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Abstract

Tin oxides have applications such as sensors, solar cells, transistors, and varistors,
which are being studied to replace ZnO varistors due to similar electrical properties,
simpler microstructure, no formation of secondary phases, and lower concentration
of agent modifiers to promote the varistor characteristics and densification. Varistors
are ceramic with a high concentration of structural and electronics defects. The type
and the amount of defects are related with agent modifiers and processing steps
employed. The study in materials processing aims to improve the ceramics properties.
Chemical synthesis ensures the homogeneous distribution of dopants used to
promote electrical and structural properties. Microwave sintering appears as
processing to optimize time and sintering temperature. Varistor application is linked
to its breakdown voltage, which should be larger than the operating voltage. In an
operating range of 1 kV to 1 MV, the varistors are used in electricity transmission
networks. In a range of 24–1000 V, the application occurs in electronics and appliances
and in a range smaller than 24 V, as protective of automotive electronics and
computers. This chapter aims to provide information on new processing steps for the
production of SnO2 varistors and to show the possibility to get electrical properties
with non-ohmic characteristic for technological applications.

Keywords: Tin dioxide varistor, chemical synthesis, microwave sintering, dopants,
low voltage
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1. Introduction

1.1. Varistors

Varistor is an electrical device based on semiconductor materials used for protection against
voltage spikes in the electric network, against overvoltage in electronic circuits of low voltage
and electrical power systems [1,2].

Due to the high energy absorption, the ceramic varistors become many helpful in protecting
electrical circuits, and their electrical properties are highly dependent on their microstructure.
The development of devices ever more technological and brings the need for electrical
protection due to the sensitivity equipment. The use of varistors as voltage protectors in
electronic equipment is very simple: the varistor is directly connected in parallel to the power
line of equipment, and in case of an increase in the electrical current on energy network, the
varistor rapidly increases the conductivity, allowing the current flow toward the ground. For
electrical appliances operating with few voltages, the varistors ceramics are called low-voltage
varistors [1–3].

The first varistor ceramics were developed in 1930. They were constituted from compact silicon
carbide (SiC) partially sintered and were designed by the System Bell Labs to replace selenium
rectifiers that were used in the protection of telephone systems [4]. Over time, the processing
of varistors has undergone successive improvements, and in 1968, Matsuoka [3] developed
varistors based on zinc oxide with manganese and cobalt as a dopant to improve the electrical
properties. One of the disadvantages of using ZnO-based varistors are the large amount of
dopant added to ceramic matrix for its electric modification and consequently to its high
chemical instability that leads to degradation of the varistor. Castro et al. [5] reported that the
trapping of electrons, ion migration and oxygen adsorption are included as ZnO varistor
degradation mechanisms. The exposure of ZnO varistors to high temperatures and oxidizing
atmospheres leads to excess interstitial ions DZn

⋅  and DZn
⋅⋅ that migrate through the depletion

layer and chemically interact with species that are in the grain boundary, causing decrease and
enlargement of the potential barrier, and facilitate the electronic conduction, destroying its
varistor property [5,6].

The SnO2-based varistors were introduced by Pianaro et al. [7] as an alternative to the ZnO
varistors commercial, presenting nonlinear electrical characteristics similar to ZnO varistors.
The SnO2-based system shows more advantages, for example, their simpler microstructure
and no formation of secondary phases require a lower concentration of agents modifiers to
promote the varistor characteristics and densification and higher chemical and thermal
resistances. The use of M2+ ion as dopant improved significantly the densification of the
varistor, the addition of M5+ ion promoted electrical conductivity, and the M3+ ion influenced
on nonlinearity coefficient.

1.2. Electrical properties

The electrical properties of varistor ceramics are governed by potential barriers located in the
grain boundaries. Potential barriers were formed by the addition of dopants elements to
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generate defects on crystal network, which segregate to the grain boundary region by diffusion
during sintering. The presence of these barriers promotes the large-capacity power absorption
and its flow when subjected to electrical overvoltage [4,8].

In denominated “smart ceramics,” the ceramic varistor acts as variable resistors, with resistive
behavior at low voltages and conductive behavior starting from a specific voltage value,
known as the breakdown voltage (VR) or breakdown electric field (ER) [9,10].

These electrical responses featuring the varistor ceramics as main elements in the manufacture
of devices for electrical protection equipment subjected to both low and medium voltages
apply directly as of the electro-electronics components (telephony system, computers, medical
devices, automotive electronics, industrial automation systems, alarms, transformers, etc.) and
for the high voltages used as part of lightning protection devices installed in the terminals of
the power substations [11].

The varistor characteristic associated to quality is the nonlinear coefficient (α). The higher their
value, the greater the varistor efficiency. This coefficient can be obtained through empirical
relationships current × voltage (Eq. 1) or current density versus electric field (Eq. 2) and
expresses how much the material deviates from ohmic response when required, and it can be
explained by a graphic representation (Figure 1) with distinct regions [12–15].

I CV a= (1)

J CEa= (2)

where C is a constant related to the microstructure.

Figure 1. Electric field (E) versus current density (J) curves of a varistor [16].
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The pre rupture region is also named as linear region and has an ohmic behavior when the
material is under operation normal tension. The varistor acts as a resistor in this case with a
small amount of current (known as leakage current) passing through the material due to the
action of the potential barrier formed at grain boundary and preventing the electronic
conduction between the grains. The conductivity in this region is of thermionic emission type,
i.e., the electrical conduction is strongly dependent of temperature, thus being possible to
retrieve information about the resistivity of the material [8,16,17].

The rupture region showed nonlinear behavior, i.e., non-ohmic behavior between the applied
voltage and the current that the material is submitted. The conductivity of the material
increases with a small variation in the applied voltage, indicating the varistor efficiency that
starts to act as a conductor from a specific breakdown electric field (ER). Recombination of
electron-hole pair at grain boundary interfaces, thermionic emission, and electron tunneling
are suggested as electric conduction mechanisms of this region [8,16].

In the post rupture region, the ohmic behavior between the current and the applied voltage is
observed once again and is characterized by high current density. The electric conduction in
this region is controlled by the impedance of the grains [2,8].

The VR value provides the varistor voltage application, and it is a function of a grain size of
sintered material. If the composition is fixed, the microstructure becomes strongly dependent
on the processing conditions [12,15].

The varistor efficiency determined by the breakdown region can be evaluated by the α nonlinear
coefficient of the curve in Figure 1, which is used in Eq. 6, derived from Eq. 3, which allows the
calculation of the value of α by the field data electric (E) and current density (J) [18,19]:

2 1 2 1(  ) / (  )logJ logJ logE logEa = - - (3)

The electric field and the current density are obtained from the measurements of the electric
current (I) generated when the sample is submitted to a potential difference (V), according to
Eqs. 4 and 5 [18,19]:

VE d= (4)

 IJ A= (5)

d is the thickness of the sample and A is the electrode area deposited on the film surface. For
α calculation, the interval of 1 and 10 mA/cm2 of current density was used, i.e., J1 = 1 and J2 =
10 [18,19]:

1
2 1(  )logE logEa -= - (6)
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1.3. Mechanisms for electrical conduction

The potential barrier is the determining factor on the electrical properties of varistors. Several
models have been proposed to better understand the potential barrier formed in the grain
boundary region [20,21].

Gupta et al. [22] proposed the first potential barrier model for ZnO-based varistor of the
Schottky-type with an intergranular layer acting as insulator between the grains. In this model,
negative charge densities (formed by Zn vacancies) were trapped between the grain boundary
being balanced by two depletion layers that are positively charged. Leite et al. [23] proposed
the accumulation of oxygen species adsorbed as new origin of negative defects [22,23].

Based on the ZnO potential barriers model, Bueno et al. [14] suggested a modification for
formation of potential barrier in SnO2 varistors systems, whereas the sides of the barrier are
in contact since there is no precipitated phase in the grain boundary, as observed Figure 2. In
this model, the oxygen adsorbed species in the grain boundary region generate the negative
charges defects, counterbalanced by the positive defects in the depletion layer. Pianaro et al.
[1] proposed a potential barrier model, which has a large presence of negative charges on the
SnO2 surface generated by tin vacancies (V sn

" ), adsorbed oxygen atoms and substitutional cobalt
ions (CoSn

'' ), and positive defects in the depletion layer formed by interstitial tin (Sn ••••,
Sn ••), oxygen vacancies (VO

••, VO
•), and niobium taking place of tin on the crystal lattice

(N bSn
• ) [1,14].

Figure 2. Potential barrier model to ZnO varistors proposed by Gutpa et al. [22] and Leite et al. [23] and to SnO2 varis‐
tors base proposed by Bueno et al. [14] and Pianaro et al. [1].
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1.3.1. Schottky type

In this model, the electrons are emitted and pass through the potential barriers particularly
due to the action of temperature distorting the energy band diagram, near the interface. This
distortion modifies the potential barrier favoring the thermal emission. The equation that
describes this behavior is [24,25]

* ½
2  . . b

S
EJ A T exp

kT
f bé ù-

= -ê ú
ë û

(7)

where A* is the Richardson constant, φb is the potential barrier height, E represents the electric
field, T is the ambient temperature in Kelvin, and β is a constant related to the width of the
potential barrier in accordance with the following equation [25]:

1/ 2 ( )  nb w -= (8)

where n is the grain number per unit length and ω is the width of the barrier.

1.3.2. Poole–Frenkel type

The emission of the Poole–Frenkel type assumes the formation of coulombian centers in the
grain–intergranular layer interface region. The relationship that describes this type of emission
is on Equation 9, where the external electric field variations are more relevant than for issue
of Schottky type [26]:

½2
  . . b

P
EJ c E exp

kT
f bé ù-

= -ê ú
ë û

(9)

where c is a constant of the material, T is the room temperature, E is the electric field, k is the
Boltzmann constant, and φb is the height of the potential barrier. The thermionic emission
cannot explain the high nonlinear coefficients observed in varistors. In the post rupture zone
with the presence of high electric fields, the possibility that distortion of the energy levels and,
therefore, the possibility that electrons pass through the potential barrier by tunneling must
be considered [27].

2. Influence of synthesis methods on SnO2 electrical properties

The processing by mixing oxides is widely used at the industrial scale for the production of
varistor ceramics mainly due to its low cost, consisting basically of an initial powder mix and
wet milling followed by drying, deagglomeration of powder, forming pellets/bulks, and
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sintering. The varistor synthesis with large amounts of chemical additives and/or impurities
resulting from the process can lead to non-densifying sintering mechanisms. This mean that
impurities may accumulate on the material surface and increase the mass flow on the surface
or forming more unstable compounds that can evaporate and condense on the surface,
favoring grain growth without decreasing pore size. The advancement in ceramic materials
process technology aims to find low-cost methods and the viability of the process on an
industrial scale. Among the processes available in the literature for the production of ceramics,
techniques can be cited as coprecipitation, sol-gel, dehydration by rapid cooling (freeze
drying), combustion method, and polymeric precursor method known as the Pechini method
[28–31].

Figure 3. Schematic representation of reactions developed in the polymeric precursor method (Pechini method) [31].

The polymeric precursor method involves a complexation reaction of metal ions by an organic
complexing agent as carboxylic acid. The metal ions are complexed into carboxylic sites
forming a metal carboxylate, which is sequentially polymerized with ethylene glycol, as shown
in Figure 3, citric acid is often used as the complexing agent. This process shows advantages
such as low temperature of synthesis and high control of stoichiometry, and allows the
obtention of powder with nanometric particles. The immobilization of metal ion in organic
matrix reduces the segregation of the metal during the decomposition of the polymer at high
temperatures, thus ensuring a homogeneous composition [31]. The ceramic powders are
obtained by controlled calcination of the resin until total oxide formation.

Another method widely used for controlled synthesis of multifunctional ceramics is the sol-
gel, that is used for the synthesis of a colloidal suspension where the dispersed phase is a solid
and the dispersion medium is liquid, and is called sol. Therefore, there is the formation of a
dual phase material: a solid body that is occupied by a solvent, i.e., moist gel. The initiator
compounds, commonly called precursors, consist of a metal surrounded by many connections
and typically are inorganic salts or organic compounds. The two precursors undergo two
chemical reactions at sol preparation: hydrolysis and condensation, which resulted from the
addition of an acid or base catalyst to form small solid particles or clusters in a liquid (aqueous
solvent) [32,33]. The sol-gel method provides homogenous mixtures of cations on an atomic
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scale and also allows the preparation of ceramic powders with high surface area and films or
gels fibers, which have high technological importance. The method has advantages over other
conventional methods such as high purity, resin calcination at low temperatures, and synthesis
of oxides with defined and controlled properties [32–34].

Also, the controlled precipitation method (CPM) can be used to prepare precursor powders.
In this case, the solution containing the cation of interest is added to another solution contain‐
ing a precipitating agent that can be a base or anion (ammonia, urea, and oxalic acid). In this
way, the final product precipitate is separated by filtration, washed, dried, and calcined to
obtain the oxide. The precipitation process has a complex mechanism, which is dependent on
the degree of saturation of the ion to be used. The process starts by formation of cluster from
chemical species in the solution, known as nucleation process. Reaching the ion solubility limits
the growth stage of formed centers and finally the formation of precipitates [35].

To check the influence of the chemical synthesis route the electrical properties of the SnO2-
based varistors, Mosquera et al. [36] carried out the synthesis of tin oxide by controlled
precipitation and polymeric precursor (Pechini) methods that’s offering the strict control of
the chemical purity and the particle size of the raw material. The system
SnO2.Co3O4.Nb2O5.TiO.Al2O3, with 1 mol% Co3O4, 0.05 mol% Nb2O5, and 1 mol% TiO2 and
variations of 0.05 (named SCNT05A), 0.1 (named SCNT1A), and 0.2 mol% (named SCNT2A)
of Al2O3 were prepared. Following synthesis, the materials were submitted to heat treatment
at 600°C/1 h (controlled precipitation method, CPM) and 600°C/2 h (Pechini method, PCH) to
eliminate organic matter and obtain the full formation of the oxide. The use of dopants in both
methods resulted in no change in the SnO2-crystal structure or formation of secondary phases
due to have been added small amounts of dopants (Figure 4). The SEM micrographs indicated
the influence of the addition of the aluminum grain growth control. The Pechini method
showed smaller grains and more porous samples.

Figure 4. SEM for sintered samples at 1350°C, obtained by CPM and PCH (a) 0.05% Al2O3 and (b) 0.1% Al2O3. XRD for
varistor system whit 0.2% Al2O3 synthesized by CPM and PCH [36].

Advanced Ceramic Processing32



The aluminum concentration also influenced on the electrical properties, as shown in Figure
5, mainly in the breakdown electric field variation that had been related to decreasing of grain
size. The samples showed nonlinear coefficient (α) of similar values, but the sample prepared
by Pechini method and with 0.2% Al2O3 had the highest value for α (21.7) and the breakdown
electric field (due to the smaller grain size).

Figure 5. log J versus log E curves of samples synthesized by (a) CPM and (b) PCH, sintered at 1350°C [36].

3. New processing step for varistor ceramics

3.1. Microwave sintering

3.1.1. Thermodynamics of sintering

Sintering is the processing step that aims to confer mechanical strength to ceramic or metal
powders, shaped by pressing or deposited as films. The process occurs by coalescence of the
particles in solid or liquid phase to form a more dense mass. The sintering is an irreversible
process and results in decrease of the total free energy of the system. Mathematically, the
equation related to total energy of the system is

0s iG G GD = D + D < (10)

where ΔG is the total free energy, ΔGs is the surface free energy, and ΔGi is the energy of each
particular system [37].

3.1.2. Driving force

For the decrease of free energy of the system, there is a force that induces microstructural
changes, replacing the contact points between the particles by grain boundaries, closing the
pores, densifying, and making the material a hard solid. In addition to the system power
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source, the sintering mechanisms are also a contributing factor induced by driving forces.
Figure 6 shows the possible forces involved in the sintering process: surface free energy,
applied external pressure, and chemical reaction [38].

Figure 6. The three main drivers for solid densification: surface free energy, applied pressure, and chemical reaction [38].

Figure 7. Diagram flow of vacancies on the surface. The atoms flow is opposite to the vacancy [38].

The surface energy is related to the surfaces curve and characterized by vacancies and gaps.
The surfaces energy is the main force that sinters the material by mass flow through the region
of higher concentration to a lower concentration region where vacancies and gaps, as shown
in Figure 7.

The variation of free energy during sintering is represented by Eq. 11:

  SS SS SV SVG dA dAd d g d g= +ò ò (11)
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where the free energy variation depends on the variation on interfacial energy as a function
of the surface area. The surface tension solid–solid (γS/S) is smaller than the surface tension
between vapor-solid (γS/V), and the interfacial energy is higher when there are many vacancies
in the material, so there is a mass transfer gradient that favors the formation of necks between
the particles and the resulting in joint, reducing the solid–vapor area (pore) [37].

3.1.3. Sintering mechanisms

In polycrystalline materials, the mass transport ways that are responsible for sintering are
diffusion via crystal lattice, surface diffusion, volume diffusion, plastic flow, and evaporation–
condensation. Figure 8 shows all mass transport paths arrive at the point of contact between
two particles [38].

Figure 8. Mass transport mechanism solid and viscous sintering [38].
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In Figure 8, the first three mechanisms do not lead to an alignment of the mass centers of the
particles and therefore are non-densifying mechanisms. Thus, the mechanisms that start on
the volume of material to the neck that increase in the neck and decrease the distance between
the particles are densifying mechanisms [39].

3.1.4. Stages of sintering

The sintering mechanisms occur by three successive or simultaneously stages divided into
initial, intermediate, and final stages. In some cases, there is the zero stage, which corresponds
to particle rearrangement stage for subsequent joining by spot contact called necks [40]. The
initial stage consists of particles rounding, formation of necks with low grain growth, and
significant reduction in surface area and porosity. This stage progresses until the point where
the necks interfere with each other. This stage corresponds to the point where the dihedral
angle of equilibrium is reached. For the system with the green density of ~60%, this corresponds
to a linear shrinkage of 3% to 5% [36]. It is possible to develop a general equation of the sintering
kinetics for the initial stage. The geometric model for the development of this mathematical
relationship is illustrated in Figure 9:

Figure 9. Frenkel’s model for early-stage sintering viscous flow [41].

The two spheres of the Frenkel’s model use the concept of viscous flow of atoms that relates
the vacancy diffusion coefficient Dv, the volume of the atom or vacancy Ω, and vacancy
concentration gradient per unit area of the material (dCv/dx), as shown in the following
equation [41]:

v v
a

D dCJ
dx

=
W

(12)

Thus, the transported mass volume as a function of time can be given by [41]

Advanced Ceramic Processing36



a gb
dV J A
dt

= W (13)

were Agb =2πX δSV  is equal to the cross-sectional area where diffusion occurs, and X is the radius
of the neck.

Assuming that the decrease in surface energy of the system is equivalent to the energy
dissipated through the material flow, then it is possible to derive several equations relating
the radius of the neck and ball as a function of sintering time [38,42]:

 
m

n
X H t
a a

æ ö
=ç ÷

è ø
(14)

where m and n are the sintering mechanisms, H is a function that varies with parameters such
as diffusion rate, surface tension, atom or vacancy size, and a is the radius of the sphere.

Many aspects can be studied from the kinetic equations, as densification rate, determination
of sintering mechanisms, and activation energy. The equation developed by Coble allows to
estimate the sintering mechanisms for the initial stage, based on the two spheres Frenkel’s
model, as indicated in the Eq. 15 [43]:

0 n QY k exp t
RT

æ ö-
= ç ÷

è ø
(15)

where n = 1, 2, 3, or 4, indicating the predominant mechanism of viscous flow, surface diffusion,
and diffusion via grain boundary diffusion and via crystal lattice, and Y is the linear shrinkage
of the sample, Q is the activation energy, R is the gas constant real, T is the temperature, and
t is time.

The intermediate stage initiates densifying mechanisms as volumetric diffusion by crystal
lattice in which there is rapid grain growth, shrinkage pore and increased in the density of the
material up to ~90% of the theoretical density. Whereas there is grain growth, the model for
the initial stage does not fit this stage. The final stage is characterized by the elimination of
residual pores with little or no densification, but grain growth is observed. For the determi‐
nation of sintering mechanisms, intermediate and final stages are used in the model-based
grain growth [44]:

0 0  n n bEaG G k exp t
RT

æ ö-
- = ç ÷

è ø
(16)

where G is the average grain size, Eab is the activation energy for moving contour or grain
growth, n is the sintering mechanism when valley 3 is spread via reticulum and 4 is broadcast
via grain boundary, and k0 is a constant that depends on temperature and sintering mecha‐
nisms [41,43,44].
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3.1.5. Sintering model for thick films

Most of the kinetic studies of SnO2-based ceramic are developed to oxide mixed synthesis
compressed into pellets, where significant amounts of mass are used. However, the appearance
of thick and thin films makes possible the integration of smaller electric devices, and thus new
techniques for the synthesis and deposition of powders on conductive and insulating rigid
substrates have been studied.

The sintering of films has been increasingly used for applications in sensors, fuel cells, or photo
catalysis that requires porous films [45,46]. This application is based on the fact that sintering
occurs on rigid substrates such as viscous flow, wherein the voltage-limiting densification of
the material is the force of attraction between the substrate and the deposited material particles
[47,48]. The model used for understanding the sintering of thin films is based on Scherer and
Garino’s studies where the rate of densification of the film is delayed by the substrate, as in
Eq. 17 [38,41]:

( )
1

 3
3 1

p
f

c p

v

v
r e
r

é ù+æ ö ê ú= -ç ÷ ê ú-è ø ë û

& & (17)

The sintering mechanisms remain the same; however, the densification rate is retarded by
tension caused by the substrate, like as the system would be sintered followed viscous sintering
mechanism, as with glass.

3.1.6. Microwave × conventional sintering of SnO2-based ceramic

One of the ceramic materials that have been very exploited for its great technological and
industrial interest is the SnO2. Its applications are widely focused on sensors, solar cells, and
catalysts, i.e., requiring high porosity, since its sintering process is limited to nondensifying
mechanisms such as surface diffusion at low temperatures and evaporation–condensation at
high temperatures [49–51]. Accordingly, what has been done to induce densifying sintering
mechanisms is to cause solid substitution reactions that decrease the free energy by the
formation of substitutional defects and vacancies that facilitate material transport during
sintering [52].

It is possible to increase the densification of SnO2 by the addition of small amounts of lower
valence densifying agents that generate substitutional defects and oxygen vacancies, such as
ZnO, CoO, and MnO2, that promote the mass diffusion by solid solution, according to Eqs.
18, 19, and 20 [52,53]:

2
"   

SnO
X

Sn O OZnO Zn V O··® + + (18)

2
"   

SnO
X

Sn O OCoO Co V O··® + + (19)
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2
"

2   
SnO

X
Sn O OMnO Mn V O··® + + (20)

Also, there is the densification by CuO, Fe2O3, and MnO doping that promotes liquid solution
formation [51]. Another way to improve the densification of SnO2-based varistors is to use the
microwave as a source of power in the sintering process. According to Hao et al. [53], while
conventional sintering occurs as a consequence of surface energy reduction, microwave
sintering not only reduces the surface energy but also creates vacancies in the neck [53]. As a
consequence of the increase in vacancies in grain necks, the mass flow also enhances in this
region, promoting densification. In the case of dielectric materials, the oscillation of the electric
field is the only external factor that will cause the internal heating of the material. Thus, the
response of the oscillating electric field to the dielectric is determined by ε = ε ′ + i ε ″, where
ε ′ is a dielectric constant that depends on the medium, and ε″ is the dielectric loss factor; when
the material exhibits high dielectric loss, i.e., a high value ε″, the microwave energy is absorbed
and converted into heat within the material [54]. When a material has high dielectric loss, the
microwave can be directly applied to it; however, a susceptor material must be used. The
susceptor absorbs microwave radiation and heats up the first piece so that it reaches its critical
temperature, which consists of 40% to 50% of the melting temperature of the material above
which has high dielectric losses.

3.2. SnO2 microwave sintering

Sintering mechanisms at Coble initial stage were adjusted to SnO2-based ceramic inserts with
0.95 mol% of ZnO sintered in a microwave oven and compared with results obtained in a
conventional oven. The results showed that samples were sintered in a microwave oven to
reach 87% after 30 min of sintering at 1050°C and grain size, while in a conventional oven, the
density is 67%. It can be seen in Figure 10 by which the sample (a) is in the initial stage of
sintering grain size, while in (b) indicating the morphology of the grains is already in inter‐
mediate sintering mechanism.

Figure 10. SEM of sintered samples in (a) conventional oven and (b) microwave oven, at 1050°C/30 min (by authors).
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The sample sintered in a conventional oven showed a linear shrinkage of 5% and had an
activation energy of 325 kJ/mol with predominant mechanisms at this early stage: structural
rearrangement of particles, diffusion via crystal lattice, and surface diffusion, while samples
sintered in microwave oven showed an activation energy of 111 kJ/mol and mechanisms as
broadcast via crystalline reticulum. Figure 11 shows that there was a change sintering
mechanisms for conventional sintering since there is a rate change in linear shrinkage rate of
the material, whereas for microwave sintering the heating rate was rapid and lower temper‐
ature which does not inhibit sintering mechanisms densifying.

Figure 11. Curves of Ln(Y) versus Ln(t) with temperature as a parameter for obtaining the coefficients of sintering at
initial stage, for SnO2 samples (doped with 0.95 mol% of ZnO) sintered in (a) oven conventional and (b) microwave
oven (by authors).

The direct relationship between the grain growth and the increasing density for the samples
subjected to microwave and conventional heating are shown in Figure 12. With their respective
error bars, it may be said that for about the same density of 88% of the samples, the mean grain
size for the sintered sample in a microwave oven at 1050°C for 30 min is 1.2 μm, while that for
the samples sintered in a conventional oven at 1300°C/30 min is 1.8 μm, and this difference
increases even more because it enters the final sintering stage, which is when the grains grow
more sharply, so the grain size is increased to about 3 μm. The reduced grain samples sintered
in a microwave oven results in more grain boundaries to increase the mechanical strength and
modifying the electrical properties of the material.

3.3. Thick films varistor obtained by electrophoretic deposition

Lustosa et al. [55] conducted a study on thick films of SnO2-based nanoparticles and their
electrical properties. The ceramic powder with composition 98.95 mol% SnO2 + 1 mol% ZnO
+ 0.05 mol% Nb2O5 was synthesized by Pechini method, calcined in a muffle furnace, submitted
to milling in the Attritor mill and to the separation of particles by gravimetry. After separation
for use of the smaller particles, one ethylic aliquot containing SnO2 powder was taken to an
electrophoretic deposition system (Figure 13) for obtain the films. In sequence, the films were
submitted to sintering in a microwave oven at 1000°C/40 min. In order to improve the varistor

Advanced Ceramic Processing40



property, a Cr3+ ion deposition was carried out (also by electrophoresis) on films surface, and
then the samples were submitted to different heat treatment for the diffusion of cations in grain
boundary region. Figure 14 shows the sintered film, which had a low porosity, homogeneous
thickness to the full extent of the film. The chromium addition is known to improve the
properties of a varistor system by acting on defect formation at grain boundary region and
increase the potential barrier parameter.

Figure 13. Electrophoretic system for deposition of SnO2-based particles (by authors).

After the heat treatment for Cr3+ diffusion, the films were taken to the electrical characteriza‐
tion. From the varistor responses, shown in Figure 15, it was observed that the heat treatment
used after the chromium deposition influenced the improvement of the nonlinear coefficient
of the samples. All films had lower rupture voltage less than 65 V and a low leakage current.

Figure 12. Evolution of grain size as a function of the calculated density of the samples sintered in a conventional oven
and a microwave oven at a temperature of 800 °C to 1050 °C [by authors].
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Figure 15. Graphs of current density versus electric field: (a) for films without Cr3+ and films thermally treated at 900 °C
and (b) films thermally treated at 1000 °C after the Cr3+ deposition [55].

4. Network modifiers that promote properties of SnO2-based varistor

The addition of crystal lattice modifiers to SnO2 matrix is required because in the SnO2 sintering
process, there is a predominance of mass transport mechanisms (evaporation and condensa‐
tion), which leads to coalescence and grain growth, which hinder densification. Densification
is a precondition to obtain the varistor properties since the phenomena involved in the
formulation of non-ohmic properties occur in the grain boundary region. Thus, the studies are
carried out to understand the doping effect on the sintering and densification, electrical
conductivity, and non-ohmic properties of SnO2-varistor. The defects generated by modifying
agents are of Frenkel type (generators of interstitial ion) and Schottky type (generators of
vacancies) and are responsible for the formation and modification of the potential barrier in
the grain boundaries [1,56,57].

Figure 14. SEM of the film deposited by electrophoresis and sintered at 1000 °C/40 min: (a) top vision; (b) and (c) dif‐
ferent magnifications of cross-sectional vision [55].
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The addition of bivalent metals such as CoO [58], ZnO [59], and CuO [60,61] is made to enhance
the densification because these cations act as acceptors of electrons and replace the tin ions in
crystal lattice, creating oxygen vacancy defects that promote mass diffusion in the network
and promoting densification, according to Eq. 21 [58]:

2
"   

SnO
X

Sn O OMO M V O··® + + (21)

The MSn
''  defect types present in the grain boundary region trap the electrons released by

other types of modifiers and create a potential barrier in the grain boundary region.

The electrical conductivity of the varistor system can be improved with the addition of
pentavalent ions as Sb2O5 [62], Nb2O5 [1], and V2O5 [63], which act as electron donors to the
crystal lattice, resulting in electron concentration and tin vacancies, as demonstrated in Eq.
22 [1,62]:
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Trivalent cations that act as acceptors of electrons are added to SnO2 crystal lattice, such as
chromium [63–65], ytterbium [67], and scandium [68], which were used to improve the varistor
properties of the system. The segregation of these ions in the grain boundary potential barrier
increases the resistivity values and causes the improvement of nonlinear coefficient due to the
higher adsorption of electron acceptor species on the grain boundary surface, increasing the
barrier height potential and decreasing the conductivity, as demonstrated in Eq. 23 [57,58,67]:
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There are many papers available in the literature [56–58,61–63,66–70], which studied the
influence of doping agent into the tin oxide matrix ceramic. The possible microstructural,
morphological, and varistor property changes that may occur with the addition of certain
elements are searched.

4.1. Effect of Ca, Ba, Sr addition on Co, Sb-doped SnO2 varistors

Aguilar-Martínez et al. [69] investigated the effect of calcium (sample named SCa), barium
(sample named SBa), and strontium (sample named Sr) additions on the microstructure and
electrical properties of SnO2-Co3O4-Sb2O5 ceramic varistors.

By XRD analysis, it should be noted that the concentrations of dopants added (SbO, CaO, Ba,
and SrO) were too small to be detected by the X-ray equipment. The microstructure of the
samples was characterized by scanning electron microscopy. As shown Figure 16, it was found
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that the addition of strontium and calcium promotes densification and grain growth. The
addition of BaO leads to a significant alteration of microstructure, changing the grain size and
the morphology of grains from a nearly round shape to smaller and elongated grains. Barium
addition causes increase of porosity, reduction of grain size, and changes in the grain mor‐
phology (from approximately equiaxed to elongated grains) [69].

Figure 16. SEM images of the as-sintered surfaces of SnO2-based varistors: (a) S, (b) SCa, (c) SSr, and (d) SBa [69].

Since electrical conduction in SnO2-based varistor ceramics is controlled by the grain-boundary
barriers, the observed fact (the significant grain growth in a SnO2-system with SrO and CaO
added) suggests that Sr and Ca materials are more suitable for low-voltage varistor prepara‐
tion. The current–voltage curves of all prepared ceramic samples are nonlinear behavior.
Figure 17 shows graphs of current density versus electric field for ceramics with and without
additions sintered at 1350 °C [69].

Ceramics with calcium addition exhibit the lowest electric field at a fixed current density (10–

3 A cm–2). The addition of strontium shows a similar effect on microstructure and current–
voltage characteristics. However, the BaO addition showed that low-field conductivity is
slightly lower with respect to the reference material, but the high-field part remains un‐
changed. This behavior may be attributed to the resulting microstructure. Despite the grain
morphology and porosity, the samples S (only Co an Sb as dopants), SCa, and SBa showed
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nonlinear coefficients of 5.7, 5.0, and 4.9, respectively, higher than the value for sample SSr
(nonlinear coefficient of 2.7) [69].

4.2. Effect of Er addition on Co, Nb-doped SnO2 varistors

The addition of Er2O3(Co, Nb)-doped SnO2 was studied by Qi et al. [70] at different concen‐
trations (0.1, 0.5, 1, and 2 mol%) and different temperatures of sintering (1250 °C, 1300 °C, and
1350 °C for 1 h).The XRD analysis carried out by the authors did not show evidence of the
second phase formation into the SnO2-rutile crystalline phase. The SEM micrographs of the
varistors prepared are in Figure 18, showing the decreases of grain size associated with the
increase of Er2O3 concentration into ceramic matrix. Also, the decreases of grain size occur with
lower temperature of sintering. With the addition of 2.0 mol% of Er2O3 modifier agent, the
SnO2 grain size was reduced from 12.9 μm to 6.5 μm when the sample sintered at 1350°C for1
h, from 9.7 μm to 3.7 μm when sample was sintered at 1300°C for 1 h, and from 6.8 μm to 2.4
μm when samples were sintered at 1250°C for 1 h.

Figure 19 shows the plots of applied electric field versus current density for different concen‐
trations of Er2O3 sintered at 1350 °C, 1300 °C, and 1250 °C during 1 h. It was observed from
Figure 19 that the threshold voltage of the SnO2-based varistors increased significantly from
305 V mm−1 to 1083 V mm−1 with increasing Er2O3 concentrations over the range of 0–2.0 mol
% sintered at 1350°C during 1 h and from 1083 V mm−1 to 2270 V mm−1 with decreasing sintered
temperatures from 1350°C to 1250°C during1 h. Only the samples sintered at 1300 °C have
decrease on nonlinear coefficient with Er2O3 addition. There is no observed significant change
on height of the potential barrier for samples sintered ate 1250°C and 1300 °C.

Figure 17. J versus E characteristic plots for all samples [69].
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Figure 19. E versus J curves for the SnO2-based varistor system sintered at different temperatures during 1 h with the
composition (all in mol%) 100SnO2 + 0.75Co2O3 + 0.1Nb2O5 + xEr2O3 (x ranging from 0.0 to 2.0) [70].

Figure 18. Microstructure variation of the SnO2-based varistor system sintered at 1350 °C, 1300 °C, and 1250 °C during
1 h with the composition (all in mol%): 100SnO2 + 0.75Co2O3 + 0.1Nb2O5 + xEr2O3: (from top to bottom) x = 0.0, x = 0.1, x
= 0.5, x = 1.0, x = 2.0 [70].
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5. Conclusions

The study of SnO2-based varistor systems is recent, so a huge amount of published papers do
not exist. Research involving the material is mostly related to the understanding of the
influence of dopants on densification materials prepared by mixing oxide and the change in
the parameters of the potential barrier formed at grain boundary region, which is directly
related to the nonlinear coefficient and determines the quality of varistor ceramics. The bivalent
metals (Ba2+, Ca2+, Co2+, Zn2+, and others) have proven action as a densifying agent since the
defects generated by their addition to the ceramic matrix assist in mass diffusion. The addition
of trivalent ions (Cr3+, Er3+, and others) causes the increase of nonlinearity coefficient due to
the higher adsorption electron acceptor species on the surface of the grain boundary and thus
causing a reduction in conductivity of the material. The new methodologies for the chemical
synthesis of ceramic powder promote the homogeneous distribution of dopants into the
ceramic matrix and reduce segregation and the formation of secondary phases, confirmed by
XRD analysis, which are harmful factors on the electrical properties of the varistor and facilitate
the integration of the material in today’s electronic devices electrical protection. The use of
microwave oven is a new processing step aimed to reduce the time and temperature of
sintering step and can be considered a promising procedure for the varistors production. The
preparation of varistors as film emerges as a new possibility in order to facilitate integration
of this material in electronic circuits.
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