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Abstract

The main modifications that characterize cancer are represented by alterations in onco‐
genes, tumor-suppressor genes, and non-coding RNA genes. Most of these alterations are
somatic and the process is a multistep one. Tumors often arise from an initial trans‐
formed cell, and after subsequent genetic alterations different cytogenetically clones lead
to tumor heterogeneity.

Oncogenes encode proteins that control cell processes such as proliferation and apopto‐
sis. Among these proteins are transcription factors, chromatin remodelers, growth fac‐
tors, growth factor receptors, signal transducers, and apoptosis regulators. Oncogenes
activation by structural alteration (chromosomal rearrangement, gene fusion, mutation,
and gene amplification) or epigenetic modification (gene promoter hypomethylation, mi‐
croRNA expression pattern) confers an increased or a deregulated expression. Therefore,
cells with such alterations possess a growth advantage or an increased survival rate. Giv‐
en the fact that expression profiling of these alterations determines specific signatures as‐
sociated with tumor classification, diagnosis, staging, prognosis, and response to
treatment, it highlights the importance of studying oncogenes activation mechanisms and
the great potential that they hold as therapeutic tools in the near future.

Keywords: Oncogenes, genomic instability, epigenetic modification

1. Introduction

The main modifications that characterize cancer are represented by alterations in oncogenes,
tumor-suppressor genes, and non-coding RNA genes. Most of these alterations are somatic
and the process is a multistep one, although germ-line mutations can predispose a person to
heritable or familial cancer.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



Tumors often arise from an initial  transformed cell,  and after  subsequent genetic  altera‐
tions  different  cytogenetically  clones  lead  to  tumor  heterogeneity.  Tumor  heterogeneity
determines different clinical phenotypes, leading to an individual response to treatment for
tumors with the same diagnostic type.

Oncogenes encode proteins that control cell processes such as proliferation and apoptosis.
Among  these  proteins  are  transcription  factors,  chromatin  remodelers,  growth  factors,
growth  factor  receptors,  signal  transducers,  and  apoptosis  regulators.  Activation  of
oncogenes by structural  alterations (chromosomal rearrangement,  gene fusion,  mutation,
and  gene  amplification)  or  epigenetic  modification  (gene  promoter  hypomethylation)
confers  an  increased  or  a  deregulated  expression.  Therefore,  cells  with  such  alterations
possess a growth advantage or an increased survival rate.  Translocations and mutations
occur early on in tumor progression, whereas amplification usually occurs during late tumor
stages.

A proto-oncogene is a normal gene that presents a potential to become an oncogene after
a  genetic  alteration (mutation),  leading to  an increased expression.  Usually,  proto-onco‐
genes code for proteins that control cell growth and differentiation through signal transduc‐
tion and execution of mitogenic signals. Upon activation, a proto-oncogene (or its product
onco-protein)  becomes  a  tumor-inducing  agent.  Most  known  examples  of  proto-onco‐
genes include RAS, WNT, MYC, ERK,  and TRK.  Another oncogene is the BCR-ABL  gene
found  on  the  Philadelphia  chromosome,  a  piece  of  genetic  material  seen  in  chronic
myelogenous leukemia caused by the translocation of pieces from chromosomes 9 and 22
t (9; 22).

Oncogene products can comprise a variety of molecules such as transcription factors, chro‐
matin remodelers, growth factors, growth factor receptors, signal transducers, and apoptosis
regulators, each playing an important role in neoplastic transformation. For example, studies
have shown that in prostate carcinomas the fusion between the TMPR552 gene and two
transcription factors ERG1 or ETV1 creates a fusion protein that increases proliferation and
inhibits apoptosis of cells in the prostate gland, thereby facilitating their transformation into
cancer cells [1]. Another example is represented by chromatin remodeler factors such as the
MLL gene that plays a critical role in acute lymphocytic leukemia and acute myelogenous
leukemia [2]. Also, an essential role in cancer development is played by apoptosis regulators
such as the BCL2 gene, which is involved in the initiation of almost all follicular lymphomas
and some diffuse large B-cell lymphomas [3].

2. Mutations

Mutations in an oncogene may lead to a change in the structure of encoded protein, enhancing
its transforming activity. Oncogenes are activated by point mutations (substitutions) and may
either enhance or degrade the function of a protein. Table 1 shows the occurrences of mutations
in each oncogene among some tissues [4].

New Aspects in Molecular and Cellular Mechanisms of Human Carcinogenesis2



CANCER TYPE ONCOGENES TYPE

T cell lymphoma KIT KRAS Co-occurred

Acute lymphoblastic leukemia KRAS NRAS Co-occurred

Acute myeloid leukemia
KRAS NRAS Co-occurred

FLT3 KIT Mutually exclusive

Lung adenocarcinoma

BRAF KRAS Mutually exclusive

KRAS NRAS Mutually exclusive

EGFR3 KRAS Mutually exclusive

Pancreatic cancer B-CATENIN KRAS Mutually exclusive

Biliary tract cancer BRAF KRAS Mutually exclusive

Colorectal cancer

BRAF KRAS Mutually exclusive

KRAS PIK3CA Co-occurred

B-CATENIN KRAS Co-occurred

KRAS NRAS Mutually exclusive

Thyroid cancer

BRAF NRAS Mutually exclusive

HRAS NRAS Mutually exclusive

BRAF RET Mutually exclusive

NRAS RET Mutually exclusive

Melanoma

BRAF NRAS Mutually exclusive

BRAF HRAS Mutually exclusive

BRAF KRAS Mutually exclusive

KRAS BRAS Co-occurred

Prostate cancer
HRAS NRAS Mutually exclusive

KRAS NRAS Mutually exclusive

Kidney cancer B-CATENIN WTI Co-occurred

Cervical cancer
PIK3CA KRAS Mutually exclusive

PIK3CA BRAF Mutually exclusive

Table 1. Frequently mutated oncogenes in various type of cancers

In cancer, mutations occur in many oncogenes, most notable being RAS and BRAF. The RAS
family represents the upstream component of the RAS/RAF/MAPK pathway and mutations
in RAS are one of the most common activating events in most of cancers. Mutated RAS
oncogene (KRAS, HRAS, and NRAS) encodes for a protein that remains in the active state and
transduces signals for continuous cell growth. KRAS mutations are common in carcinomas of
the lung, colon, and pancreas [5], whereas mutations of NRAS occur in acute myelogenous
leukemia and the myelodysplastic syndrome [6].
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BRAF is a protein member of the RAF family (RAF1, BRAF, ARAF), also regulated by RAS
binding. Mutated BRAF oncogene encodes for a protein with a modified kinase domain,
resulting in a constitutively active protein that uncontrollably stimulates the MAP kinase
cascade [7].

2.1. Melanoma

BRAF mutations are the most common somatic mutations in cutaneous melanoma and are
extremely rare in mucosal melanoma. There are found in 48% of metastatic biopsy specimens
and can precede neoplastic transformation [8, 9]. Over 90% of the identified mutations in BRAF
are in codon 600. The most common is BRAFV600E, resulting in substitution of glutamic acid
for valine (BRAFV600E: nucleotide 1799 T>A; codon GTG>GAG). The second most common
mutation is BRAFV600K (5–6%) substituting lysine for valine, (GTG>AAG), followed by
BRAFV600R (GTG>AGG), BRAFV600′E2′ (GTG>GAA). Less common BRAF mutations found
in cutaneous melanoma are BRAF V600D (GTG>GAT) and L597R [10–12].

There were identified mutations in hotspot codons (12, 13, and 61) of different RAS genes
(HRAS, NRAS, or KRAS), but the most prevalent were HRAS substitutions that occurred
preponderent at codon 61 (HRAS Q61L mutation), with fewer mutations at codon 12 and codon
13 [13]. Mutations in N-RAS appear to be significant in melanoma even earlier than the
discovery of BRAF mutations [14]. The base change at position 61 seems to be important in the
activation of N-RAS genes, transforming activity being detected only when mutant codon 61
was present. BRAFV600E mutations are more common in younger persons and in tumors
arising from intermittently sun-exposed skin, exclusive with N-RAS [15].

C-KIT gene encodes a receptor tyrosine kinase (KIT). All the mutations were founded in exon
11, 13, and 17. The most common is V559A mutation that results in an amino acid substitution
at position 559 in KIT, from a valine (V) to an alanine (A) [16]. While BRAF and NRAS
mutations are common and significant in cutaneous melanomas, C-KIT mutations were
detected in acral melanomas, mucosal melanomas, conjunctival melanomas, and cutaneous
melanomas [17]

2.2. Colorectal cancer

The development of colorectal cancer (CRC) is a multistep process that occurs due to the
accumulation of several genetic alterations, which are associated with oncogenes and tumor
suppressor genes, as well as genes involved in DNA damage recognition and repair.

Most of the BRAF mutations associated with CRC are located in exons 11 and 15, coding for
the kinase domain. The hotspot mutation at 1796 nucleotide is the T-to-A transversion that
corresponds to the V600E mutation (7–15%) [18].

In colorectal cancer, RAS gene mutations have been reported in 40–50% and the frequency of
KRAS mutations varies between 24–50%. KRAS mutation occurs most commonly in codon 12
and 13 rather than in codon 61, with the most frequent mutations: G12D, G12V, G12C, G13D,
Q61H [19]. KRAS mutations exist in the presence of a vast majority of wild-type KRAS cells,
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which is why they not are detected in initial disease. Thirty-eight percent of patients whose
tumors were initially KRAS wild-type developed KRAS mutations that were detectable in their
sera after 5–6 months of treatment [20]. KRAS is mutated much more frequently than NRAS.
KRAS mutations were studied to determine their role in the predictability of response to
chemotherapy treatment.

2.3. Thyroid cancer

RAS mutations in thyroid cancer occur in both benign tumors and thyroid cancers (both
papillary thyroid carcinoma (PTC) and follicular thyroid cancer (FTC)), with variable frequen‐
cy in anaplastic thyroid cancers. PTCs with RAS mutations tend to display a lower rate of
lymph node metastasis [21]. PTCs with RAS mutations often present a follicular architecture
and a follicular variant of papillary thyroid carcinoma (FVPTC). There are two most common
RAS mutations associated with thyroid cancer: mutations of H-RAS codon 61 and N-RAS
codon 61 [22].

BRAF mutations were first detected missense mutations in thyroid cancer [23], which occurs
in exon 15, due to the substitution of the amino acid valine for glutamic acid at residue position
600 [24]. This mutation is the most frequent genetic change in PTC [25], being found in 36–69%
of PTC cases. BRAF mutation is responsible for the suppression of the sodium/iodide sym‐
porter (NIS), which is involved in iodine metabolism [26]. The V600E mutation comprises more
than 90% of observed BRAF mutations, with the highest rate (77%) in the tall cell variant of
papillary cancer, and the lowest percentage (12%) in the FVPTC. In PTC, BRAF mutation is
more frequent in older patients, associated with extrathyroidal invasion [27]. By contrast,
others have found that the BRAF mutation is not associated with age, gender, multicentricity,
recurrence rate, lymphovascular invasion, or distant metastasis [28].

Activating point mutations of RET oncogenes are associated with hereditary cancer syndrome
(multiple endocrine neoplasia type 2 -MEN 2). RET mutations are mostly missense and located
in exons 10, 11 (extracellular domain of RET), 13, 14, 15, and 16 (in the TK domain) [29–31].
Mutation of the extracellular cysteine in codon 634 in exon 11 of RET causes ligand-independ‐
ent dimerization of receptor molecules and enhances phosphorylation of intracellular sub‐
strates and cell transformation. Mutation of the intracellular TK (codon 918) results in cellular
transformation [32].

There is a high correlation between the position of the point mutation and the phenotype of
the disease. Three subtypes based on clinical presentation are defined: MEN 2A, MEN 2B, and
FMTC. RET mutations are observed in 98% of MEN2A, 95% of MEN 2B, and 88% of familial
medullary thyroid carcinoma (FMTC) [33]. Activating mutations of RET involving exons 10,
11, 13, 14, and 15 (encoding the highly conserved cysteine-rich domain) have been proven to
cause MEN2A. [34]. The mutations for MEN2A are mostly located in exon 10 (10–15%),
including codons 609, 611, 618, and 620, and exon 11 (80–85%), as well as codons 630 and 634
[35]. The mutations characteristic of FMTC occur in exons 10 and 11. However, non-cysteine
point mutations also have been found in exon 8 (codons 532 and 533), exon 13 (codons 768,
790, and 791), exon 14 (codons 804 and 844), exon 15 (codon 891), and exon 16 (codon 912) [35–

Mechanisms of Oncogene Activation
http://dx.doi.org/10.5772/61249

5



37]. About 95% of MEN2B patients carry a M918T mutation within exon 16 and 5% have an
A883F mutation in exon 15. Mutation in codon 918 gives a more aggressive phenotype [38].

2.4. Hepatocellular Carcinomas (HCC)

In HCC, only one mutation (KRAS codon 13; Gly to Asp) was detected among patients and no
mutations were found in codons 12 and 61 of KRAS or codons 12, 13, and 61 of the NRAS and
HRAS genes. So, the activation of RAS oncogenes by point mutations does not play a major
role in hepatocellular carcinogenesis [39]. Activating mutations in the BRAF oncogene have
been found in a small fraction of hepatocellular carcinomas. KRAS and BRAF mutations are
rare events in HCC and therefore not a key event in hepatocarcinogenesis [40].

2.5. Pancreatic cancer

The highest incidence of KRAS mutations are found in adenocarcinomas of the pancreas (90%),
with activating point mutations in codon 12 of the KRAS protein, leading to a glycine (G) to
aspartic acid (D) or valine (V) substitution [41]. Single amino acid substitutions at G12, 13, or
Q61 lead to the formation of mutated KRAS that are insensitive to GAP stimulation. This leads
to the accumulation of persistently GTP-bound and active KRAS, which leads to pancreatic
cancer formation [42].

2.6. Cervical cancer

Cervical cancer harbors high rates of potentially targetable oncogenic mutations. KRAS
mutations were identified in low percentage (17%) exclusively in cervical adenocarcinomas.
Most mutations were missense mutations of codon G12, well-described activating mutations,
which have been associated with a worse prognosis in the metastatic process [43].

EGFR mutations were identified in 7.5% of cervical squamous cell carcinomas; a missense
mutation in exon 15 of the EGFR gene produces an alternate spliced transcript (isoform D). Its
presence in both tumor and adjacent normal tissue suggests that EGFR S703F may be a
germline mutation [44, 45].

PIK3CA mutations are present in both squamous cell carcinomas and adenocarcinomas (31%).
The PIK3CA mutations were located in the exon 9 helical domain in two hotspot mutations
(E545K and E542K), which result in the constitutive activation of cellular signaling [46]. PI3KCA
mutations may impart a more aggressive and treatment-resistant phenotype and decreased
survival among patients with these mutations in early stage cancers [47].

3. Gene amplification and chromosomal translocations

The interest regarding the role of genomic context in promoting amplification was intensely
investigated, but is still under debate. An important interest remains to establish the tendency
of some genomic region to be subject to amplification. Past researches showed that different
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regions of the genome were more subjected to be amplified than others, but the molecular
substrate was unknown [48]. At present, several mechanisms and models have been proposed
to explain gene amplification in oncogenesis.

3.1. Gene amplification

Besides point mutations resulting in amino acid substitutions, a proto-oncogene may be
activated by chromosomal alterations. Among the most important cromosomal abnormalities
is gene amplification, which is an increase of the copy number for a specific chromosomal
region. The consequence of chromosome fragment amplification is associated with overex‐
pression of the amplified gene(s) and is a characteristic of cancer [49]. Amplified genes
(hundreds of copies of normally diploid genes) may be organized as extrachromosomal
elements (double minute chromosomes) as repeated units at a single locus or scattered
throughout the genome.

At this moment, the relationships between the two forms of gene amplification found in
tumors, the intrachromosomal homogeneously staining regions (HSRs) and the extrachromo‐
somal DNA molecules, double minutes (dmins), are not well understood [50].

Several models for initiation of amplification have been described involving defects in DNA
replication or telomere dysfunction and chromosomal fragile sites. Regarding the DNA
replication initial proposals, based on extra rounds of replication due to replication origins
misfiring appear to be incorrect modification of models invoking replication of extrachromo‐
somal DNA [51]. Another theory involves the double-strand DNA breaks (frequent in
replicating cells) generated by the collapse of replication forks that are unable to progress due
to DNA structure lesions, therefore providing an opportunity to initiate the amplification
process [49].

Telomeres are repetitive nucleotide sequences, with the role to prevent the loss of DNA
sequences, resulted as a consequence of the incomplete DNA replication at the chromosome
ends. Telomere shortening can block cell division; this mechanism appears to prevent genomic
instability and development of cancer in aged cells by limiting the number of cell divisions [52].
Telomerase is responsible for telomere replication and is inactive in most somatic cells. With
every cell division, the DNA telomere sequence is shortened by 40–50 bp. Telomere shortening
in humans can induce replicative senescence, which blocks cell division. When telomeres are
short to a critical length (replicative limit), cellular senescence is induced and normal cells cease
to proliferate. This mechanism appears to prevent genomic instability and development of
cancer in aged cells by limiting the number of cell divisions. In cancer, tumor cells escape
replicative limit and acquire the capability to maintain telomere length through cell divisions
by telomerase reactivation, or by using a recombination-based mechanism and alternate
lengthening of telomeres (ALT) [53, 54]. An experimental murine model (lacking the RNA
component of telomerase-TercK/K mice) for telomere dysfunction demonstrated the promo‐
tion of gene amplification. Tumor genomes arising in mutant mice contain chromosomal
rearrangements, amplifications, and deletions commonly associated with human tumors [55,
56]. Despite the established correlation between telomerase reactivation and telomeres
lengthening in cancer, recent literature review and analysis [52] suggest this is unlikely,

Mechanisms of Oncogene Activation
http://dx.doi.org/10.5772/61249

7



because shorter telomeres and telomerase inactivation is more often associated with increased
cancer rates, and the mortality from cancer occurs late in life.

In humans, shorter telomeres were associated with poorer health and aging and were also
observed in preneoplastic stages, supporting a role for this mechanism in generating genomic
aberrations in oncogenesis [57–60]. The model for gene amplification due to telomere abnor‐
malities and the break at fragile sites (discussed below) was first described in maize and results
from the breakage/fusion/bridge (B/F/B) cycles [61]. B/F/B cycles are initiated when broken
ends of chromosomes fuse, resulting in a dicentric chromosome. During anaphase, the two
centromeres are pulled in opposite directions and the dicentric chromosome generates a
chromosome with an inverted duplication of terminal sequences to break. The B/F/B cycle
continues in the next cell cycle because this chromosome also has broken ends. The B/F/B cycles
were observed like primary mechanism for gene amplification in hamster cells [62].

In human cancer, evidence of B/F/B cycles was provided by the high frequency of anaphase
bridges in early passage tumor cells and tumors [63, 64]. On the other hand, it was proven that
human tumor cells in culture presenting gene amplification contain DM chromosomes, and
the clones with low-copy amplification contained structures related to B/F/B cycles [65, 66].
There are evidences that B/F/B cycles may generate amplicons. These results were obtained by
cytogenetic analyses of HSRs in tumor cell lines and in model systems with amplifications
following drug treatments [67, 68]. The model explains that loss of the DNA sequences distal
to the gene under selection or their translocation to another chromosome is also possible.

HSR may arise from the integration or fusion of double minute with a chromosome [50].
Currently, the data available suggests that fusion and reintegration constitute a pathway for
the evolution of extrachromosomal elements, but the site of HSR insertion has never been
characterized at a nucleotide resolution [50].

3.2. Fragile sites

Fragile sites are part of normal chromosome structures existing in each individual and
represent chromosome regions that are late in replicating and prone to breakage under
conditions of replication stress. Fragile sites occur after partial inhibition of DNA synthesis
and are constituted in regions presenting site-specific gaps and breaks on metaphase chromo‐
somes. Common fragile sites are normally stable in somatic cells, but it was observed that
following treatment of cultured cells with replication inhibitors, fragile sites display gaps,
breaks, rearrangements [69, 70]. Fragile sites extend over large regions of high DNA flexibility
and are associated with genes.

The molecular nature and mechanisms involved in fragile site instability was unknown till
recently. In many cancer cells, fragile sites and associated genes suffer frequent deletions and/
or rearrangement, demonstrating their role in genome instability during the oncogenesis
process. As a group, fragile sites are heterogeneous and seem to extend over broad regions
0.3–9-Mb long. The regions comprising fragile site are particularly associated with a high
frequency of recombinogenic events, including co-localization with chromosome aberrations
sites related to various cancers [69].

New Aspects in Molecular and Cellular Mechanisms of Human Carcinogenesis8



Accordingly to several studies, there are around 127 known fragile sites in the human genome,
defined as "common" or "rare" based on their frequency [71, 72]. Common fragile sites (CFSs)
are a normal part of the human genome and are typically replicative stable [73]. CFSs are not
the result of nucleotide repeat expansion mutations. The majority of breakages at CFSs are
further distinguished depending on their sensitivity to the drugs used to induce their expres‐
sion (e.g., low doses of the antibiotic aphidocilin (APH)) [74].

The breakage effect of APH may be reduced by using a co-treatment with low concentrations
of the topoisomerase I inhibitor and camptothecin (CPT) [75]. CFS regions are highly conserved
in vertebrate species, including mouse and primates [76–78]. CFSs initiate proper replication
but slow to complete it, introducing breaks from unreplicated regions of DNA [79]. The
mechanism proposed for CFS instability resides in this late replication. Late replication may
occur due to formation of non-B DNA structures such as hairpins and toroids that block the
replication fork in AT rich regions [80].

Rare fragile sites (RFSs) are classified into two sub-groups based on the compounds that induce
breakage, folate-sensitive groups and nonfolate-sensitive groups, which are sensitive at
bromodeoxyuridine (BrdU) or distamycin A, an antibiotic that binds to AT-pairs of the DNA
sequence. The folate-sensitive group is characterized by an expansion of CGG repeats, while
the nonfolate-sensitive group contains many AT-rich minisatellite repeats [81–83]. The genome
instability mechanism of CGG and AT-rich repeats characteristic for RFSs can form DNA
structure (hairpins and other non-B DNA) replication forks, leading to breakage [84, 85]. On
the other hand, it was demonstrated that DNA polymerase stops at CTG and CGG triplet
repeat sequences, which can result in continuous DNA synthesis via slippage [79].

Fragile site regions are stable in normal cells and become unstable in tumor cells. The breakage
of the fragile sites may be caused by mutations leading to a blockage of replication, or by a cell
cycle perturbation and gene involved in the DNA repair process deregulation [86]. Several
reports developed the concepts that underlie the mechanisms leading to fragile site expression
and chromosomal rearrangements at fragile sites in tumors. The analysis of DNA damage
response in various tumor types, including bladder, breast, colorectal, and lung tumors, found
that early stages of cancer development are associated with an active DNA damage response,
including phosphorylated ATR (ataxia telangiectasia and Rad3-related protein), ATM (ataxia
telangiectasia mutated), CHK1 (checkpoint kinases), CHK2 kinases, phosphorylated histone
H2AX, and p53 [87-88].

These events are linked to a high frequency of LOH (loss of heterozygoty) at known fragile
site regions. The explained mechanisms sustained that in precancerous lesions, the blockage
or collapsed replication leads to ATR activation and with subsequent DNA double strand
breaks. Tumor cells that escape apoptosis or cell cycle arrest will exhibit allelic imbalances,
especially at target fragile sites because of replication sensitivity. Further, the model sustains
the necessity of p53 mutation and/or other genes involved in checkpoints control, leading
therefore to cancer progression. Lesions at common fragile sites are indicators of replication
stress during early stages of tumorigenesis [70].
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Fragile sites regions are targets for the initiation of the amplification process due to breakage.
Several studies showed that boundaries of some amplicons generated through the amplifica‐
tion process mapped to common chromosomal fragile sites in hamster cells [89–90]. Evidences
of the role of fragile sites in human cancer regarding gene amplification are scarce. One
example of cell line model is for the MET amplicons in the esophageal adenocarcinoma map
within the fragile site FRA7G [91].

Aphidicolin-sensitive  fragile  sites  FRA5D,  FRA5F,  and  FRA5C,  which  map  distal  to
dihydrofolate reductase gene (DHFR) on 5q, are infrequently expressed and are less likely
to contribute to the amplification process.  In order for the gene amplification process to
take effect the target gene must be in the close proximity of fragile sites, similar to the MET
amplicon. The breakage at specific genomic sites may not contribute to the amplification
process, and no evidence of recurrent amplicon boundaries was found using array CGH in
a human cell culture system [92].

3.3. Amplified genes in cancer

The amplification process is important for deciphering oncogenesis molecular biology,
prognosis, and targeted therapies. A good example of gene amplification is dihydrofolate
reductase gene (DHFR), which usually occurs during progression of methotrexate-resistant
acute lymphoblastic leukemia [93]. In cancer, the most amplified genes are members of four
different oncogene families: MYC, cyclin D1 (or CCND1), EGFR, and RAS. The amplified DNA
segment usually involves several hundred kilobases and can contain many genes.

In breast cancer, MYC, ERBB2, CCND1, EGFR, or MDM2 were found to be amplified concom‐
itantly [94]. Moreover, it has been reported that there is a direct correlation between the number
of amplifications and an advanced breast cancer and poor survival [95]. MYC oncogene is
amplified in many types of cancer such as small-cell lung cancer, breast cancer, esophageal
cancer, cervical cancer, ovarian cancer, and head and neck cancer [96].

Among the best-known oncogenes that are amplified in cancer cells is N-MYC. This gene codes
for a transcription factor that plays a physiologic role in stimulating cellular proliferation and
is commonly amplified in neuroblastoma where patients have poor clinical prognosis.
Amplification of N-MYC in neuroblastoma has a valuable prognostic significance, and is
correlated with an advanced tumor stage [97], along with MYC and ERBB2 in breast cancer [94].

In malignant thyroid tumors, C-MYC gene overexpression and amplification has also been
correlated with tumor aggressiveness [98]. Overexpression of cyclins is also an important
element in thyroid oncogenesis, playing a crucial role in PTC pathogenesis [98]. CCND1, a cell
cycle key regulator of G1/S transition, is a frequent target of mutagenesis in many tumors;
amplification and rearrangement of its gene can lead to the over-production of this cell cycle
regulatory protein. CCND1 amplification also occurs in breast, esophageal, hepatocellular, and
head and neck cancer [99].

EGFR (ERBB1) is amplified in glioblastoma and head and neck cancer. Amplification of ERBB2
(also called HER2/neu) in breast cancer correlates with a poor prognosis. A monoclonal
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antibody against the product of this oncogene (trastuzumab) is effective in breast cancers that
overexpress HER2/neu.

New data were acquired using array-CGH technique, bringing to knowledge the complex
aspect of oncogene amplification in cancer. Using array-CGH analysis on identification of an
8p12 amplicon in anaplastic thyroid carcinoma (ATC) cell lines, six genes were found to be
amplified, DUSP26,MET, MYC, PVT1, YAP1 and CIAP1 [100]. DUSP26 effectively dephos‐
phorylates p38 and formed a physical complex with p38, promoting the survival of ATC cells
by inhibiting p38-mediated apoptosis.

The AIB1 oncogene is located on chromosome 20q, a region frequently amplified and overex‐
pressed in breast cancer [101–102]. High levels of AIB1 mRNA or protein predict significantly
worse prognosis and overall survival in breast cancer patients [103]. AIB1 is a transcriptional
co-activator that promotes the transcriptional activity of multiple nuclear receptors such as the
estrogen and progesterone receptors [104].

In cervical cancer, the array-CGH technique revealed that the 3q26.3 amplification was the
most consistent chromosomal aberration in primary tissues of cervical carcinoma, and an
increased copy number of PIK3CA gene was identified [105]. PIK3CA is known to be involved
in the PI 3-kinase/AKT signaling pathway, which plays an important role in regulating cell
growth and apoptosis.

In pancreatic cancer, chromosome 19q13 was found amplified containing PAK4 gene [106].
PAK proteins are critical effectors that link Rho GTPases to cytoskeleton reorganization and
nuclear signaling. PAK4 interacts specifically with the GTP-bound form of Cdc42Hs and weakly
activates the JNK family of MAP kinases. PAK4 gene is not in a mutated oncogenic form but
the activation of the PAK4 gene promotes KRAS2 gene mutation, a very frequent event in
pancreatic cancer [106].

DNA amplification represents an important mechanism during human multistep hepatocar‐
cinogenesis. Several genes were found to be amplified within 1q21 amplicon in hepatocellular
carcinoma: CREB3L4 (cyclic AMP responsive element binding protein3-like 4); JTB (Jumping
Translocation Breakpoint) is a transmembrane protein that suffers an unbalanced translocation
in various types of cancers [107]; INTS3 and SNAPAP, whose role in oncogenesis remains to
be defined; SHC1 is involved in signal transduction from receptor tyrosine kinases to down‐
stream signal to RAS [108–109]; CKS1B (CDC28 protein kinase regulatory subunit 1B), Cks1
expression was closely associated with poor differentiation and also negatively associated with
p27kip1 in hepatocellular carcinoma [110]; CHD1L (Chromodomain Helicase/ATPase DNA
Binding Protein 1-Like, also known as Amplified in Liver Cancer 1, ALC1) whose increased
expression was associated with clinicopathological features such as microsatellite tumor
formation, venous infiltration, and advanced tumor stage, overall survival time, and the
disease-free survival rate [111]. Moreover, Glyoxalase 1 (Glo1) gene aberrations are associated
with tumorigenesis and progression in numerous cancers. Hepatocarcinoma cells with genetic
amplified Glo1 gene express higher levels of Glo1 and are more sensitive to cell killing effects
if Glo1 expression is down-regulated [112]. The study supports the potential of Glo1 as
therapeutic target in patients with hepatocellular carcinoma and genetic Glo1 amplification.
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Human oncogene JUN gene amplification/overexpression was found in highly aggressive
sarcomas and in hepatocellular carcinomas, along with amplification/overexpression of
MAP3K5. JUN overexpression could interfere with adipocytic differentiation and promote
angiogenesis [113, 114].

Amplification of the FGFR2 gene was identified in a subset of Chinese and Caucasian patients
with gastric cancer. Fibroblast growth factor receptor family members (FGFR1–4) belong to
the RTK superfamily. Through interaction with FGF ligands, the receptors are involved in
diverse cellular functions including regulation of development processes, mediation of cell
proliferation, and differentiation, as well as angiogenesis and tissue regeneration [115, 116].
FGF ligand binding leads to kinase activation and downstream signaling to phosphoinositide
3-kinase (PI3K)-AKT and mitogen-activated protein kinase–extracellular signal–regulated
kinase (MAPK-ERK) pathways [117]. Genetic modifications or overexpression of FGFRs have
been associated with tumorigenesis and progression in breast, prostate, stomach, and hema‐
tologic malignancies [118, 119]. FGFR2 amplification leads to constitutive activation of the
FGFR2 signaling pathway in gastric cancer, and furthermore inhibition of this pathway using
a well-tolerated, potent, and selective inhibitor can lead to rapid and durable tumor regressions
in FGFR2-amplified gastric cancer xenograft models, representing an important treatment
target [120].

3.4. Chromosomal translocations

Chromosomal translocations (CTs) are very common in human cancer, and the molecular
mechanisms involved are complex and poorly understood. CTs are involved in several types
of cancer, particularly in hematopoietic and lymphoid tumors [121]. This type of chromosomal
abnormality seems to provide a selective growth advantage for some stem or progenitor cells,
which may further initiate the development of some malignant tumors. In case of oncogenes,
CTs may change the original locations of proto-oncogenes, generating effects on the gene
products through two major ways [122, 123]. One is to generate oncogenic fusion proteins and
the other way is that proto-oncogenes are brought into proximity with regulatory elements,
causing the overexpression of proto-oncogene.

The first specific chromosomal translocation identified in human cancer was the Philadelphia
chromosome [t(9;22)], which underlies chronic myeloid leukemia (CML). The fusion of
chromosomes 9 and 22 leads to the joining of two unrelated genes, the C-ABL gene, which
encodes a tyrosine kinase and is located on chromosome 9, and the gene BCR (for breakpoint
recombination) located on chromosome 22.10 [124]. A chimeric protein (BCR-ABL) with novel
transforming properties is formed from this specific chromosomal rearrangement. BCR-ABL
oncoprotein has an abnormal tyrosine kinase activity and is associated with the tumorigenesis
of CML and acute lymphoblastic leukemia (ALL) [124]. Duplication of the Philadelphia
chromosome leads to accelerated CML blast phase, suggesting that increased copies of this
aberrant gene confer a dose-dependent transforming effect [125]. Similar to t(9;22) in acute
promyelocytic leukemia (APL), a chromosomal rearrangement joins a novel gene t(15;17),
resulting in the formation of promyelocytic leukemia-retinoic acid receptor α (PML-RARα)
fusion oncoprotein [126].
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PML-RAR function is unknown, but this translocation underlies the response of this leukemia
type to treatment with trans-retinoic acid. Another intergenic, CT t(12;21), leads to a novel
chromosomal translocation product, TEL-AML1, which requires a specific treatment for
pediatric acute lymphoblastic leukemia [127].

A classic example is the overexpression of proto-oncogene c-MYC in Burkitt lymphoma due
to t(8;14) that results in c-MYC gene juxtaposed to immunoglobulin heavy chain (IGH)
regulatory elements [128, 129]. Further expression of the gene is directed by the strong
immunoglobulin heavy-chain enhancer, which is constitutively active in B lymphocytes. Thus,
c-MYC overexpression is a potent force driving cellular proliferation.

The t(11;14) translocation juxtaposes CCND1 and immunoglobulin enhancer elements and is
characteristic of mantle-cell lymphoma. The t(11;14) translocation juxtaposes CCND1 and
immunoglobulin enhancer elements [130].

The ability to grow leukemic cells in culture long enough to allow cytogenetic analysis has
facilitated the characterization of chromosomal translocations in leukemia. However, specific
chromosomal translocations have also been observed in solid tumors. Aside from interchro‐
mosomal translocations, intrachromosomal translocations are also associated with cancer.
Around 60–70% of PTCs have a characteristic inv(10)(q11.2q21). The breakpoint is represented
by RET gene locus (10q11.2), which is relegated to the opposite breakpoint of the H4 (D10S170)
or NCOA4 (ELE1) gene (10q21) in the same chromosome [131]. The H4 protein is widely
expressed in the nucleus and cytoplasm and its function is unknown [132]. In PTC, many types
of rearrangement loci (11 rearranged forms) were noted and PTC1(H4, CCDC6)-RET and
PTC3(NCOA4)-RET are the most common [133]. PTC2-RET is a less common type of PTC-RET
[134]. These rearrangements can lead to constitutively ligand-independent RET activity
involved in thyroid carcinogenesis. The hypothesis sustain that the distances between RET
and H4 loci are 18 Mb, therefore chromosome folding may close the two loci to each other in
thyroid cells, increasing the probability of recombination between them in the interphase
nuclei. This chromosomal folding is specific for thyroid cells, and this may explain why inv(10)
(q11.2q21) is frequently seen in PTC [135].

It has been shown that in prostate carcinomas, the fusion between TMPR552 gene and two
transcription factors ERG1 or ETV1 creates a fusion protein that increases proliferation and
inhibits apoptosis of cells in the prostate gland, thereby facilitating their transformation into
cancer cells [1].

The translocations of ETS are often found in human cancer, such as Ewing sarcoma [136–137],
leukemia [138–139], prostate cancer [140], and breast cancer [141]. These once disparate tumors
are now defined by a chromosomal translocation fusing the EWS gene to a number of tran‐
scription factors of the ETS gene family (the most common chimeric protein is EWS-FLI1) [142].
This chimeric product presumably acts directly on target promoters to direct the expression
of genes that induce cellular proliferation. Identification of EWS translocations allowed the
molecular grouping of a class of tumors whose proliferation is driven by similar genetic
alterations and that respond to similar chemotherapeutic regimens.
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4. Oncogene hypomethylation

The first epigenetic modification observed in human cancer was the loss of DNA methylation
at the 5’citosine level (m5C residues replaced by unmethylated C residues), reported in 1983
[143]. This discovery was often regarded as an unwelcome complication, and all of the attention
was focused on the opposite effect hypermethylation of promoters of genes that are silenced
in cancers (e.g., tumor-suppressor genes). Global hypomethylation of DNA in cancer was
found associated especially with repeated DNA elements; this modification did not represent
a research direction for many years [144]. However, changes in the pattern of DNA methylation
have been a consistent modification in cancer cells. Both hypo- and hypermethylation were
observed at various loci, but at this moment it is clear that DNA methylation plays an important
role in carcinogenesis.

New deep sequencing methylome analyses have shown much more cancer-linked hypome‐
thylation of unique gene sequences and hypermethylation of repeated sequences than
previously found [145–148]. Targeting DNA repetitive sequence, DNA hypomethylation may
induce genomic instability and mutation events in cancer genomes [149–152] by altering the
intranuclear positioning of chromatin enhancing recombination [153–155] and activating
retroviral elements [156]. Promoter hypomethylation of some genes may be associated with
the development of cancer by regulating the activity of genes [157].

4.1. Genomic hypomethylation profiles in cancer

DNA methylation principally occurs at 5’ cytosine from dinucleotide CpG sites [158, 159]. CpG
dinucleotides are found in C+G-rich regions in the genome termed CpG islands, localized
frequently at promoter or gene regulatory level. However, the vast majority of CpG dinucleo‐
tides are localized within the intergenic and intronic regions of the DNA, particularly within
repeat sequences and transposable elements. Unmethylated CpG islands at gene level are
associated with gene transcription. In normal somatic cells, between 70% and 90% of CpG
dinucleotides are methylated, which constitute approximately 0.75–1% of the total number of
bases in the genome, while most CpG islands are unmethylated [160]. A part of genes promoter
region are methylated as part of normal developmental processes or tissue specific (e.g., germ-
line specific genes-MAGE genes) [161]. In X chromosomes in female dosage compensation
(imprinted genes of X chromosomes in females), where only one of two copies is active,
methylation of regulatory regions is involved in the repression of the expression of the silent
loci [162].

Recently, high-resolution genome-wide analyses of DNA methylation changed the idea that
considers oncogenesis being characterized predominantly of hypomethylated DNA repeats
and hypermethylated gene regions [163–164]. The hallmark for cancer is represented by global
losses of DNA methylation with local hypermethylation and hypomethylation of specific
genes [165–167].

Evaluation of the majority of cancers showed that a major contributor to global DNA hypo‐
methylation is hypomethylation of tandem and interspersed DNA repeats [165, 168]. Several
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studies using CpG methylation-sensitive restriction endonucleases or sodium bisulfite
reported that hypomethylation was often found at gene sequence level (including metastasis-
associated genes) [157, 165].

4.2. Hypomethylation of DNA repeats sequence in cancer

Repeat sequences are represented by transposable elements found interspersed throughout
the genome, or simple repeat sequences, such as DNA satellites, found in pericentromeric or
subtelomeric region of chromosomes. These are normally methylated within the healthy
genome [169].

In cancer, hypomethylation of DNA repeats is a result of the demethylation process rather than
the preexisting hypomethylation in a cancer stem cell [170]. The frequency of cancer-associated
hypomethylation of DNA repeats is dependent with disease progression (tumor grade, stage)
[171, 172]. Hypomethylation is also seen in tumor adjacent tissues and in benign tumors (breast
fibroadenomas and ovarian cystadenomas), but at a lower level than cancer [145, 165, 173, 174].

Hypomethylation may affect transcription and hypomethylation of interspersed DNA repeats
within promoter modifies the chromatin boundaries resulting in transcription activation of
nearby genes [175, 176]. Along with the effects upon transcription, hypomethylation can affect
alternative splicing and hypomethylation of a minor portion of interspersed DNA repeats may
occasionally cause induction of retroviral element transcription [156]. Several studies reported
numerous evidences for the causal relationships between DNA hypomethylation and in‐
creased transcription as well as hypomethylation and cancer [177–179].

Regions of cancer-associated changes in DNA methylation are found in short interspersed or
clustered regions, as well as in long blocks [180–182]. Dante et al. described hypomethylation
of LINE-1 (a highly repeated interspersed repeat) in mononuclear cells from patients with
chronic lymphocytic leukemia [183]. Along with hypomethylation of LINE-1, Alu repeats were
also subsequently observed hypomethylated in many other types of cancers [183–186]. In
breast adenocarcinomas, ovarian epithelial cancers, and Wilms tumors, a hypomethylation of
centromeric and juxtacentromeric satellite DNA was noted [173, 174, 187]. Moreover, another
classes of tandem repeats (macrosatellite DNAs) and segmental duplications were found
hypomethylated in various cancers [188–190]. The loss of DNA methylation in cancer varies
according to the tumor type and subclasses of DNA repeat [191–193].

Gathering the result of the presented studies, we may conclude that in many types of cancer,
hypomethylation of DNA repeats represents a highly informative prognostic marker and/or
predictor of survival [194–197].

4.3. Hypomethylation of DNA gene enhancer sequence in cancer

Gene expression levels may be further modulated by DNA methylation levels at upstream
enhancer sites [198], which can affect the binding of transcription factors at (CpG) islands [199].
In normal cells, DNA demethylation at enhancer’s level is correlated with upregulation of
expression of the associated gene. It was shown that the binding of FoxA1/FOXA1 transcrip‐
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tional factors to enhancers is inhibited by DNA methylation at the respective binding site [200].
In this case, modification of DNA methylation status (demethylation) at the enhancer level
may lead to an open chromatin state allowing the access of transcription factors at the active
enhancer [201–202]. Following DNA demethylation, FoxD3 transcription factor binds at the
enhancer level, allowing the recruitment of FoxA1 and conversion of the enhancer to a state
that is set for activity. Local DNA demethylation leads also to changes in histone H3K27 or
H3K9 methylation [200]. FOXA1 is an important factor for oncogenesis being involved in
various types of cancer [203]. Thus, DNA hypomethylation from transcription regulatory
regions may cause changes in expression [204].

4.4. Genomic hypomethylation in promoters and within gene bodies

Hypomethylation of transcription regulatory regions is less frequent than hypermethylation
of CpG island promoters in cancer. Some of the gene regions (including transcription control
sequences) were associated with loss of DNA methylation. Currently, there are data that
sustain that promoter hypomethylation of some genes may be associated with the develop‐
ment of cancer, regulating the activity of genes [157]. For example, promoter hypomethylation
of specific immunity-related genes (e.g., cytokine IL-10) may activate the specific gene
expression to inhibit the immune response in breast cancer [205], and the promoter hypome‐
thylation of SPAN-Xb, an immunogenic antigen, can induce de novo B-cell response in
myeloma cells [206]. However, the biological significance of promoter hypomethylation in
cancer is still poorly understood [144]. Hypomethylation of gene promoters must cooperate
with other key activators such as transcriptional factors to control gene expression [207, 208].

Promoters may overlap tissue-specific (T-DMR) or cancer-specific (C-DMR) differentially
methylated DNA regions [209]. Most of the non-imprinted, autosomal T-DMR promoters are
not the main type of vertebrate DNA promoters, and the genes presenting T-DMR promoters
become activated after experimentally induced demethylation 5-deoxyazacytidine [209].

Intragenic epigenetic marks have been also involved in normal gene expression regulation and
inverse relationships between imprinted gene expression and DNA methylation level was
observed [210]. T-DMR regions were found not only inside many genes, but also in down‐
stream promoters, flanking certain subsets of genes [211, 212]. Moreover, besides first exon,
T-DMRs are also present at exonic and intronic sequences, insulators, intragenic ncRNA genes,
and 3 ‘terminal regions [213, 214].

The role of these regions is to connect DNA and chromatin, inducing tissue-specific chromatin
epigenetic marks inside genes [215, 216]. This relationship between DNA and chromatin
modification at gene level may help determine alternative promoter usage, modulate the rate
of transcription initiation or elongation, and direct the choice of alternative splice sites [217,
218]. For moderately expressed genes, DNA methylation level in the middle of the gene is
correlated with higher transcription rates, being related to nucleosome positioning [219]. In
genes with CpG-poor promoters, methylated sequences located downstream binds Polycomb
repressor complexes [212], which are being associated with repression of promoters [220].
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On the other hand, certain histone modifications may direct the choice of splice junction
through direct interactions with proteins that mark exon–intron junctions, altering rates of
transcription and nucleosome positioning [221, 222]. As we mentioned before, DNA methyl‐
ation may also be involved in regulating alternative splicing, intron–exon junctions being
enriched in sharp transitions in DNA methylation levels [223] (e.g., malignant prostate cancer
cells have enrichment of DNA hypermethylation at exon–intron junctions [224]). Therefore,
these findings highlight the involvement of DNA methylation levels in determining alternative
splicing in tumor cells, suggesting that cancer-associated DNA hypomethylation in intronic
and exonic sequences can modulate the amount and type of gene products and thereby
contribute to tumor formation or progression.

TGFB2 gene contains an intronic Alu repeat that was found hypomethylated in some cancer
cell lines. Their hypomethylation at this site might be related to the significant upregulation
of TGFB2 gene, being an example of cancer-associated hypomethylation and a target chromatin
associated epigenetic changes [225]. PRDM16 presents gene-body hypomethylation (overlap‐
ping an exon) in some of the cancer cell lines, whereas NOTCH2 also showed gene-body
hypomethylation (in a subregion of repetitive DNA).

Gene encoding the protease urokinase (PLAU/uPA) is overexpressed and was found hypo‐
methylated along with tumor progression in breast cancers and prostate cancers [157]. Also,
other genes were observed to display hypomethylation and transcriptional activation in
cancer, S100A4, mesothelin, claudin4, trefoil factor 2, maspin, PGP9.5, POMC, and the
heparinase gene [144].

DNA hypomethylation is closely associated with morphological dedifferentiation in thyroid
cancers. Four oncogenes (INSL4, DPPA2, TCL1B and NOTCH4) were frequently regulated by
hypomethylation in anaplastic and medulary carcinoma [226].

Hematopoietin, TNF, IL1, IL10, and IL17 families of cytokines had a significant tendency to be
hypomethylated in five cancer types (colon, kidney, stomach, lung, and breast) [227].

Hypomethylation and increased expression in cancer has been shown for R-RAS [228]. A
strong association of CDH3 promoter demethylation and P-cadherin expression evident with
histological grade and invasiveness in breast cancer was observed [229]. In Stage III and IV
gastric cancer cyclin D2 activation is associated with promoter demethylation, activation of
synuclein γ is associated with progression and metastatic potential in a range of solid tumors,
and maspin expression in colorectal cancer is associated with microsatellite unstable tumors
[230–232].

Hypomethylation and overexpression of some imprinted genes, including the IGF-IIand H19
genes, are implicated in carcinogenesis [233–235].

The putative oncogene, ELMO3, is overexpressed in non-small cell lung cancer in combination
with hypomethylation of its promoter and these cancer-specific events are associated with the
formation of metastases [236].

Aberrant hypomethylation and overexpression of WNT5A may be functionally important in
the progression of prostate cancer. Along with WNT5A, S100P, and CRIP1, which have been
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previously implicated in cancer progression, are also regulated at the transcriptional level in
prostate cancer by hypomethylation [237].

Evidence is accumulating for the biological significance and clinical relevance of DNA
hypomethylation in cancer and for cancer-linked demethylation, and those seem to be highly
dynamic processes.

5. MicroRNA genes

At present, a special consideration is given to small non-coding RNA molecules (microRNA)
to their functions and involvement in human diseases. There are an extensive number of
studies that link microRNA alterations to cancer pathogenesis. MicroRNA genes encode for a
single RNA strand of about 21 to 23 nucleotides, which regulate gene expression by specifically
targeting certain mRNAs in order to prevent them from coding for a specific protein. Some
microRNA genes are mapped in chromosomal regions that undergo rearrangements, dele‐
tions, and amplifications in cancer. A growing amount of data demonstrates that microRNA
genes display a different pattern of expression in various malignancies; they are found up-
regulated or down-regulated and therefore can function either as oncogenes activating the
malignant transformation (by down-regulating tumor-suppressor genes), or as tumor-
suppressor genes blocking the malignant transformation (by down-regulating oncogenes). In
numerous types of cancers, many different microRNA have been shown to act as oncogenes,
their expression profiling presenting specific signatures associated with malignant transfor‐
mation. Cancer-associated microRNA molecules are also called oncomir (oncomiR).

The first microRNA that has been proven to act as oncogene in human cancer was miR-17/92
polycistronic cluster known as OncomiR-1, which comprises six microRNAs: miR-17, miR-18a,
miR-19a, miR-20a, miR-19b-1, and miR-92a-1 [238]. The miR-17/92 cluster is located in the locus
of intron 3 of C13orf25 gene at 13q31.3, in a region frequently amplified in several types of
lymphomas and solid tumor. It has been shown that the locus is amplified and overexpressed
in human B cell lymphomas, malignant lymphoma cell lines and in lung cancers especially
with small-cell lung cancer histology [239, 240]. Insertional mutagenesis studies using
retroviruses indicates that miR-17/92 acts as an oncogene in T cell lymphomas; it was shown
that soon after SL3-3 murine leukemia virus infection, mice developed tumors if provirus
integrates into the proximity of the gene encoding miR-17/92 cistron [241]. Moreover, other
studies uncovered that C-MYC and E2F3 gene products may induce miR-17/92 polycistronic
expression through direct binding to the cluster promoter. Two microRNAs belonging to the
cluster, miR-17-5p and miR-20a negatively regulate E2F1 activity, which confirms that the
miR-17/92 can promote cell proliferation through the exchange of E2F1 to E2F3 pro-apoptotic
proliferative [242]. Thus, miR-17/92 represents an anti-apoptotic oncogene and miR-20a
inhibition using antisense oligonucleotides can induce apoptosis after treatment with doxor‐
ubicin [243].

Along with the miR-17/92 cluster from the miR-17 family, two other paralogue miRNA gene
clusters are produced, miR-106b/25 and miR-106a/363, which possess oncogenic potential and
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are known to be involved in wide types of cancers. The miR-106b/25 cluster is located in intron
13 of the minichromosome maintenance complex component 7 (MCM7) oncogene at 7q22.1
and it contains the following three miRNAs: miR-106b, miR-93, and miR-25. Recently, findings
sustain the oncogenic potential of this cluster and reports correlate miR-106b/25 member
expression levels with processes such as tumor growth, cell survival, and angiogenesis [244,
245]. The oncogenic potential of the miR-106b/25 cluster in malignant transformation is
achieved by targeting and down-regulation of several tumor-suppressor genes such as p21,
E2F1, and PTEN [246–248]. Furthermore, other recent work suggests that in breast cancer cells,
miR-106b/25 cluster overexpression leads to overcoming doxorubicin-induced senescence and
cells become drug resistant through a mechanism that involves targeting E-cadherin transcrip‐
tional activators EP300 [249]. The second cluster, miR-106a/363, is located on chromosome X
(Xq26.2) and comprises of six miRNAs: miR-106a, miR-18b, miR-20b, miR-19b-2, miR-92a-2, and
miR-363. A series of reports indicates an oncogenic potential for members of the cluster, for
example miR-106a and miR-92-2 were found overexpressed in colon and prostate cancer and
also in leukemia and Ewing Sarcoma [250–252].

Another important oncomir is represented by miR-155 found overexpressed in several
malignancies: chronic lymphocytic leukemia (CLL), B cell lymphoma, Hodgkin's lymphoma
or Burkitt's type, and breast cancer. Some reports have shown that clinical isolates from B cell
lymphomas, including those with large cells, contain a number of copies of miR-155, about 30
times higher than normal B cells [253–256]. Also, results suggest that the pancreatic ductal
adenocarcinomas overexpression of miR-155 determined decreased levels of TP53INP1
leading to apoptosis elusion and cell growth development [257].

A promising oncomir is also miR-21, one of the most common miRNA associated with human
cancers. MicroRNA-21 high expression has been found in a variety of cancers including breast
cancer, brain malignant tumors, glioblastomas, pancreatic, colorectal, liver, gastric, lung, skin,
thyroid, ovarian, esophagus, prostate, cervical, and different lymphatic and hematopoietic
cancers [250, 258–263]. Elevated miR-21 levels have been linked to cell proliferation, apoptosis
reduction, and cell migration in neoplastic transformation; it has been found that this oncomir
targets and down-regulates a number of tumor-suppressor genes including PTEN, PDCD4,
BCL2, RECK, JAG1, HNRPK, BTG2, TGFBRII, and thus sustaining cancer's invasion and
metastasis [264, 265]. Moreover, experiments using transfection of MCF-7 cell lines with anti-
miR-21 oligonucleotide conducted to cell growth suppression in vitro and tumor growth in
vivo had an increase of programmed cell death rate [266].

Altogether, these studies illustrate a major role for microRNA genes in cancer pathogenesis
(Table 2); many of them have oncogenic activity and could represent valuable biomarkers very
useful for cancer screening or assessment of the therapeutic effects of anti-cancer treatments.

MicroRNA Cancer type miRNA function Potential targets Reference

miR-21 Glioblastoma
Increase cell growth

Inhibit apoptosis
Promote cell cycle

HNRNPK|TP63 [267]
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MicroRNA Cancer type miRNA function Potential targets Reference

Breast

- RECK|TIMP3 [268]

Increase cell growth
Increase metastasis

PTEN [269, 270]

Promote cell growth
Promote cell migration
Promote tumor growth

ANKRD46 [271]

-
PDCD4
PTEN
BCL2

[272]

Promote cell invasion
Promote metastasis

TPM1
PDCD4

SERPINB5
[265]

Cervix

Increase cell Proliferation
Inhibit apoptosis

Increase cell migration
CCL20 [273]

Promote cell proliferation PDCD4 [274]

Prostate

Promote epithelial-
mesenchymal transition

BTG2 [275]

Induce tumor
angiogenesis

Activate AKT/ERK
signaling

[276]

Increase docetaxel
resistance

PDCD4 [277]

Promote cell proliferation
Promote tumor growth

[278]

Inhibit apoptosis
Promote cell motility
Promote cell invasion

MARCKS [279]

Blood
Promote cell migration

Reduce apoptosis
Promote cell growth

PDCD4 [280, 281]

miR-221 and 222

Prostate
Promote cell cycle G1/S

transition
Increase colony formation

CDKN1B [282]

Breast

Increase cell migration
Increase cell invasion

epithelial-mesenchymal
transition

TRPS1 [283]
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MicroRNA Cancer type miRNA function Potential targets Reference

Increase tamoxifen
resistance

CDKN1B [284]

Glioblastoma Increase cell invasion TIMP3 [285]

Promote cell proliferation
Promote cell invasion

inhibit apoptosis
GJA1 [286]

Thyroid
Promote cell transition to

cell cycle S phase
CDKN1B [287]

Lung
Induce TRAIL resistance
Increase cell migration

PTEN
TIMP3

[288]

miR-155

Blood

Increase cell proliferation
Increase clonogenity

Inhibit apoptosis
HDAC4 [289]

Promote PI3K-AKT
signaling

PIK3R1 [290]

Increase cell proliferation BCL2 [291]

Reduce cell cycle arrest SMAD5 [292]

Breast

Promote cell survival
Induce chemoresistance

Inhibit apoptosis
FOXO3 [293]

Promote cell proliferation
Promote tumor
development

SOCS1 [294]

miR-17/92
cluster

Blood

Increase cell growth
Increase cell cycle G1/S

transition
CDKN1A [295]

Increase cell proliferation
Increase imatinib -
induced cell death

[296]

Suppress apoptosis PTEN [297, 298]

Retinoblastoma Promote cell proliferation p21 and p57 [299]

Colon Promote angiogenesis
TSP-1
CTGF

[300]

Breast ERa [301]

Lung

Promote cell growth
Reduce reactive oxygen

species (ROS) generation
HIF-1a [302]
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MicroRNA Cancer type miRNA function Potential targets Reference

HIF-1a, PTEN,
BCL2L11, CDKNA and

TSP-1.
[303,304]

miR-106b-25
cluster

Breast

Activate TGF-beta
signaling

Induce epithelial
mesenchymal transition
Induce a tumor initiating

cell phenotype

SMAD7 [305]

Gastric E2F1 [306]

miR-191
Liver

Promote epithelial-
mesenchymal transition
Increase cell migration
Increase cell invasion

TIMP3 [307]

Promote cell proliferation
Inhibit apoptosis

Promote tumor growth
[308]

Gastric NDST1 [309]

(Source: OncomiRDB: http://bioinfo.au.tsinghua.edu.cn/member/jgu/oncomirdb/) [310].

Table 2. OncomiRs in human cancer

6. Concluding remarks

Oncogene activation by structural alteration (chromosomal rearrangement, gene fusion,
mutation, and gene amplification) or epigenetic modification (gene promoter hypomethyla‐
tion, microRNA expression pattern) confers an increased or a deregulated expression.
Therefore, cells with such alterations possess a growth advantage or an increased survival rate.
Given the fact that expression profiling of these alterations determines specific signatures
associated with tumor classification, diagnosis, staging, prognosis and response to treatment,
it highlights the importance of studying oncogenes activation mechanisms and the great
potential that they hold as therapeutic tools in the near future.
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