Prüfer, 1918; Gross & Yellen, 2006). Thus, a Prüfer code of length |V|-2 whose vertices are the
labels {0, 1, …, |V|-1} from a spanning tree of the complete graph on |V| vertices for |V| 2
is any sequence of integers between 0 and|V|-1, with repetitions allowed. The following Fig. 1
shows Prüfer tree encoding algorithm that constructs a Prüfer code from a given standard
labelled tree. It defines a encoding function fe : T|V| C|V|-2 from the set T|V| of trees on |V|
labelled vertices to the set C|V|-2 of Prüfer code of length |V|-2. For example, a Prüfer code (3,
3, 6, 4, 0) corresponds to a spanning tree on seven vertices graph in Fig. 2. The first position
value for Prüfer code is 3 because the Prüfer encoding algorithm finds the neighbour of vertex
v of degree 1 with the smallest label in the spanning tree T is 3 whereby v = 1. Then the vertex
labelled v = 1 is removed from the spanning tree T. This process is repeated to find the second
position value for Prüfer code until only two vertices are remained in the spanning tree T. Two
vertices remained in the spanning tree T as in the example mentioned below are vertices
labelled 0 and 6. Notice also for example in Fig. 2 that the degree of each vertex in the
spanning tree can be easily checked because it is one more than the number of times its label
appears in the Prüfer code.
Fig. 3 shows the Prüfer decoding algorithm that maps a given Prüfer code to a standard
labelled tree. The Prüfer decoding algorithm defines a function fd : C|V|-2 T|V| from the set
of Prüfer code of length |V|-2 to the set of labelled trees on the |V| vertices. For example,
the Prüfer decoding algorithm identifies the tree’s edges in this order: (1, 3), (2, 3), (3, 6), (5,
4), (4, 0), and (0, 6) as in Fig. 2. The Prüfer code’s integers appear as the second vertices in
the tree’s first five edges. The last edge (0, 6) is joined by remaining two integers in list L
(line 12 of Fig. 3) to produce the spanning tree with its vertex-labelling. Notice that the tree
obtained in Fig. 2 by Prüfer decoding of the sequence (3, 3, 6, 4, 0) is the same as the tree that
used by Prüfer-encoded sequence of (3, 3, 6, 4, 0) at the beginning. This inverse relationship
between the encoding and decoding functions asserts that the decoding function fd : C|V|-2

T|V| is the inverse of the encoding function fe : T|V| C|V|-2.

1
2
3
4
5
6
7
8

labelledTreeToPruferCode(T = (V, E), Cij)
code ()
Initialise T to be the given tree.
for i = 1 to |V|-2 do

Let v be the vertex of degree 1 with the smallest label in T.
Let code[i-1] be the label of the only neighbour of v.
T T – {v}

return code

Figure 1. The pseudocode of Prüfer encoding from the labelled tree to its Prüfer code

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 40

Figure 2. A Prüfer code and the spanning tree on seven vertices that it represents and vice
versa via Prüfer encoding and decoding algorithms

1
2
3
4
5
6
7
8
9
10
11
12
13

pruferCodeToLabelledTree(code)
Initialise code as the Prufer input sequence of length |V|-2.
Initialise forest F as |V| isolated vertices, labelled from 0 to |V|-1.
L {0, 1, …, |V|-1}
ET { }
for i = 1 to |V|-2 do

Let k be the smallest integer in list L that is not in the code.
Let j be the first integer in the code.

ET ET ∪ {(k, j)}
L L – {k}
Remove the first occurrence of j from the code.

Add an edge joining the vertices labelled with the two remaining integers in list L.
return ET

Figure 3. The pseudocode of Prüfer decoding from the Prüfer code to its labelled tree

There are many other mappings from integers of |V|-2 vertex labels to spanning trees.
Picciotto (1999) has described three tree codings, different from Prüfer code. One of the tree
codings is called the Blob code. In Picciotto’s presentation, Prüfer codes decoded as Blob
codes represent directed spanning trees rooted at vertex 0. In such a tree, there is a directed
path from every vertex to vertex 0, and only vertex 0 has no out-edge. Ignoring the edges’s
direction yields an undirected spanning tree.
Figure 4 shows the Blob encoding algorithm for finding Blob code for a spanning tree. A blob
is an aggregation of one or more vertices. This algorithm is progressively identifying
vertices, starting at |V|-1 and ending with a blob-vertex consisting of all the vertices from 1
to |V|-1. As the blob grows, so does the code; meanwhile, the number of directed edges
shrinks. At first, an undirected spanning tree is temporarily regarded as a directed spanning

tree rooted at vertex labelled 0 to determine the successor succ(v) of every vertex v ∈ [1,
|V|-1] where succ(v) is the first vertex on the unique path from vertex v to vertex 0 in a
spanning tree. The Blob encoding algorithm uses this directed spanning tree rooted at vertex
labelled 0 as a set of directed edges whose vertices are the labels {0, 1, ..., |V|-1} as its input.
The algorithm uses two functions: succ(v) returns the first vertex on the unique path from

vertex v to vertex 0 in a spanning tree, and (path(v) ∩ blob) returns TRUE if the directed path
(an ordered list of vertices) using those directed edges from vertex v toward vertex 0
intersects the blob, FALSE otherwise.

A New Ant Colony Optimization Approach for the Degree-Constrained
Minimum Spanning Tree Problem Using Prüfer and Blob Codes Tree Coding 41

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

labelledTreeToBlobCode(T = (V, E), Cij)
blob {|V|-1}
blobCode () //an array of length |V|-2
for i = 1 to |V|-2 do

if path(|V|-1–i) ∩ blob Ø then
 blobCode[|V|-2-i] succ(|V|-1-i)
 ET ET – {(|V|-1-i succ(|V|-1-i))}

 blob blob ∪ {|V|-1-i}
else
 blobCode[|V|-2-i] succ(blob)
 ET ET – {(blob succ(blob))}

 ET ET ∪ {(blob succ(|V|-1-i))}
 ET ET – {(|V|-1-i succ(|V|-1-i))}

 blob blob ∪ {|V|-1-i}
return blobCode

Figure 4. The pseudocode of Blob encoding from the labelled tree to its Blob code

An example of a Blob code corresponds to a directed spanning tree on seven vertices graph
is given in Fig. 5. The successor succ(v) information for this directed spanning tree is shown
in Table 1. Once this table has been constructed, the Blob code corresponding to this
directed spanning tree on seven vertices graph is equal to (3, 3, 6, 4, 0). Initially on line 2 of
Fig. 4, a blob containing a single vertex 6 is created, the vertex 6 is the largest label and
blobCode = (). The blobCode is an array of length |V|-2. The Blob encoding algorithm’s first

iteration (path(|V|-1-i) ∩ blob) = (path(5) ∩ blob) is FALSE on line 5 of Fig. 4. So the else
block is followed whereby blobCode[4] = 0; delete (blob 0) edge; add an edge from blob
succ(5) which is 4; delete the edge (5 4) and put 5 into the blob. The second iteration

(path(4) ∩ blob) is also FALSE. So the else block is followed whereby blobCode[3] = 4; delete
(blob 4) edge; add an edge from blob succ(4) which is 0; delete the edge (4 0) and put

4 into the blob. The third iteration (path(3) ∩ blob) is TRUE. The then block is followed in the
algorithm whereby blobCode[2] = 6 which is succ(3); delete the edge (3 6) and put 3 in the
blob. This process continues through two more iterations which blobCode[1] = 3 and
blobCode[0] = 3 are obtained, and hence the Blob code of length |V|-2 is equal to blobCode =
(3, 3, 6, 4, 0) is determined. It happened that this Blob code is the same with Prüfer code as in
Fig. 2 using the same spanning tree as an example.

0

1

2

3

45

6

(3, 3, 6, 4, 0)

Figure 5. A Blob code and a rooted directed spanning tree on seven vertices that it
represents and vice versa via Blob encoding and decoding algorithms

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 42

v succ(v)

1 3

2 3

3 6

4 0

5 4

6 0

Table 1. The successor succ(v) information of every vertex v ∈ [1, |V|-1]

Nevertheless Blob code is already proven to be a different coding system from the Prüfer
code by Picciotto (1999) in his PhD thesis even tough Blob code contains the same number of
times of its vertex label as it appears in the Prüfer code for the same spanning tree
representation. The reason for this is the sequences of both Blob code and Prüfer code can
have distinct vertex label for each of their sequence position to represent the same spanning
tree. An example suffices to prove that Blob code = (2, 4, 4, 6, 2, 4) is different from the
Prüfer code = (6, 2, 4, 2, 4, 4) even though these codes are used to represent the same
spanning tree.
To identify the directed spanning tree that a Blob code represents, the Blob decoding
algorithm begins with a single directed edge from a blob to vertex 0. This blob contains all the
other vertices except vertex labelled 0, and as the algorithm proceeds, it always contains
vertices numbered i, i+1, …, |V|-2 as i moves from 1 to |V|-2. The algorithm scans the code
and adjusts the developing spanning tree depending on whether or not the directed path
from each vertex in Blob code toward vertex 0 intersects the blob, which shrinks by one
vertex on each iteration. The following Fig. 6 summarizes the Blob decoding algorithm,

which also uses the same two functions as Blob encoding algorithm: succ(v) and (path(v) ∩

blob). The edges directions are ignored to obtain the undirected spanning tree that the Blob
code represents.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

blobCodeToLabelledTree(blobCode)
blob {1, 2, …, |V|-1}
ET {(blob 0)}
for i = 1 to |V|-2 do

 blob blob – {i}

 if path(blobCode[i–1]) ∩ blob Ø then

 ET ET ∪ {(i blobCode[i–1])}
else

 ET ET ∪ {(i succ(blob))}
 ET ET – {(blob succ(blob))}

 ET ET ∪ {(blob blobCode[i–1])}
// now blob is a vertex labelled |V|-1
blob {|V|-1} in any edges where the blob appears.
return ET

Figure 6. The pseudocode of Blob decoding from the Blob code to its labelled tree

A New Ant Colony Optimization Approach for the Degree-Constrained
Minimum Spanning Tree Problem Using Prüfer and Blob Codes Tree Coding 43

Figure 5 shows the Blob code (3, 3, 6, 4, 0) and the spanning tree to which it decodes via the
Blob decoding algorithm. The algorithm identifies the tree’s (directed) edges in this order:
(1, 3), (2, 3), (3, 6), (4, 0), (5, 4), and (6, 0). Initially on line 2 of Fig. 6, the blob contains vertices
1 through 6 and the tree consists of the single edge (blob 0). The algorithm’s first iteration
removes vertex 1 from the blob. The blobCode[0] = 3 and the blob contains vertex 3, so that

(path(3) ∩ blob) is TRUE and the edge (1 3) is added to the tree. The second iteration

removes vertex 2 from the blob. The blobCode[1] = 3, (path(3) ∩ blob) is also TRUE, and the
edge (2 3) is added to the tree. The third iteration removes vertex 3 from the blob. The

blobCode[2] = 6, (path(6) ∩ blob) is TRUE, and the edge (3 6) is added to the tree. The fourth

iteration removes vertex 4 from the blob. The blobCode[3] = 4, (path(4) ∩ blob) is FALSE. So the
else block is followed whereby succ(blob) which is 0; an edge (4 0) is added to the tree;
delete the edge (blob 0) and add an edge (blob 4). This process continues through one
more iteration, each of which increases the number of the tree’s edges by one. Then, the blob
itself is replaced by vertex 6 as on line 13 of Fig. 6. The Blob code’s integers appear as the
destination vertices of the first five edges. An efficient implementation of the algorithm
represents the directed edges in an array that is indexed by the vertex labels. If (i j) is an
edge, then the array entry indexed i holds j. As in Prüfer codes, the degree of each vertex in
the spanning tree is one more than the number of times its label appears in the Blob code
decoded by the Blob decoding algorithm. This is the same directed spanning tree that was
encoded by the Blob encoding algorithm as shown as example above. So, the Blob decoding
algorithm has indeed reversed the Blob encoding algorithm.

4. An ACO algorithm using Prüfer code and Blob code tree codings for d-
MST problem

In the design of an ACO algorithm, it has been customary to have the ants work directly on
the construction graph. For pheromones associated with the graph edges, a common
difficulty is the number of pheromone updates is in the order of O(|V|2), V being the set of
vertices of the construction graph. A new ACO algorithm for the d-MST problem is
proposed that can address this challenge in a novel way. Instead of constructing the d-MST
directly on the construction graph, ants construct the encoded d-MST as solution
components. Two well-known tree codings either by using the Prüfer code or the more
recent Blob code is used. Under the proposed approach, ants will select graph vertices and
place them into the Prüfer code or Blob code being constructed. The advantages of using
tree codings as ACO solution components are it reduces the complexity of the number of
pheromone update operations to O(|V|-2) attributed to the length of the Prüfer or Blob
codes, capable of representing all possible spanning trees from these tree codings, capable of
representing only graph spanning trees, and the degree of each vertex in the decoded
spanning tree is easily determined whether it’s satisfied the degree constraint, d or not. The
degree of each vertex in the spanning tree is one more than the number of times its label
appears in the Prüfer or Blob codes.
The pseudocode of the proposed ACO approach for d-MST problem is given in Fig. 7. Both
of the Prüfer coding and the Blob coding can be applied using this pseudocode. This ACO
approach uses local search procedure. The pseudocode of the local search procedure using
exchange mutation is given in Fig. 8. Two separate experiments are conducted for the ACO
approach in Fig. 7. The first experiment uses the Prüfer encoding and decoding algorithms.

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 44

The second experiment uses the Blob encoding and decoding algorithms. Lines from 2 to 4
of Fig. 7 set several parameters for the ACO approach. The parameters are:

• τ0 is the initial pheromone,

• maximum edge weight cost for SHRD graph is set to 20*|V|,

• pheromone trails τvr be the desirability of assigning vertex v to a tree code of array

index r is initially set to a small value as τ0 = |V|2*20*|V|, where v ∈ [0, |V|-1] and r ∈

[0, |V|-3]. Note that, [0, |V|-1] is the vertex labels in the spanning tree from 0 to |V|-1
and [0, |V|-3] is the array indices of the tree code (in array structure) of length |V|-2
from 0 to |V|-3,

• mAnts is the number of ants,

• antDeg[k][v] is the array of ant k degree for each vertex v in the spanning tree where k ∈

[1, mAnts] and v ∈ [0, |V|-1],

• ant[k].avlVtx is the list of ant k available vertices to be selected from the spanning tree

vertices where k ∈ [1, mAnts],

• antTreeCode[k][r] is the array of ant k tree code of length |V|-2 where k ∈ [1, mAnts] and

r ∈ [0, |V|-3],

• d-PrimCode[r] is the tree code of d-Prim degree-constrained spanning tree (d-ST) of

length |V|-2 where r ∈ [0, |V|-3]. The d-Prim algorithm as described in (Narula & Ho,
1980; Knowles & Corne, 2000) is a greedy algorithm and might not always find the
globally optimal solution. It is based upon alterations or additions to Prim’s algorithm
(Prim, 1957) for finding a MST. The d-PrimCode is encoded from its d-Prim d-ST by
using tree encoding algorithms,

• d-STgbCode[r] is the tree code of global-best degree-constrained spanning tree of length

|V|-2 where r ∈ [0, |V|-3]. Initially d-STgbCode d-PrimCode,

• ant_d-STCost[k] is the total weight cost of d-STk of antTreeCode[k] where k ∈ [1, mAnts].
The antTreeCode[k] cost is computed from its d-ST by using tree decoding algorithm,

• d-PrimCost is the total weight cost of d-Prim d-ST. The d-Prim d-ST is determined by
using d-Prim algorithm,

• Lgb is the total weight cost of d-STgb. Initially Lgb d-PrimCost,

• a positive integer which governs the influences of pheromone trails α,

• evaporation rate ρ,

• a positive integer Q, and

• termination_cond is the termination condition where it can be either a predefined
number of iterations has been reached or a satisfactory solution has been found.

The ACO algorithm starts by initialising d-STgbCode of length |V|-2 to be equal to the d-
PrimCode as on line 3 of Fig. 7. d-Prim d-ST is encoded by using tree encoding algorithm to
obtain its d-PrimCode. Then, the ants start to construct their tree code solutions. Initially,

antDeg[k][v] is set to 1 where k ∈ [1, mAnts] and v ∈ [0, |V|-1] as on line 8 of Fig. 7. The
reason for this is the degree of each vertex in the spanning tree is one more than the number
of times label of vertices appears in the Prüfer or Blob codes and initially for each ant their
antTreeCode[k] is emptied. Next, for each ant their ant[k].avlVtx is initially set to {0, 1, …,
|V|-1} where the spanning tree vertex labels start from 0 to |V|-1 (line 9 of Fig. 7). Line 12
of Fig. 7 the ants start to construct their first (index 0) tree code solutions by selecting a
vertex v from ant[k].avlVtx randomly. A particular vertex v will be removed from
ant[k].avlVtx so that the vertex v won’t be available anymore if (antDeg[k][v] = Ud(v)). The
reason for this is to ensure that degree constraint is not violated. For the remaining tree code

A New Ant Colony Optimization Approach for the Degree-Constrained
Minimum Spanning Tree Problem Using Prüfer and Blob Codes Tree Coding 45

position value that is starting from its second position (index 1) to its last position (index
|V|-3) as lines from 16 to 32 of Fig. 7, every ant will select a vertex v among the available
vertices from ant[k].avlVtx probabilistically by applying the roulette wheel selection
(Goldberg, 1989; Michaelwicz, 1996; Dorigo & Stützle, 2004) method. According to the

probability on line 25 of Fig. 7, only the pheromone trail τvr indicates the desirability of
assigning vertex v to a tree code at array index r is being used. Notice also that this

probability formula does not use any visibility measure because the pheromone trail τvr does
not means that an edge cost connecting from vertex v (the ant k tree code array value) to
vertex r (the ant k tree code array index) always exists.
After every ant k has completed their antTreeCode[k] of length |V|-2, then the ant_d-
STCost[k] is determined from their antTreeCode[k] where antTreeCode[k] is decoded by using
the tree decoding algorithm to obtain the ant k d-STk. If the ant_d-STCost[k] is less costly than
the current Lgb as on line 36 of Fig. 7, then the current d-STgbCode will be replaced to be equal
to antTreeCode[k]. Next, the local search procedure by using exchange mutation is applied as
on line 39 of Fig. 7. The new mutated tree code will always produce a new feasible d-ST. The
detail of exchange mutation is given in Fig. 8. The exchange mutation used here takes the
current d-STgbCode and the current Lgb as its inputs. Then, two different positions from
d-STgbCode are being selected randomly so that both of the position values can be exchanged.
As on line 10 of Fig. 8, the number of times for the exchange mutation procedure that takes
the mutated code as its input to be repeated is equal to |V|/2 if |V| is an even number,
else (|V|+1)/2. Notice that, lines from 14 to 30 of Fig. 8, the exchange mutation will be
stopped even if the number of repetition has not been completed; if the current new
mutated d-ST code is less costly than the current d-STgb code. Then, the current d-STgb code
will be replaced by the better mutated d-ST code. If the mutated d-ST code is not better than
the current d-STgb code, the current d-STgb code will be remained without any changes made
to its spanning tree code as implied on line 31 of Fig. 8.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

procedure ACO for d-MST
Set parameters.
d-STgbCode d-PrimCode //d-Prim d-ST is encoded by using tree encoding algorithm

Lgb d-PrimCost
while termination_cond = false do

 for k = 1 to mAnts do

 for v = 0 to |V|-1 do
 antDeg[k][v] = 1 //each ant k spanning tree vertices initial degree is set to 1
 ant[k].avlVtx {0, 1, …, |V|-1}
 for k = 1 to mAnts do
 v select from ant[k].avlVtx randomly
 antTreeCode[k][0] = v
 antDeg[k][v] = antDeg[k][v] + 1

 if antDeg[k][v] = Ud(v) then

 ant[k].avlVtx ant[k].avlVtx – {v}
 r 0
 while (r < |V|-2) do
 r r + 1
 for k = 1 to mAnts do

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 46

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 The ant k tree code of array index r of iteration t will select a vertex v
 among the list of available vertices from ant[k].avlVtx, according to
 probability:

[].

[()]
, if []. ;

[()]()

0 , if []. .

l

k
lrrv

ant k avlVtx

vr t
l ant k avlVtx

tp t

l ant k avlVtx

α

α

τ

τ
∈

∀ ∈
=

∀ ∉

 antTreeCode[k][r] = v
 antDeg[k][v] = antDeg[k][v] + 1

 if antDeg[k][v] = Ud(v) then
 ant[k].avlVtx ant[k].avlVtx – {v}
for k = 1 to mAnts do

ant_d-STCost[k] compute the d-STk cost from antTreeCode[k] by using
 tree decoding algorithm

 if ant_d-STCost[k] < Lgb then
 Lgb ant_d-STCost[k]
 d-STgbCode antTreeCode[k]

 d-STgbCode Local search by using exchange mutation(d-STgbCode, Lgb) //Fig. 8
 The pheromone trails are updated:

1
 (1) (1 -) () ,

mAnts
k

vr vr vr
k

t tτ ρ τ τ
=

+ = + Σ Δ

 where

/ ;

= as global update only.
0, otherwise.

gb

k

vr

Q L
τΔ

 where Lgb is the total weight cost of decoded d-STgbCode by using tree decoding
 algorithms to obtain its d-STgb cost.

 end while
end procedure

Figure 7. The pseudocode of the proposed ACO approach for d-MST problem. Both tree
codings can be applied using this pseudocode

Back to the last step in an iteration of ACO on line 40 of Fig. 7 is the pheromone update.
Only global pheromone update procedure is applied. The global update pheromone

procedure decreases the value of the pheromone trails on τvr by a constant factor ρ and at the

same time also deposit pheromone of an amount Q/Lgb. The v and r of τvr is corresponding
to be the desirability of assigning vertex v in d-STgb code of length |V|-2 at array index r

where v ∈ [0, |V|-1] and r ∈ [0, |V|-3]. Q is a positive integer and Lgb is the total weight
cost of decoded d-STgb tree code of the current iteration by using tree decoding algorithm to
obtain its d-STgb cost.

A New Ant Colony Optimization Approach for the Degree-Constrained
Minimum Spanning Tree Problem Using Prüfer and Blob Codes Tree Coding 47

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

procedure Local search by using exchange mutation(d-STgbCode, Lgb)
 mutatedCode d-STgbCode //tree code of length |V|-2

indexFirst random[0, |V|-3]
do {
 indexSecond random[0, |V|-3]
} while (indexFirst = indexSecond)
tempInteger mutatedCode[indexSecond]
mutatedCode[indexSecond] mutatedCode[indexFirst]
mutatedCode[indexFirst] tempInteger
if (|V|%2 = 0) then //if |V| is an even integer
 numberOfTimes |V|/2
else
 numberOfTimes (|V|+1)/2

 count 0
do {
 count count + 1
 mutatedCodeCost compute the mutated tree code length from its
 mutatedCode by using tree decoding algorithm
 if (mutatedCodeCost < Lgb) then
 Lgb = mutatedCodeCost
 return mutatedCode
 else
 indexFirst random[0, |V|-3]
 do {
 indexSecond random[0, |V|-3]
 } while (indexFirst = indexSecond)

 tempInteger mutatedCode[indexSecond]
 mutatedCode[indexSecond] mutatedCode[indexFirst]
 mutatedCode[indexFirst] tempInteger
} while (count < numberOfTimes)

return d-STgbCode

Figure 8. The pseudocode of the local search procedure by using exchange mutation

5. An ACO algorithm using Prüfer code and Blob code tree codings for lu-
dMST problem

Four modifications have been made to the algorithm mentioned in section 4 to solve another
variant of the d-MST problem with both lower and upper bound constraints on each vertex.
The pseudocode of the proposed ACO approach for lu-dMST problem is given in Fig. 9. The
Prüfer coding and Blob coding can be applied using this pseudocode. Again, two separate
experiments are conducted. The first experiment is using the Prüfer coding and the second
experiment is using the Blob coding. The use of tree codings such as Prüfer and Blob codes
have made it easier to solve lu-dMST problem because the degree of the spanning tree is
equal to one more of the number of times label of vertices appears in the Prüfer or Blob
codes. It is also easy to determine if both the lower and upper bound constraints on each
vertex are satisfied.

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 48

The first modification is to add new parameter ant[k].lwrBndList for each ant. The

ant[k].lwrBndList parameter is the ant k lower bound list where k ∈ [1, mAnts]. The intention
is that each ant will populate the vertices from ant[k].lwrBndList into antTreeCode[k] before
selecting vertices from ant[k].avlVtx. This ant[k].lwrBndList parameter is needed for the ants
to meet their lower bound degree constraint requirement. Each ant initialises their

ant[k].lwrBndList as ant[k].lwrBndList ant[k].lwrBndList ∪ {v} if Ld(v) > 1 for each v in V.
Because the Ud(v) can be vary from vertex to vertex and be equal to one, the ant k also need

to initialises their ant[k].avlVtx as ant[k].avlVtx ant[k].avlVtx ∪ {v} if Ud(v) ≠ 1 for each v in
V.
The second modification (line 4 of Fig. 9) is that the d-PrimCode is used to initialise the
pheromone trails instead of being used as the starting solution for d-STgb code as in Fig. 7.
The reason for this is most of the time, the d-Prim algorithm generates spanning tree that
does not satisfy the lower bound degree constraint requirement for lu-dMST problem. The

degree constraint for d-Prim is set to the maximum value of Ud(i) where i ∈ V. The d-Prim d-
ST is encoded to d-PrimCode by using tree encoding algorithm.
The third modification (lines 25 to 45 of Fig. 9) is the ants’ tree code solution construction
process to obtain their antTreeCode[k]. According to probability on line 35 of Fig. 9, the ant k

will select a vertex v from ant[k].lwrBndList if ant[k].lwrBndList ≠ { } before the ant k can select
a vertex v from ant[k].avlVtx for their antTreeCode[k]. The reason for this is to do away with
repair function. If the repair option is used extensively it may be computationally expensive
to repair infeasible ants’ tree code solutions instead of the computation time could be better
used for the ants to explore a better solution. A particular vertex v will be removed from
ant[k].lwrBndList if (antDeg[k][v] = Ld(v)) and at the same time the vertex v will also be
removed from ant[k].avlVtx if (antDeg[k][v] = Ud(v)). This is to ensure that both the lower and
upper bound degree constraints during the ants’ solutions construction process are adhered
to. The objective function returns the cost of the lower and upper degree-constrained
spanning tree (lu-dST). After every ant has completed their antTreeCode[k] of length |V|-2,
then the best antTreeCode[k] will become the lu-dSTgbCode. The cost of the best antTreeCode[k]
is determined by using tree decoding algorithms. Then, the same local search procedure by
using exchange mutation as for d-MST problem is applied. This local search procedure is
already given in Fig. 8.

The final modification is to add an extra pheromone update. The pheromone trails τvr are
updated by using the v and r of d-PrimCode as follows:

 τvr(t+1) = (1 – ρ)τvr(t) + Q/d-PrimCost. (7)

where the d-Prim degree constraint is set randomly between two and the maximum value of

Ud(i) where i ∈ V. The d-Prim d-ST is encoded to d-PrimCode by using tree encoding
algorithm. This d-PrimCode can be differed from the d-PrimCode as on line 4 of Fig. 9. This
additional pheromone update idea is to enable the ants to consider others possible vertex v
for their tree code solutions.

1
2
3
4
5

procedure ACO for lu-dMST
Set parameters.
Set Lgb to the maximum real number.

The pheromone trails τvr are initialised by using v and r of d-PrimCode as follows:

τvr(t+1) = (1 – ρ)τvr(t) + Q/d-PrimCost

A New Ant Colony Optimization Approach for the Degree-Constrained
Minimum Spanning Tree Problem Using Prüfer and Blob Codes Tree Coding 49

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

where d-Prim degree constraint is set to the maximum value of Ud(i) where i ∈ V. The
d-Prim d-ST is encoded to d-PrimCode by using tree encoding algorithm.
while termination_cond = false do

 for k = 1 to mAnts do
 for v = 0 to |V|-1 do
 antDeg[k][v] = 1 //each ant k spanning tree vertices initial degree is set to 1
 if Ld(v) > 1 then

 ant[k].lwrBndList ant[k]. lwrBndList ∪ {v}

 if Ud(v) ≠ 1 then

 ant[k].avlVtx ant[k].avlVtx ∪ {v}
 for k = 1 to mAnts do
 v select from ant[k].avlVtx randomly
 antTreeCode[k][0] = v
 antDeg[k][v] = antDeg[k][v] + 1

 if antDeg[k][v] = Ld(v) then

 ant[k].lwrBndList ant[k]. lwrBndList – {v}
 if antDeg[k][v] = Ud(v) then
 ant[k].avlVtx ant[k].avlVtx – {v}

 r 0
 while (r < |V|-2) do

 r r + 1
 for k = 1 to mAnts do

 The ant k tree code of array index r of iteration t will select a vertex v from the
 spanning tree vertices, according to probability:

[].

[].

[()]
, if []. ;

[()] , if []. {};

0 , if []. .
()

[()]

[()]

l

l

lr

ant k lwrBndList

k
rv

lr

ant k avlV

vr

vr

t
l ant k lwrBndList

t ant k lwrBndList

l ant k lwrBndList
p t

t

t

α

α

α

α

τ

τ

τ

τ

∈

∈

∀ ∈
≠

∀ ∉
=

, if []. ;

, .

0 , if []. .

tx

l ant k avlVtx

otherwise

l ant k avlVtx

∀ ∈

∀ ∉

 antTreeCode[k][r] = v
 antDeg[k][v] = antDeg[k][v] + 1

 if antDeg[k][v] = Ld(v) then
 ant[k].lwrBndList ant[k]. lwrBndList – {v}
 if antDeg[k][v] = Ud(v) then
 ant[k].avlVtx ant[k].avlVtx – {v}
for k = 1 to mAnts do

ant_lu-dSTCost[k] compute the lu-dSTk cost from its antTreeCode[k] by using
 tree decoding algorithm

 if ant_lu-dSTCost[k] < Lgb then
 Lgb ant_lu-dSTCost[k]
 lu-dSTgbCode antTreeCode[k]

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 50

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

 lu-dSTgbCode Local search by using exchange mutation(lu-dSTgbCode, Lgb) //Fig. 8
 Then, the pheromone trails are updated as global update as follows:

1
 (1) (1 -) () ,

mAnts
k

vr vr vr
k

t tτ ρ τ τ
=

+ = + Σ Δ

where

/ ;

 = as global update.
0, otherwise.

gb

k

vr

Q L
τΔ

where Lgb is the total weight cost of decoded lu-dSTgbCode by using tree decoding
algorithms to obtain its lu-dSTgb cost.

The pheromone trails τvr are updated by using v and r of d-PrimCode as follows:

τvr(t+1) = (1 – ρ)τvr(t) + Q/d-PrimCost
where the d-Prim degree constraint is set randomly between two and the maximum

of Ud(i) where i ∈ V. The d-Prim d-ST is encoded to d-PrimCode by using tree
encoding algorithm.

 end while
end procedure

Figure 9. The pseudocode of the proposed ACO approach for lu-dMST problem. Both tree
codings can be applied using this pseudocode

6. Performance comparisons of Prüfer ACO and Blob ACO on structured
hard (SHRD) graph data set for d-MST problem

The Prüfer-coded ACO and Blob-coded ACO are tested on structured hard (SHRD) graphs
as used in (Raidl, 2000; Mohan et al., 2001; Bui & Zrncic, 2006) for the d-MST problem. The
SHRD graphs are constructed by using non-Euclidean distance as follows. The first vertex is
connected to all other vertices by an edge of length l; the second vertex is connected to all
vertices bar the first by an edge of length 2l and so on. Then SHRD is randomised slightly by
adding a uniformly distributed perturbation between 1 and 18 where l = 20. The details to
generate a SHRD graph is given in Fig. 10. This reduces the likelihood of a large number of
optimal solutions existing but doesn’t change the underlying complexity of the problem.
These are difficult to solve optimally compared to other data sets such as Euclidean data sets
of degree 3 or more (Mohan et al., 2001). The MST for SHRD is a star graph where one
vertex has degree |V|-1 and the all other vertices have degree 1. The SHRD graphs are
complete graphs with undirected non-negative weighted edges.
The parameter for Prüfer-coded ACO and Blob-coded ACO is tuned from 0.0 to 0.9. For
each , average solution costs over 50 independent runs are recorded. Each run terminates

after 274 (50 * | |V) iterations. The setting that produced the lowest average solution cost

will be the Prüfer-coded ACO and Blob-coded ACO parameter value used for SHRD data
set. Table 2 shows the parameter tuning results for Prüfer-coded ACO and Blob-coded ACO

approaches on SHRD data set. The lowest ρ values for Prüfer-coded ACO and Blob-coded
ACO from Table 2 are in bold print. Separate parameter values are used for Prüfer-coded

ACO and Blob-coded ACO on the SHRD problem instances. The parameter value of ρ = 0.1

is chosen for Prüfer-coded ACO while value of ρ = 0.9 is chosen for Blob-coded ACO. There

A New Ant Colony Optimization Approach for the Degree-Constrained
Minimum Spanning Tree Problem Using Prüfer and Blob Codes Tree Coding 51

is so much difference between Prüfer-coded ACO and Blob-coded ACO parameter value of

ρ. One of the probable reasons is the Blob code exhibits higher locality under mutation of
one symbol compares to Prüfer code. On average only about two edges for a spanning tree
is changed after changing one symbol in a Blob code to be decoded by the Blob decoding
algorithm (Julstrom, 2001). Table 3 shows the values of the ACO parameters. All results are
obtained using a PC with Pentium 4 processor with 512 megabytes of memory, running at
3.0 GHz under Windows XP Professional.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

procedure generateSHRDgraph
 Let total number of vertices as |V|
 Let graph edges as edge[|V|][|V|]
 for i = 0 to |V|-1 do

 for j = 0 to i do

 if i = j then
 edge[i][j] = 1000000000.000000
 else
 edge[i][j] = 20*j + random[1, 18]
 edge[j][i] = edge[i][j]

 // Print lower left SHRD triangular graph matrix only
 for i = 1 to |V|-1 do

 for j = 0 to i-1 do

 Print edge[i][j] and “ ”.
 Print newline.
end procedure

Figure 10. The pseudocode to generate a SHRD graph

Prüfer-coded ACO Blob-coded ACO

ρ = 0.0 1554.74 1532.66

0.1 1551.96 1533.74

0.2 1554.14 1532.22

0.3 1556.68 1532.04

0.4 1553.48 1533.66

0.5 1554.92 1533.66

0.6 1553.94 1535.20

0.7 1553.90 1533.52

0.8 1552.70 1535.26

0.9 1552.00 1530.34

Table 2. Parameter ρ tuning for Prüfer-coded ACO and Blob-coded ACO average results,

problem shrd305, d = 5, |V| = 30, number of iterations = 50 * | |V = 274, number of runs =

50

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 52

Prüfer-coded ACO Blob-coded ACO

ρ 0.1 0.9

mAnts |V| |V|

Q 1.0 1.0

α 1 1

SHRD maxEdgeCost 20*|V| 20*|V|

τ0 |V|2*20*|V| |V|2*20*|V|

iterations 50 * | |V 50 * | |V

Table 3. The ACO parameters and their values for artificial ant k using Prüfer code and Blob
code tree codings on SHRD problem instances

Problem
Prüfer
ACO
avg.

Prüfer
ACO
best

Prüfer
ACO
time

Blob
ACO
avg.

Blob
ACO
best

Blob
ACO
time

Enhanced
k-ACO

avg.

Enhanced
k-ACO

best

Enhanced
k-ACO

time

SHRD153 16.94 18.89 15 17.95 19.84 21 20.26 21.19 120

SHRD154 9.94 12.01 15 12.25 14.37 21 12.29 15.35 120

SHRD155 8.04 9.60 15 7.87 9.60 21 8.95 9.60 120

SHRD203 8.74 10.74 38 10.22 11.39 52 11.72 12.12 180

SHRD204 6.45 7.79 38 7.05 8.47 52 9.22 9.48 180

SHRD205 5.70 7.15 38 6.46 8.03 52 8.17 8.47 180

SHRD253 16.26 18.67 87 17.82 19.13 118 19.81 20.40 360

SHRD254 3.36 4.82 87 4.40 5.55 118 6.41 6.72 360

SHRD255 5.45 7.19 87 7.39 8.29 118 8.91 9.02 360

SHRD303 9.14 10.71 145 9.88 11.52 197 12.30 12.46 660

SHRD304 8.20 10.04 145 9.63 11.06 197 11.61 11.80 660

SHRD305 3.59 5.40 145 4.68 5.96 197 6.37 6.58 660

Total
Average:

8.48
10.25 855

9.63
11.10 1164

11.34 11.93 3960

Table 4. Average and best results (quality gains over d-Prim in %), and total times (in
seconds) on SHRD problem instances. Label SHRD153 means SHRD graph 15-vertex with
degree constraint, d=3 and so on

Table 4 summarises the results of Prüfer-coded ACO and Blob-coded ACO on SHRD data
set. The Prüfer-coded ACO and Blob-coded ACO were run 50 independent times on each

problem instance. Each run is terminated after 50 * | |V iterations. The number of vertices

are in the range 15, 20, 25, and 30. The maximum degree was set to 3, 4 and 5. The results for
the enhanced kruskal-ACO are adopted from (Bau et al., 2007). At this time, the enhanced
kruskal-ACO is used as a performance benchmark. It is one of the best approaches for the d-
MST problem on the SHRD graphs (Bau et al., 2007). Besides average gains, the gains of the
best run and total times (in seconds) that are required for 50 runs are reported in Table 4.

A New Ant Colony Optimization Approach for the Degree-Constrained
Minimum Spanning Tree Problem Using Prüfer and Blob Codes Tree Coding 53

The total times in seconds for 50 runs is recorded so that the time required between ACO
without tree coding and ACO using tree coding can be compared. The enhanced kruskal-
ACO is referred to as Enhanced k-ACO but the Prüfer-coded ACO and Blob-coded ACO are
referred to as Prüfer ACO and Blob ACO. Between Prüfer ACO and Blob ACO, the highest
average gains are underlined.
It can be concluded that Enhanced k-ACO has higher total average results compared to Blob
ACO. In turn, Blob ACO has higher total average results compared to Prüfer ACO. Between
Prüfer ACO and Blob ACO, Blob ACO almost always identifies trees of higher gains except
on a SHRD155 d=5 problem instance. Between Blob ACO and Enhanced k-ACO, Blob ACO
achieves results very close to Enhanced k-ACO. On all the problem instances, the maximum
average result difference between them is only by 2.42 on a SHRD303 d=3. When all three
ACO approaches are compared, the Enhanced k-ACO attains the highest total average
compared to the Prufer ACO and Blob ACO. The reason for this is probably due to the fact
that Enhanced k-ACO uses visibility measure during the ants’ solution construction.
However on all problem instances, the Prüfer ACO and Blob ACO performed faster in terms
of computation time compared to the Enhanced k-ACO. The Prüfer ACO requires only
about 22% and Blob ACO requires only about 29% as much time as does the Enhanced k-
ACO.

7. Performance comparisons of Prüfer ACO and Blob ACO on structured
hard (SHRD) graph data set for lu-dMST problem

Four networks of varying sizes based on SHRD graphs are generated. The number of
vertices are 20, 40, 60, and 80, similar to those used in (Chou et al., 2001). The SHRD 20-
vertex problem instance set is labelled as SHRD20, the SHRD 40-vertex problem instance set
is labelled as SHRD40 and so on. For each vertex, an integer from a range of one to four is
randomly generated for the lower bound degree constraint, Ld(i), and one to eight is

randomly generated for the upper bound degree constraint, Ud(i) where i ∈ V. This means
that the maximum value for the upper bound degree constraint is eight. The minimum
value of Ld(i) and Ud(i) is always equal to 1, and Ud(i) is always greater than or equal to Ld(i).
In order to ensure that the network forms at least one feasible solution, the sum for each
vertex of lower bound degree constraint is set between |V| and 2(|V|-1) as follows:

| | 1

0

| | () 2(| | 1)
V

d

i

V L i V
−

=

≤ ≤ − . (8)

And, the sum for each vertex of upper bound degree constraint is set between 2(|V|-1) and
|V|(|V|-1) as follows:

| | 1

0

2(| | 1) () | |(| | 1)
V

d

i

V U i V V
−

=

− ≤ ≤ − . (9)

The reason for this is that a spanning tree always consists of |V|-1 edges, an edge consists
of exactly two distinct vertices, and the total number of the degrees of an edge is two.
Therefore, the sum over the degrees deg(i) of a spanning tree on each vertex i in V as given in
(Gross & Yellen, 2006) can be calculated as follows:

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 54

| | 1

0

deg() 2(| | 1)
V

i

i V
−

=

= − . (10)

Table 5 summarises the results of these Prüfer-coded ACO and Blob-coded ACO approaches
on SHRD graph. The Prüfer-coded ACO and Blob-coded ACO approaches were each run 50

independent times on each problem instance. Each run is terminated after 50 * | |V

iterations. The numbers of vertices are in the range 20, 40, 60, and 80. For each i ∈ V, the 1 ≤

Ld(i) ≤ 4, 1 ≤ Ud(i) ≤ 8, and Ud(i) Ld(i). Besides average solution cost, the solution cost of the
best run and total times (in seconds) required for 50 independent runs are reported in Table
5. The solution cost is used here for performance comparison rather than the quality gain.
The Prüfer-coded ACO and Blob-coded ACO approaches are referred to as Prüfer ACO and
Blob ACO. The parameter values of Prüfer ACO and Blob ACO for lu-dMST problem are
the same as the parameter values of Prüfer ACO and Blob ACO for d-MST problem.
As shown in Table 5, it can be concluded that Blob ACO always has the better results
compared to Prüfer ACO. The Blob ACO always identifies trees of lower solution cost for all
the problem instances in the SHRD graphs. The overall effectiveness of the Blob ACO
compared to Prüfer ACO is probably due to the fact that it uses better tree coding scheme.
Prüfer code is a poor representation of spanning trees for EA (Gottlieb et al., 2001; Julstrom,
2001). Small changes in Prüfer code often cause large changes in the spanning trees they
represent. However on all problem instances, the Prüfer ACO requires lesser time than the
Blob ACO. This does not bring to a conclusion that Blob tree coding always requires more
time compared to Prüfer tree coding. In a recent study of the Blob code spanning tree
representations, Paulden and Smith (2006) have described linear-time encoding and
decoding algorithms for the Blob code, which supersede the usual quadratic-time
algorithms.

Problem Prüfer ACO
avg.

Prüfer ACO
best

Prüfer ACO
Time (secs)

Blob ACO
avg.

Blob ACO
best

Blob ACO
Time (secs)

SHRD20 1429.28 1304 33 1391.56 1286 50

SHRD40 5573.04 4941 330 5034.32 4673 458

SHRD60 12167.48 11003 1345 11448.68 10625 1715

SHRD80 16683.12 14839 3483 15013.24 13844 4610

Total
Average:

35852.92 32087 5191 32887.80 30428 6833

Table 5. Average solution cost on SHRD problem instances with both lower and upper
bound degree constraints. Label SHRD20 means SHRD graph 20-vertex and so on

8. Conclusion

The design and implementation of Blob-coded ACO and Prüfer-coded ACO for d-MST and
lu-dMST problems have been presented. This ACO approaches is different because it
constructs the encoded of the solution and can speed up computation time. Performance
studies have revealed that Blob-coded ACO is almost always better than Prüfer-coded ACO
for both types of problems for the SHRD graphs. However for the d-MST problem, Blob-
coded ACO does not perform better than the enhanced kruskal-ACO approach in any single

A New Ant Colony Optimization Approach for the Degree-Constrained
Minimum Spanning Tree Problem Using Prüfer and Blob Codes Tree Coding 55

problem instance for SHRD graphs. Finally, the Blob code may be a useful coding of
spanning trees for ants’ solution construction in ACO algorithms for the d-MST and lu-
dMST problems in terms of computation time. There may be other codings of spanning trees
even more appropriate for ants’ solution construction such as Happy code or Dandellion
code as mentioned by Picciotto (1999) in his PhD thesis.

9. References

Bau, Yoon Teck; Ho, Chin Kuan, & Ewe, Hong Tat (2007). Ant Colony Optimization
Approaches to the Degree-constrained Minimum Spanning Tree Problem. Journal of
Information Science and Engineering (in press)

Bui, T. N. & Zrncic, C. M. (2006). An Ant-Based Algorithm for Finding Degree-Constrained
Minimum Spanning Tree. Proceedings of the 8th Annual Conference on Genetic and
Evolutionary Computation, 11-18

Cayley (1889). A theorem on trees. Quarterly Journal of Mathematics, 23, 376-378
Dorigo, M. & Stützle T. (2004). Ant Colony Optimization. A Bradford Book, The MIT Press,

Cambridge, MA, London, England
Garey, M. R. & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-

Completeness. Freeman, San Francisco, CA
Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley, Reading, MA
Gottlieb, J.; Julstrom, B. A., Raidl, G. R. & Rothlauf, F. (2001). Prüfer numbers: A poor

representation of spanning trees for evolutionary search. In: Proceedings of the
Genetic and Evolutionary Computation Conference GECCO-2001, Lee, Spector,
Goodman, E. D., Annie, Wu, Langdon, W. B., Hans-Michael, V., Mitsuo, Gen,
Sandip, Sen, Dorigo, M., Pezeshk, S., Garzon, M. H. & Burke, E. (Eds.), (343-350),
Morgan Kaufmann, San Francisco, California, USA

Gross, J. L. & Yellen, J. (2006). Graph Theory and its Applications 2nd ed., CRC Press, Boca
Raton, London, New York, Washington, D.C.

Hsinghua Chou; G. Premkumar & Chao-Hsien Chu (2001). Genetic Algorithms for
Communications Networks Design – An Empirical Study of the Factors that
Influence Performance. IEEE Transactions on Evolutionary Computation, Vol. 5, No. 3,
236-249

Julstrom, B. A. (2001). The Blob Code: A better string coding of spanning trees for
evolutionary search. In: 2001 Genetic and Evolutionary Computation Conference
Workshop Program, Annie, S. Wu (Ed.), (256-261), San Francisco, CA

Knowles, J. & Corne, D. (2000). A new evolutionary approach to the degree-constrained
minimum spanning tree problem. IEEE Transactions on Evolutionary Computation,
4(2), 125-134

Michalewicz Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs 3rd Rev. and
Extended ed., Springer Verlag

Mohan, Krishnamoorthy; Andreas, T. Ernst & Yazid, M. Sharaiha (2001). Comparison of
Algorithms for the Degree-constrained Minimum Spanning Tree. Journal of
Heuristics, 7(6), 587-611

Narula, S. C. & Ho, C. A. (1980). Degree-constrained minimum spanning tree. Computer
Operation Research, 7(4), 239-249

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 56

Paulden, T. & Smith, D. K. (2006). Recent advances in the study of the Dandelion code,
Happy code, and Blob code spanning tree representations, In Proceeding IEEE
Congress on Evolutionary Computation, 2111- 2118

Picciotto, S. (1999). How to encode a tree, Ph.D. Thesis, University of California, San Diego
Prim, R. (1957). Shortest connection networks and some generalizations. Bell System

Technical Journal, 36, 1389-1401
Prüfer, H. (1918). Neuer Beweis eines Satzes über Permutationen [New proof of a counting

labelled tree sequence over permutations]. Architecture Mathematics Physics, 27, 742-
744

Raidl, G. R. (2000). An efficient evolutionary algorithm for the degree-constrained minimum
spanning tree problem. IEEE Transactions on Evolutionary Computation, 1, 104-111

Sipser, M. (2006). Introduction to the Theory of Computation 2nd ed., Course Technology

Swarm Intelligence, Focus on Ant and Particle Swarm Optimization

Edited by FelixT.S.Chan and Manoj KumarTiwari

ISBN 978-3-902613-09-7

Hard cover, 532 pages

Publisher I-Tech Education and Publishing

Published online 01, December, 2007

Published in print edition December, 2007

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

In the era globalisation the emerging technologies are governing engineering industries to a multifaceted state.

The escalating complexity has demanded researchers to find the possible ways of easing the solution of the

problems. This has motivated the researchers to grasp ideas from the nature and implant it in the engineering

sciences. This way of thinking led to emergence of many biologically inspired algorithms that have proven to

be efficient in handling the computationally complex problems with competence such as Genetic Algorithm

(GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), etc. Motivated by the capability of

the biologically inspired algorithms the present book on "Swarm Intelligence: Focus on Ant and Particle Swarm

Optimization" aims to present recent developments and applications concerning optimization with swarm

intelligence techniques. The papers selected for this book comprise a cross-section of topics that reflect a

variety of perspectives and disciplinary backgrounds. In addition to the introduction of new concepts of swarm

intelligence, this book also presented some selected representative case studies covering power plant

maintenance scheduling; geotechnical engineering; design and machining tolerances; layout problems;

manufacturing process plan; job-shop scheduling; structural design; environmental dispatching problems;

wireless communication; water distribution systems; multi-plant supply chain; fault diagnosis of airplane

engines; and process scheduling. I believe these 27 chapters presented in this book adequately reflect these

topics.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Yoon-Teck Bau, Chin-Kuan Ho and Hong-Tat Ewe (2007). A New Ant Colony Optimization Approach for the

Degree-Constrained Minimum Spanning Tree Problem Using Pruefer and Blob Codes Tree Coding, Swarm

Intelligence, Focus on Ant and Particle Swarm Optimization, FelixT.S.Chan and Manoj KumarTiwari (Ed.),

ISBN: 978-3-902613-09-7, InTech, Available from:

http://www.intechopen.com/books/swarm_intelligence_focus_on_ant_and_particle_swarm_optimization/a_new

_ant_colony_optimization_approach_for_the_degree-constrained_minimum_spanning_tree_problem_usin

www.intechopen.com

© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

