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Abstract

Linear vibrator and slot radiators, i.e., radiators of electric and magnetic type, respec‐
tively, are widely used as separate receiver and transmitter structures, elements of an‐
tenna systems, and antenna-feeder devices, including combined vibrator-slot
structures. Widespread occurrence of such radiators is an objective prerequisite for
theoretical analysis of their electrodynamic characteristics. During the last decades, re‐
searchers have published results which make it possible to create a modern theory of
thin vibrator and narrow slot radiators. This theory combines the fundamental
asymptotic methods for determining the single radiator characteristics, the hybrid an‐
alytic-numerical approaches, and the direct numerical techniques for electrodynamic
analysis of such radiators. However, the electrodynamics of single linear electric and
magnetic radiators is far from been completed. It may be explained by further devel‐
opment of modern antenna techniques and antenna-feeder devices, which can be
characterized by such features as multielement structures, integration, and modifica‐
tion of structural units to minimize their mass and dimensions and to ensure electro‐
magnetic compatibility of radio aids, application of metamaterials, formation of
required spatial-energy, and spatial-polarization distributions of electromagnetic
fields in various nondissipative and dissipative media. To solve these tasks, electric
and magnetic radiators, based on various impedance structures with irregular geo‐
metric or electrophysical parameters and on combined vibrator-slot structures, should
be created. This chapter presents the methodological basis for application of the gen‐
eralized method of induced EMMF for the analysis of electrodynamic characteristics
of the combined vibrator-slot structures. Characteristic feature of the generalization to
a new class of approximating functions consists in using them as a function of the cur‐
rent distributions along the impedance vibrator and slot elements; these distributions
are derived as the asymptotic solution of integral equations for the current (key prob‐
lems) by the method of averaging. It should be noted that for simple structures similar
to that considered in the model problem, the proposed approach yields an analytic
solution of the electrodynamic problem. For more complex structures, the method
may be used to design effective numerical-analytical algorithms for their analyses.

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



The demonstrative simulation (the comparative analysis of all electrodynamic charac‐
teristics in the operating frequencies range) has confirmed the validity of the pro‐
posed generalized method of induced EMMF for analysis of vibrator-slot systems
with rather arbitrary structure (within accepted assumptions). Here, as examples,
some fragments of this comparative analysis were presented. This method retains all
benefits of analytical methods as compared with direct numerical methods and allows
to expand significantly the boundaries of numerical and analytical studies of practi‐
cally important problems, concerning the application of single impedance vibrator, in‐
cluding irregular vibrator, the systems of such vibrators, and narrow slots.

Keywords: Waves excitation, thin impedance vibrators, narrow slots, vibrator-slot
structures

1. Introduction

At present, linear vibrator and slot radiators, i.e. radiators of electric and magnetic type,
respectively, are widely used as separate receiver and transmitter structures, elements of
antenna systems, and antenna-feeder devices, including combined vibrator-slot structures
[1-4]. Widespread occurrence of such radiators is an objective prerequisite for theoretical
analysis of their electrodynamic characteristics. During last decades researchers have pub‐
lished results which make it possible to create a modern theory of thin vibrator and narrow
slot radiators. This theory combines the fundamental asymptotic methods for determining the
single radiator characteristics [5-7], the hybrid analytic-numerical approaches [8-10], and the
direct numerical techniques for electrodynamic analysis of such radiators [11]. However, the
electrodynamics of single linear electric and magnetic radiators is far from been completed. It
may be explained by further development of modern antenna techniques and antenna-feeder
devices which can be characterized by such features as multielement structures, integration
and modification of structural units to minimize their mass and dimensions and to ensure
electromagnetic compatibility of radio aids, application of metamaterials, formation of
required spatial-energy and spatial-polarization distributions of electromagnetic fields in
various nondissipative and dissipative media. To solve these tasks electric and magnetic
radiators, based on various impedance structures with irregular geometric or electrophysical
parameters, and on combined vibrator-slot structures, should be created [12-20].

Mathematical modeling of antenna-feeder devices requires multiparametric optimization of
electrodynamic problem solution and, hence, effective computational resources and software.
Therefore, in spite of rapid growth of computer potential, there exists a necessity to develop
new effective methods of electrodynamic analysis of antenna-feeder systems, being created
with linear vibrator and slot structures with arbitrary geometric and electrophysical parame‐
ters, satisfying modern versatile requirements, and widening their application in various
spheres. Efficiency of mathematical modeling is defined by rigor of corresponding boundary
problem definition and solution, by performance of computational algorithm, requiring
minimal possible RAM space, and directly depends upon analytical formulation of the models.
That is, the weightier is the analytical component of the method the grater is its efficiency. In
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this connection it should be noted that formation of analytical concepts of electrodynamic
analysis extending the capabilities of physically correct mathematical models for new classes
of boundary problems is always an important problem.

This chapter presents the methodological basis of a new approach to solving the electrody‐
namic problems associated with combined vibrator–slot structures, defined as a generalized
method of induced electro-magneto-motive forces (EMMF). This approach is based on the
classical method of induced EMMF, i.e, basis functions, approximating the currents along the
vibrator and slot elements, are obtained in advance as analytical solutions of key problems,
formulated as integral equations for the currents by the asymptotic averaging method. Bearing
this in mind, we present here solutions of two key problems: a single impedance vibrator and
slot scatterer in a waveguide, obtained by averaging method, and then solve a problem for the
multielement vibrator-slot structures by generalized method of induced EMMF.

2. Problem formulation and initial integral equations

Let us formulate the problem of electromagnetic fields excitation (scattering, radiation) by
finite-size material bodies in two electrodynamic volumes coupled by holes cut in their
common boundary. Suppose that there exists some arbitrary volume V1, bounded by a
perfectly conducting, impedance, or partially impedance surface S1, some parts of which may
be infinitely distant. The volume V1 is coupled with another arbitrary volume V2 through holes
Σn (n =1, 2...N ), cut in the surface S1. The boundary between the volumes V1 and V2 in the
regions around the coupling holes has an infinitely small thickness. Permittivity and perme‐
ability of the medium filling volumes V1 and V2 are ε1, μ1 and ε2, μ2, respectively. Material
bodies, enclosed in local volumes Vm1

 (m1 =1, 2, ...M1) and Vm2
 (m2 =1, 2, ...M2), bounded by

smooth closed surfaces Sm1
 and Sm2

, are allocated in the volumes V1 and V2, respectively. The
bodies have homogeneous material parameters: permittivity εm1

, εm2
, permeability μm1

, μm2
, and

conductivity σm1
, σm2

. The fields of extraneous sources can be specified as the electromagnetic
wave fields, incident on the bodies and the holes (scattering problem), or as fields of electro‐
motive forces, applied to the bodies (radiation problem), or as combination of these fields.
Without loss of generality, we assume that electromagnetic fields of extraneous sources
{E→ 0(r

→ ), H
→

0(r
→ )} exist only in the volume V1. The fields {E→ 0(r

→ ), H
→

0(r
→ )} depend on the time t  as e iωt

(r→  is the radius vector of the observation point, ω =2πf  is an circular frequency and f  is
frequency, measured in Hertz). We seek the electromagnetic fields {E→ V 1

(r→ ), H
→

V 1
(r→ )} and

{E→ V 2
(r→ ), H

→
V 2

(r→ )} in the volumes V1 and V2, satisfying Maxwell’s equations and boundary
conditions on the surfaces Sm1

, Sm2
, Σn, S1 and S2 (Figure 1).

To solve the above-mentioned problem we express the electromagnetic fields in volumes V1

and V2 in terms of the tangential fields components on the surfaces Sm1
, Sm2

 and Σn. In the
Gaussian CGS system of units, the electromagnetic fields can be represented by the well-
known Kirchhoff-Kotler integral equations [3,4]:
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Figure 1. The problem geometry and notations
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Here k =2π / λ is the wave number, λ is the free space wavelength, k1 =k ε1μ1 and k2 =k ε2μ2 are
wave numbers in the media filling the volumes V1 and V2, respectively; r→ ′

m1,m2,n are radius-vectors
of sources allocated at the surfaces Sm1

, Sm2
 and Σn ; n→ m1,m2,n are unit vectors of external normals

to the surfaces; ĜV 1,V 2

e (r→ , r→ ′) and ĜV 1,V 2

m (r→ , r→ ′) are the electric and magnetic tensor Green’s
functions for Hertz’s vector potentials in the coupled volumes satisfying the vector Helmholtz
equation and the boundary conditions on surfaces S1 and S2. For the infinitely distant parts of
surfaces S1 or S2 the boundary conditions for the Green’s functions are transformed to the
Sommerfeld’s radiation condition.

Interpretation of the fields in the left-hand side of equations (1) depends upon position of an
observation point r→ . If the observation point r→  belongs to the surfaces Sm1

, Sm2
 or to the apertures

Σn, the fields E
→

(r→ ) and H
→

(r→ ) represent the same fields as in the integrals in the right-hand sides
of equations (1). In this case, equations (1) are non-homogeneous linear integral Fredholm
equations of the second kind, which are known to have the unique solution. If the observation
point lies outside areas Vm1

, Vm2
 and Σn, the equations (1) become the equalities determining

the total electromagnetic field by the field of specified extraneous sources. These equalities
solve, in general terms, the problem of electromagnetic fields excitation by finite size obstacles
if fields on the objects’ surfaces are known. Certainly, to find these fields, the Fredholm integral
equations should be solved beforehand.

The equations (1) can be also used to solve electrodynamics problems if the fields on the
material body surfaces can be defined by additional physical considerations. For example, if
induced currents on well-conducting bodies (σ →∞) are concentrated near the body surface
the skin layer thickness can be neglected and the well-known Leontovich-Shchukin approxi‐
mate impedance boundary condition becomes applicable [4]

, ( ) ( ) , , ( ) ,Sn E r Z r n n H ré ùé ù é ù=ë û ë ûë û
r rr r r r r r

(2)

where Z̄ S(r→ ) = R̄S (r→ ) + i X̄ S (r→ ) =ZS (r→ ) / Z0 is the distributed complex surface impedance, normal‐
ized to the characteristic free space impedance Z0 =120π Ohm; the value of Z̄ S(r→ ) may vary over
the body surface. It is generally accepted that the boundary condition (2) are physically
adequate under condition | Z̄ S (r→ )|≪1. If | Z̄ S (r→ )| →0, the boundary condition become that
for the perfect conductor. In contrast to the limiting case of the perfect conductor, the impe‐
dance boundary condition allow to take into account losses in the real material. Since the
relative error of (2) is of order | Z̄ S (r→ )| 3, the inequality 0≤ | Z̄ S (r→ )| ≤0.4 must hold to obtain
valid results by the mathematical model.

Using the impedance boundary condition (2) we can introduce a new unknown, density of
surface currents. Let us perform such change of unknown in the equations (1). Without loss of
generality, we carry the system of equations (1) the transition to the case when all the material
bodies are located in volume V1. By placing the observation point on the surface Sm (index 1
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is omitted) and using the continuity condition for the tangential components of the magnetic
field on the holes Σn, we obtain the system of integral equations relative to the density of surface

currents: electric J
→

m
e (r→ m) at Sm and equivalent magnetic J

→
n
m(r→ n) at Σn. The system can be presented

as
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(3)

where q =1, 2, ..., m, ..., M , p =1, 2, ..., n, ..., N , J
→

m
e (r→ m)=

c
4π n→ m, H

→
(r→ m) , J

→
n
m(r→ n)=

c
4π n→ n, E

→
(r→ n) , c

is velocity of light in free space.

Thus, the problem of electromagnetic waves excitation by the impedance bodies of finite
dimensions and by the coupling holes between two electrodynamic volumes is formulated as
a rigorous boundary value problem of macroscopic electrodynamics, reduced to the system
of integral equations for surface currents. Solution of this system is an independent problem,
significant in its own right, since it often present considerable mathematical difficulties. If
characteristic dimensions of an object are much greater than wavelength (high-frequency
region) a solution is usually searched as series expansion in ascending power of inverse wave
number. If dimensions of an object are less than wavelength (low-frequency or quasi-static
region), representation of the unknown functions as series expansion in wave number powers
reduces the problem to a sequence of electrostatic problems. Contrary to asymptotic cases,
resonant region, where at least one dimension of an object is comparable with wavelength, is
the most complex for analysis, and requires rigorous solution of field equations. It should be
noted that, from the practical point of view, the resonant region is of exceptional interest for
thin impedance vibrators and narrow slots.
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3. Integral equations for electric and magnetic currents in thin impedance
vibrators and narrow slots

A straightforward solution of the system (3) for the material objects with irregular surface
shape and for holes with arbitrary geometry may often be impossible due to the known
mathematical difficulties. However, the solution is sufficiently simplified for thin impedance
vibrators and narrow slots, i.e. cylinders, which cross-section perimeter is small as compared
to their length and the wavelength in the surrounding media and for holes, which one
dimension satisfy the analogous conditions [19,20]. The approach used in [19,20] for the
analysis of slot-vibrator systems can be generalized for multi-element systems. In addition,
the boundary condition (2) can be extended for cylindrical vibrator surfaces with an arbitrary
distribution of complex impedance regardless of the exciting field structure and electrophys‐
ical characteristics of vibrator material [4].

For thin vibrators made of circular cylindrical wire and narrow straight slots the equation
system (3) can be easily simplified using inequalities

1,2 1,22
1, 1, 1, 1,m m n n

m n

r r d d
L Ll l

<< << << << (4)

where rm is vibrator radius, L m is vibrator length, dn is slot width, 2L n is slot length, and λ1,2

is wavelength in the corresponding media. The electric current induced on the vibrator surfaces
and equivalent magnetic currents in the slots can be presented using the inequalities (4) as

( ) ( ) ( , ) , ( ) ( ) ( ) ,
m n

e m
m m s m m m m m n n s n n n nJ r e J s J r e J sy r j c x= =
r rr r r r

(5)

where e→ sm
 and e→ sn

 are unit vectors directed along the vibrator and slot axis, respectively; sm and
sn are local coordinates related to the vibrator and slot axes; ψm(ρm, φm) are functions of
transverse (⊥m ) polar coordinates ρm, φm for the vibrators; χn(ξn) are functions of transverse
coordinates ξn for the slots. The functions ψm(ρm, φm) and χn(ξn) satisfy the normality conditions

d d d( , ) 1, ( ) 1,
m n

m m m m m m n n n
x

y r j r r j c x x
^

= =ò ò (6)

and the unknown currents Jm(sm) and Jn(sn) must satisfy the boundary conditions

( ) 0 , ( ) 0 ,m m n nJ L J L± = ± = (7)

where upper indexes e and m are omitted.
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Now we take into account that n→ m, J
→

m(r→ m) ≪1 according to inequalities (4) and project the
equations (3a) and (3b) on the axes of the vibrators and slots, respectively, and arrive at a system
of linear integral equations relative to the currents in the vibrators and slots
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Here zim(sm) are internal lineal impedance of the vibrators (ZSm(r→ m)=2πrmzim(r→ m)) measured in
Ohm/m, E0sm

(sm) and H0sn
(sn) are projections of extraneous sources on the vibrators and slots

axes, Gsm

V 1(sm,n, s ′
m) and Gsn

V 1(2)(sm,n, s ′
n) are components of the tensor Green’s functions in the

volumes V1 and V2.

For solitary vibrator or slot as well as for the absence of electromagnetic interaction between
them, the system (8) splits into two independent equations:
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Here e→ s ′
v
 and e→ s ′

sl
 are unit vectors of vibrator and slot axes at the sources, and
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Solution of the integral equation with the exact kernel expressions (11) and (12) may be very
difficult, therefore we will use approximate expressions, the so called “quasi-one-dimension‐
al” kernels [5,15]
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derived with the assumption that source points belong to the geometric axes of the vibrator
and slot while observation points belong to vibrator surface and to slot axis, having coordinates
{ssl , ξ / 2}. In that case the functions Gsv

V (sv, s ′
v) and Gssl

V 1,2(ssl , s ′
sl) are everywhere continuous and

equations for the currents are simplified significantly.

Since the form of the Green’s functions was not specified, the equations (8) are valid for any
electrodynamic volumes, provided that the Green’s functions for any electrodynamic volumes
are known or can be constructed. Although the boundary between the volumes V1 and V2

initially was supposed to be of infinitesimal thickness, its actual thickness can be accounted
for by introducing into the equations (8) an effective slot width, defined by the formula given
in the Section 5.

4. Solution of integral equation for current in an impedance vibrator,
located in unbounded free space

Let us use the equation (9) with the approximate kernel (13), being a quasi-one-dimensional
analog of the exact integral equation with kernel (11) as starting point for the analysis. Note that
impedance zi(s)≡const , ε1 =μ1 =1, and index v is omitted. Thus, the equation may be written as

d d
d

2 ( , )
2

02 ( ) ( ) ( ),
( , )

L ikR s s

s i
L

ek J s s i E s i z J s
R s ss

w w
¢-

-

æ ö
¢ ¢+ = - +ç ÷ç ÷ ¢è ø

ò (15)

where R(s, s ′)= (s − s ′)2 + r 2. Let us isolate the logarithmic singularity in the kernel of equation
(15) by identical transformation

d d
( , ) ( , )( ) ( )( ) ( ) ( ) .

( , ) ( , )

L LikR s s ikR s s

L L

e J s e J sJ s s s J s s
R s s R s s

¢ ¢- -

- -

¢ -¢ ¢ ¢= W +
¢ ¢ò ò (16)

Here
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d
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ss s
s s r

g
-

¢
W = = W +

¢- +
ò (17)

γ(s)= ln
(L + s) + (L + s)2 + r 2 (L − s) + (L − s)2 + r 2

4L 2  is a function, equal to zero at the

vibrator center and reaching maximal value at its ends where the current in accordance with

boundary condition (7) is equal to zero, Ω=2ln
2L

r  is a large parameter. Then, equation (15) in

view of (16) is transformed to integral equation with a small parameter

{ }d
d

2
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02
( ) ( ) ( ) [ , ( )] ( ) .s i

J s k J s i E s F s J s i z J s
s

a w w+ = + - (18)

Here α = −
1
Ω =

1
2ln r / (2L )  is a natural small parameter of the problem (|α |  <<1),
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d d
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é ù é ù¢
¢+ - +ê ú ê ú¢ë û ë û ¢+

¢ò

(19)

is the vibrator self-field in free space.

To find the approximate analytic solution of equation (18) we will use the asymptotic averaging
method. The basic principles of the method are presented in [3,4]. To reduce the equation
(18) to a standard equation system with a small parameter in compliance with the method of
variation of constants we will change variables

d d d
d d d
d d d

d dd

2
2

2

( ) ( )cos ( )sin ,
( ) ( ) ( )( ) sin ( ) cos , cos sin 0 ,

( ) ( ) ( )( ) sin cos ,

J s A s ks B s ks
J s A s B sA s k ks B s k ks ks ks

s s s
J s A s B sk J s ks ks

s ss

= +

æ ö
= - + + =ç ÷

è ø

+ = - +

(20)

where A(s) and B(s) are new unknown functions. Then the equation (18) reduces to a system
of integral equations
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d d d
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(21)

This system is equivalent to the equation (18) and represents the standard equations system
unsolvable with respect to derivatives. The right-hand sides of the equations are proportional
to small parameter α, therefore, the functions A(s) and B(s) in the left-hand sides of the
equations system (21) are slowly varying functions and the system can be solved by the
asymptotic averaging method. Then, we replace the system (21) by the simplified system

wherein assume dA(s)
ds =0 and dB(s)

ds =0 in rigth-hand members and carry out partial averaging

over the explicit variable s to obtain the equations of first approximation. The term partial
averaging means that averaging operator acts on all terms, but containing E0s(s) and it may be
done for the system (21). The averaged system can be written as

d
d

d
d

0

0
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where χ =α
iω
2k zi,
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¢
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is self-field of the vibrator (19), averaged over its length.

We will seek the solution of the equations system (22) in the form

1 2

1 2

( ) ( )cos ( )sin ,
( ) ( )sin ( )cos .

A s C s s C s s
B s C s s C s s

c c
c c

= +

= - +
(24)

Then, substitution (24) into (22) gives

d
d

d
d

1
0 1 2

2
0 1 2
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s

s
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Then we find C1(s) and C2(s) by solving system (25), determine Ā(s) и B̄(s) from (24), and

substitute them as approximating functions for the current into (20). Thus, the general
asymptotic expression in parameter α for the current in a thin impedance vibrator under
arbitrary excitation may be presented as

d0( ) ( )cos( ) ( )sin( ) ( ) [ , , ] sin ( ) ,
s

s
L

iJ s A L ks L B L ks L E s F s A B k s s s
k
wc c a

-

ì ü¢ ¢ ¢ ¢= - + + - + + + -í ý
î þ
ò% % % (26)

where k̃ =k + χ =k + i(α / r)Z̄ S , Z̄ S = R̄S + i X̄ S  is the normalized complex surface impedance:

Z̄ S =2πrzi / Z0.

For electrically thin vibrators (| (k εμr)2ln(k εμri)|  <<1, ri is the radius of the inner conductor)

with the parameters of material ε, μ, σ, from which they are made, the formulas of the
distributed surface impedance Z̄ S  are presented in Table 1.

№ Design type of vibrator Breadboard view of vibrator Formula for impedance

1 The solid metallic cylinder of the

rΔ0 radius, Δ0 =ω / k 2πσωμ is the
skin-layer thickness

Z̄ S =
1 + i

Z0σΔ0

2 The dielectrical metalized cylinder
with covering, made of the metal of
the hRΔ0 thickness

Z̄ S =
1

Z0σh R + ikr(ε −1) / 2

3 The metal-dielectrical cylinder (L1 is
the thickness of the metal disk, L2 is
the thickness of the dielectric disc)

Z̄ S = − i
L 2

L 1 + L 2

2
krε

4 The magnetodielectrical metalized
cylinder with the inner conducting
cylinder with the radius ri

Z̄ S =
1

Z0σh R − i / krμln(r / ri)

5 The metallic cylinder with covering,
made of magnetodielectric of the r-ri

thickness, or the corrugated
cylinder

Z̄ S = ikrμln(r / ri)

Z̄ S(s)= R̄S (s) + i X̄ S(s)
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№ Design type of vibrator Breadboard view of vibrator Formula for impedance

6 The metallic monofilar helix of the r
radius (kr1) with the ψ winding
angle

Z̄ S =(i / 2)kr ctg 2ψ

Table 1. The formulas of the distributed surface impedance Z̄ S

The formulas have been obtained in the frames of impedance conception [4], and they are just
for thin cylinders both of infinite and finite extension, located in free space. It is necessary to
introduce the multiplier μ1 / ε1 in all formulas for the vibrator in the material medium with
the ε1 and μ1 parameters. We note, that most of the formulas for impedances include the
parameters ε and μ, smooth change of which (in the case of their dependence from the static
electrical and magnetic fields) and the characteristics of radiation of the system, correspond‐
ingly, (at its fixed geometrical sizes) can be made, for example, by external field effects.

The constants Ā( ± L ) and B̄( ± L ) can be found employing the boundary conditions (7) and
the symmetry conditions [5], unambiguously related to a method of vibrator excitation; if
E0s(s)= E0s

s (s), J (s)= J (− s)= J s(s) and Ā(− L )= Ā( + L ) , B̄(− L )= − B̄( + L ) ; if E0s(s)= E0s
a (s),

J (s)= − J (− s)= J a(s) and Ā(− L )= − Ā( + L ) , B̄(− L )= B̄( + L ). Then, in terms of symmetric and
antisymmetric current components, marked by indexes s and a, respectively, for arbitrary
vibrator excitation by E0s(s)= E0s

s (s) + E0s
a (s) it is not difficult to show that

d

d
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(27)

where P s and P a are the functions of vibrator self-fields equal to

d

d

( , ) ( , )

( , ) ( , )

[ , ( )] sin ( ) ( ,2 ), (a)
( , ) ( , )

[ , ( )] sin ( ) ( ,2 ). (b)
( , ) ( , )

s ikR s L ikR s L
s s

L s L
s ikR s L ikR s L

a a

L s L

e eP kr k L s k s s s P kr kL
R s L R s L
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ò
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% % %
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(28)

It is evident that if an impedance vibrator is located in restricted volume V , the expression for
the current coincides with (27), but the functions of vibrator self-field (28) must contain
components of electric Green’s function for corresponding electrodynamic volume.
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Let us consider a problem of vibrator excitation at its geometric center by a lumped EMF with
amplitude V0. The mathematical model of excitation is presented as

0 0 0( ) ( ) ( 0),s
s sE s E s V sd= = - (29)

where δ(s −0)=δ(s) is Dirac delta-function. Then the expression for the current (27) is

0
sin ( | |) ( , )

( ) .
2 cos ( , )

s

s
L

k L s P kr ksiJ s V
k kL P kr kL

dawa
a

- +æ ö
= - ç ÷ +è ø

% %
% % % (30)

Here Pδ
s(kr , k̃ s)= P s kr , k̃(L + s) − (sink̃ s + sink̃ | s | ) PL

s(kr , k̃ L ) and P s kr , k̃(L + s)  are defined

by the formula (28a). Explicit expressions for Pδ
s(kr , k̃ s) and PL

s(kr , k̃ L ) can be expressed

explicitly in terms of generalized integral functions [4,5]. Thus, PL
s(kr , k̃ L ) which will be

needed below may be presented as

Cin Cin
Si Si

Si Si Cin Cin
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where Si(x) and Cin(x) are sine and cosine integrals of complex argument.

Since the current distribution (30) is now known we can calculate electrodynamic character‐
istics of an impedance vibrator. Thus, an input impedance Zin = Rin + i X in of vibrator in a feed
point is equal
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Note, that an input admittance Y in =Gin + iBin can be calculated as Y in =1 / Zin.

To confirm the validity of the above analytical formulas we present the results of a comparative
analysis of calculated and experimental data available in the literature. Figure 2 and Figure 3
show the graphs of the input admittance for two realizations of surface impedance: 1) metal
wire (radius ri =0.3175 cm), covered by dielectric (ε =9.0) shell (radius r =0.635 cm), the experi‐
mental data [21] at Figure 2 and 2) metal wire (ri =0.5175 cm), covered with ferrite (μ =4.7) shell
(r =0.6 cm), the experimental data from [22] at Figure 3. The plots show that trends of the
theoretical curves coincide with that of the experimental curves, especially near the resonance
for Bin =0, though in absolute values some difference is observed. In our opinion, the discrep‐
ancy of theoretical curves, obtained by solving the integral equation for the current by
averaging method, and the experimental curves may be caused by evident fact that vibrator
self-field (19) was averaged and the current amplitude was determined with some error.
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Figure 2. The input admittance of metal wire (radius ri =0.3175 cm), covered by dielectric shell (ε =9.0, radius r  =0.635

cm) versus its electrical length at the frequency f  =600 MHz
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Figure 3. The input admittance of metal wire (radius ri =5175 cm), covered with ferrite shell (μ =4.7, r  =0.6 cm) versus

frequency for L  =30.0 cm
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5. Solution of equation for current in a slot between two semi-infinite
rectangular waveguides

Now let us solve the second key problem. Let a resonant iris is placed in infinite hollow
(ε1 =μ1 =ε2 =μ2 =1) rectangular waveguide so that its slot has arbitrary orientation in the plane
of waveguide cross-section and has no contacts with waveguide walls (Figure 4).

Figure 4. The problem geometry and notations

A starting point for the analysis is equation (10) written as (index sl  is omitted)

d dd d
d d

1 2

2 ( , ) 2
2 2

0 0 02 2( )4 ( ) ( ) ( , ) ( , ) ,
( , )

L LikR s s
V V

s s s
L L

ek J s s i H s k J s G s s G s s s
R s ss s

w
¢-

- -

æ ö æ ö é ù¢ ¢ ¢ ¢ ¢ ¢+ = - - + +ç ÷ ç ÷ç ÷ ç ÷ ë û¢è ø è ø
ò ò (34)

where 4
e −ikR(s ,s ′)

R(s, s ′)
 is the Green’s function of the slot in infinite perfectly conducting plane,

G0s
V 1,2(s, s ′) are the Green’s functions, which takes into account multiple reflection from walls

of volumes.

Isolating the logarithmic singularity in the kernel of equation (34) as in (17), we reduce the
equation (34) to an integral equation with small parameter

{ }d
d

2
2

0 02
( ) ( ) ( ) , ( ) , ( ) .s

J s k J s i H s F s J s F s J s
s

a w é ù é ù+ = + +ë û ë û (35)

Here α =1 / 8ln de / (8L )  is the natural small parameter of the problem (|α |  <<1), de =d e −
πh
2d  is

equivalent slot width which takes into account a real wall thickness h  (h / λ <<1) [3],
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is self-field of the slot in infinite perfectly conducting plane,

d d d
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is self-field of the slot, which takes into account multiple reflection from walls of volumes.

To solve the equation (35) by averaging method we change the variable according to (20) and
obtain the standard system of integral equations relative to new unknown functions A(s) and
B(s) which is equivalent to initial equation (35)

{
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where FN = F + F0 is the total self-field of the slot.

Assuming, as in Section 4, dA(s)
ds =0 and dB(s)

ds =0 in the right-hand members of equations (38)

and making partial averaging over the variable s, we derive the equations of the first approx‐
imation by averaging method

d
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where
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is the slot total self-field, averaged over the slot length.

Solving the system (39), we obtain the general asymptotic expression for the current in narrow
slot, located in arbitrary position relative to the walls of coupling volumes
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To determine constants Ā( ± L ) and B̄( ± L ) we will use the boundary conditions (7) and the
symmetry conditions, uniquely related both to slot excitation method and its position in
waveguide. Then, in terms of symmetric and antisymmetric magnetic current components,
marked by indexes s and a, respectively, for arbitrary slot excitation by H0s(s)= H0s

s (s) + H0s
a (s)

with an accuracy of order α 2 we have
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where N s(kde, 2kL ) and N a(kde, 2kL ) are the functions of self-field which are equal
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which are completely defined by the Green’s functions of the coupling volumes.

Supposing that dominant wave H10 with amplitude H0 is propagated from the region z = −∞,
we have

0 0
0 0

( cos ) ( cos )( ) 2 cos sin cos cos sin .s
x xs sH s H
a a a a

p pp j p jj
é ù

= +ê ú
ë û

(44)
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The symmetric and antisymmetric components of the slot current, relative to the slot center
s =0, become equal

2
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where J0 is current amplitude, f (s) is the current distribution function, kφ =
π
a cosφ,

Wφ
sa(kde, 2kL ) is the function of slot self-field, defined by formulas (43).

Reflection and transmission coefficients, S11 and S12 for the dominant wave in the slot iris are
define by the current as
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where kg = k 2− (π / a)2 is the propagation constant of H10 wave.

Figure 5 shows the theoretical and experimental wavelength dependences of power reflection
coefficient |S11|2  for the iris, which oriented so that the angle between slot axis {0s} and
waveguide axis {0x} are 0O  and 30O .

Note that a comparative analysis of the analytical solution of key problems is not limited only
by the examples presented above. Thus, the solution for current in the impedance vibrator,
located in free space, was preliminary compared with the known approximate analytical
solutions of integral equations. The adequacy of the constructed mathematical models to real
physical processes and the reliability of simulation results has been also confirmed by
comparative calculations, obtained by the numerical method of moments and other methods,
in particular, by the finite element method implemented in the software package Ansoft HFSS.

6. Combined vibrator–slot structures

Now let us consider a problem of electromagnetic waves excitation by a narrow straight
transverse slot in the broad wall of rectangular waveguide with a two passive impedance
vibrators in it.
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Figure 6. The geometry of three-element vibrator-slot system and notations

Let a fundamental wave H10 propagates from the area z = −∞ in a hollow infinite rectangular
waveguide, the area index is “Wg”. Two thin nonsymmetrical vibrators (monopoles) with
variable surface impedance are located in a waveguide with cross-section {a ×b}. A narrow
transverse slot cut in a broad wall of the waveguide symmetrically relative to its longitudinal
axis is radiating into free half-space, the area index is “Hs”. The vibrators radiuses and lengths
are r1,2 and L 1,2 ((r1,2 / L 1,2)<<1), the slot width is d , the slot length is 2L 3 ((d / L 3)<<1) and the
waveguide wall thickness is h . One vibrator is located in the plane {x0y} and the second
vibrator may be shifted along the axis {0z} at the distance z0 (Figure 6).

For this configuration the system of integral equations relative to electrical currents at the
vibrators J1,2(s1,2) and equivalent magnetic current in the slot J3(s3) in accordance with (8) may
be represented as
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Figure 5. Power reflection coefficient |S11|2  versus wavelength for the iris at a =23.0 mm, b =10.0 mm, 2L  =16.0

mm, d  =1.5 mm, h  =2.0 mm, x0 =a / 2, y0 =b / 2
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(47)

Here Gs1,2

Wg(s1,2, s ′
1,2) and Gs3

Wg ,Hs(s3, s ′
3) are components of the Green’s functions of the rectan‐

gular waveguide and the half-space over the plane [3,4],

G̃s1

Wg(s3, s ′
1)=

∂
∂ z Gs1

Wg x(s3), 0, z; x ′(s ′
1), y ′(s ′

1), z0  and

G̃s3

Wg(s1, s ′
3)=

∂
∂ z Gs3

Wg x(s1), y(s1), z; x ′(s ′
3), 0, 0  after substitution z =0 into G̃s1

Wg  and z = z0 into

G̃s3

Wg  after first derivation, zi1,2(s1,2) is the internal impedance per unit length of the vibrators
([Ohm/m]), E0s1,2

(s1,2) and H0s3
(s3) are projections of impressed sources fields on the vibrators

and the slot axes, s1 = − L 1 and s2 = − L 2 are end coordinates of mirror vibrator images relative
to the lower broad wall of the waveguide [4]

We will seek the solution of equations system (47) by a generalized method of induced EMMF
[19,20], using functions J1(2)(s1(2))= J1(2)

0 f 1(2)(s1(2)) and J3(s3)= J3
0 f 3(s3) as approximating expres‐

sions for the currents. Here J1(2)
0  and J3

0 are unknown current amplitudes, f 1(2)(s1(2)) and f 3(s3)
are predetermined functions of the current distributions. In accordance with (27) and (42) for
the vibrator-slot structure excited by the fundamental wave H10 we have

f 1(2)(s1(2))=cosk̃ 1(2)s1(2)−cosk̃ 1(2)L 1(2), f 3(s3)=cosks3−cosk L 3, k̃ 1(2) =k −
i2πzi1(2)

av

Z0Ω1(2)
,

zi1(2)
av =

1
L 1(2)

∫
0

L 1(2)

zi1(2)(s1(2))ds1(2) are average values [4] of internal impedances,

Ω1(2) =2ln(2L 1(2) / r1(2)).

In accordance with the generalized method of induced EMMF, we multiply equation (47a) by
the function f 1(s1), equation (47b) by the function f 2(s2), and the equation (47c) by the function
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f 3(s3) and integrate the equations (47a) and (47b) over the length of the vibrators, and the

equation (47c) over the length of the slot. As a result, we obtain a system of linear algebraic
equations relative to the current amplitudes J1,2,3
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where εn = {1, n =0
2, n ≠0, kx(y) =

m(n)π
a(b) , kz = kx

2 + ky
2−k 2, m, n are integers; Si and Cin are integral sine

and cosine.

The energy characteristics of the vibrator-slot system: the reflection and transmission coeffi‐

cients, S11 and S12, and power radiation coefficient |SΣ|2 , are defined by the expressions
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Let us consider several distribution functions for the surface impedance along the vibrator,
namely: 1) ϕ0(s1(2))=1, the constant distribution, 2) ϕ1(s1(2))=2 1− (s1(2) / L 1(2)) , the triangular

distribution linear decreasing to the vibrator end, and 3) ϕ2(s1(2))=2(s1(2) / L 1(2)), the triangular

linear increasing distribution. All distribution have equal average values ϕ0,1,2(s1(2))̄ =1. The

expression for F1(2)
z0  with the distribution function 1), in accordance with (50), can be presented

as
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with the distribution function 2) as
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and with the distribution function 3) as
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Since the formulas for F1(2)
z0,1,2 differ from one another, in spite of equal average values of

functions ϕ0,1,2(s1(2)) and identical functional dependences in formulas for currents, the cur‐
rent amplitudes and, hence, energy characteristics will be substantially different.

Figures 7, 8 shows the wavelength dependences of the radiation coefficient, modules of the
reflection and transmission coefficients in the wavelength range of the waveguide single-mode
regime, obtained using the following common parameters: a =58.0 mm, b =25.0 mm, h  =0.5 mm,
r1,2 =2.0 mm, L 1,2 =15.0 mm, R̄S 1(2) =0, x01 =a / 8, x02 =7a / 8, d  =4.0 mm and 2L 3 =40.0 mm.
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Figure 7. The energy characteristics versus wavelength at λv1,2
res =λsl

res, Z̄ S 1 = Z̄ S 2

The choice of slot dimensions was stipulated by its natural resonance at the average wave‐
length of the waveguide frequency range λ3

res =86.0 mm. The dimensions of the vibrators have
been selected so that their resonant wavelength was within the waveguide operating range.
Here we present the results only for vibrators with inductive impedances (X̄ S 1(2) >0), known
to increase the vibrator electrical length, i.e. to increase λ1,2

res as compared to case Z̄ S 1(2) =0,
without decreasing a distance between the vibrators ends and the upper broad wall of the
waveguide. This is very important for increasing the breakdown power for waveguide device
as a whole.

As might be expected from physical considerations, displacement of the impedance vibrator
along the longitudinal axis of the waveguide at a distance z0 from the centre of the slot, where
the maximum mutual influence between elements of the structure is observed, are multiple of

λG / 4 (Fig. 7: z0 =λG / 4 =32.0 mm and z0 =λG / 2 =64.0 mm). Here λG =2π / (2π / λsl
res)2− (π / a)2 is

resonant wavelength of the slot in the waveguide, and λsl
res is the resonant wavelength of the

slot in the free half-space over the plane. As seen from Figure 7, an acceptable reflection
coefficient |S11 |  and high level of radiation could not be achieved if the monopoles have the
equal distributed impedances Z̄ S 1 = Z̄ S 2. The maximum of radiation coefficient |SΣ|2  and
almost perfect agreement with the feed line, as well as tuning to other resonant wavelengths
can be achieved by changing the distribution functions of impedance along the monopoles
axes (Figure 8). Fig. 8 also shows that the results of mathematical modeling are confirmed by
the experimental data. Experimental models have been made in the form of corrugated brass
rods (see photo in Figure 8).
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For the arbitrary vibrator-slot structures and coupled electrodynamic volumes expressions for

f v
s ,a(sv) and f sl

s ,a(ssl) (the subscripts s, a denote the symmetric and antisymmetric components

of the currents with respect to the vibrator (sv =0) and slot (ssl =0) centers, respectively), in

accordance with the results, presented in Sections 4 and 5 (see formulas (27) and (42)), can be

obtained from the following relations
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Figure 8. The energy characteristics versus wavelength at λv1,2
res ≠λsl

res, Z̄ S 1≠ Z̄ S 2, experimental data are marked by
circles
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where E0sv

s ,a(sv) and H0ssl

s ,a(ssl) are projections of symmetric and antisymmetric components of
impressed sources on the vibrator and the slot axes. Here the sign ~ means that after integration
in expressions (61) only multipliers, depending upon coordinates sv and ssl , are left.

Note once more that for arbitrary orientations of the vibrator, or the slot relative to the
waveguide walls, or for another impressed field sources, the expressions (61) should be used
to determine the distribution functions of electric and magnetic currents in the vibrator and
slot. For example, for the longitudinal slot in the broad wall of waveguide, i.e. if axes {0ssl} and
{0z} coincide, we obtain

( ) cos cos cos cos ,

( ) sin sin sin sin .

s
sl sl sl g sl sl g sl

a
sl sl sl g sl sl g sl

f s ks k L kL k s

f s ks k L kL k s

= -

= -
(62)

If vibrator is excited at its base by voltage δ -generator as in a waveguide-to-coaxial adapter
we have

( ) sin ( ).v v v vf s k L s= -% (63)

7. Conclusion

This chapter presents the methodological basis for application of the generalized method of
induced EMMF for the analysis of electrodynamic characteristics of the combined vibrator-
slot structures. Characteristic feature of the generalization to a new class of approximating
functions consists in using them as a function of the current distributions along the impedance
vibrator and slot elements; these distributions are derived as the asymptotic solution of integral
equations for the current (key problems) by the method of averaging. Comparison of theoret‐
ical and experimental curves indicates that the solution of integral equations for combined
vibrator-slot structures by the generalized method of induced EMMF with approximating
functions for the currents in the impedance vibrator and the slot, obtained by averaging
method is quite legitimate. It should be noted that for simple structures similar to that
considered in the model problem, the proposed approach yields an analytic solution of the
electrodynamic problem. For more complex structures, the method may be used to design
effective numerical-analytical algorithms for their analyses.

The demonstrative simulation (the comparative analysis of all electrodynamic characteristics
in the operating frequencies range) has confirmed the validity of the proposed generalized
method of induced EMMF for analysis of vibrator-slot systems with rather arbitrary structure
(within accepted assumptions). Here, as examples, some fragments of this comparative
analysis were presented. This method retains all benefits of analytical methods as compared
with direct numerical methods and allows to expand significantly the boundaries of numerical
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and analytical studies of practically important problems, concerning the application of single
impedance vibrator, including irregular vibrator, the systems of such vibrators and narrow
slots. And this is a natural step in the further development of the general fundamental theory
of linear radiators of electric and magnetic types.
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