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Abstract

Nanocarrier’s engineering based on fine chemical design and novel structural tailor‐
ing can provide practical solution to solve the problems in traditional cancer immuno‐
therapy. Nanoimmunotherapy is thus defined as the application and further
development of novel nanocarriers for enhancing immunotherapy. It has become one
of the most intriguing fields due to its unique power in treatment and even cure of
cancer since reported in last year. Herein, this chapter illustrates the state-of-the-art
development in antibody engineering and cancer immunotherapy and gives an ex‐
planation why functional nanocarries including micelles and liposomes can be effi‐
cient for nanoimmunotherapy. We further illustrate how to promote the
nanoimmunotherapy by the chemical design and carrier’s engineering for the first
time.

Keywords: Immunonanocarrier, antibody, nanoimmunotherapy, mAb engineering,
drug delivery system

1. Introduction

Cancer can be caused by many elements, such as bacterial infection, radiation, and genetic
abnormalities, and it is the leading cause of death all over the world. Nowadays, deaths caused
by cancer are approximately one of eight of all deaths in the worldwide. Traditional cancer
therapies such as chemotherapy, surgery, and radiation therapy have made a lot of progress
in the treatment of cancer. However, they will still cause serious side effects or death by the
damage of normal cells or organ including hepatotoxicity, cardiotoxicity, or nephrotoxicity.
The application of nanotechnology in cancer treatment, monitoring, and control of cancer is
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called “nanomedicine”, which is defined by the National Institutes of Health in USA. The
cancer therapeutic index was significantly improved by the nanomedicines.

Compared with the traditional methods of therapy, newly developed cancer therapy based on
the nanoparticles attracted extensive interest due to its unique advantages. However, there are
still some drawbacks, such as the unfavorable in vivo performance for nanomedicine and the
undesirable tumor escape in the immunotherapy. We know that in vivo performance strongly
depended on the micelles structural properties; thus, the big gap between in vitro and in vivo
can be overcome by micelles’ structural tailoring by chemical design and microstructural
tuning. In addition, this fine micelles’ engineering can also provide practical solution to solve
the problems in traditional cancer immunotherapy. In this chapter, we review the latest
development in antibody engineering, nanomedicine, cancer therapy, and nanoimmunother‐
apy. We then give an explanation why fine micelles’ engineering with a special focus on the
unique pathology of tumor microenvironments and properties of immunocells can obviously
promote the in vivo performance and improve the therapeutic index of nanoimmunotherapy.
In the chapter, we will take four parts to expound how the antibody-targeted immunomicelles
play a role in cancer treatment.

2. Antibody engineering

Cancer-targeted therapy, aiming at targeting cancer cells and protecting normal tissue, is being
developed rapidly and achieves significant improvement. One of the most significant advances
in tumor-targeted therapy is nanomedicine, defined as the application and further develop‐
ment of nanotechnology to solve problems in medicine, specifically to diagnose, treat, and
prevent diseases. [1, 2] Nanomedicines are designed to alter the pharmaceutical properties of
loaded drugs (including pharmacokinetics (PK) and biodistribution (BD), or to function as
drug reservoirs (i. e. , as sustained release systems), or both [3]). The adverse effects of
conventional chemotherapeutics can be greatly ameliorated by nanomedicines. [4, 5] Also, the
pharmacological properties of conventional drugs can be improved through the use of
nanomedicines. [6, 7] On the other hand, nanomedicines can protect the drug from premature
degradation and unfavorable interaction with the biological environment, improve the
targeting to tumors by the “ enhanced permeability and retention (EPR) effect, ” and increase
intracellular penetration. [8, 9] Recently, several nanomedicines have been approved or in
clinical trials, such as Myocet (non-PEGylated doxorubicin liposomes), DaunoXome (daunor‐
ubicin liposomes), Onco TCS (vincristine liposomes), Doxil/Caelys (PEGylated doxorubicin
liposomes), and Abraxane (albumin-bound paclitaxel nanoparticles).

Another significant advance in cancer-targeted therapy is the creation of monoclonal antibod‐
ies (mAbs) in cancer therapy. [10, 11] MAbs have been widely used alone or in combination
with other chemotherapy agents in cancer therapy. [10-12] The use of mAbs in cancer therapy
is growing rapidly due to their specific targeting to cancer cells and potent antitumor effects.
[13] Until now, more than ten mAbs have been approved for cancer therapy. [14]
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2.1. Monoclonal antibodies

MAbs are monospecific antibodies which are made by identical immune cells cloning from
the unique parent cell. MAbs are typically made by fusing myeloma cells with spleen cells of
mice immunized with antigens. The first generation of mAbs of murine origins is limited in
clinic use owing to their strong immunogenicity and weak activity to elicit antitumor immune
response. These defects are considerably overcome by the chimeric and humanized mAbs,
which contain human Fc domains and retain targeting specificity by incorporating portions of
the murine variable regions. Chimeric mAbs are generated by grafting the entire murine
regions into the human IgG framework, whereas humanized mAbs are developed by grafting
complementary-determining regions (CDRs) into the human IgG framework. [15-17] Recently,
the fully human mAbs with little immunogenicity in humans are being developed rapidly
using either phage display technology or transgenic mice. [18]

MAbs have achieved significant progress in cancer therapy. The most significant advances in
the application of mAbs to oncology have been the approval of bevacizumab (Avastin, anti-
VEGF antibody), cetuximab (Erbitux, anti-EGFR antibody), and trastuzumab (Herceptin, anti-
HER2 antibody). Bevacizumab significantly prolongs the survival of patients with metastatic
cancers of the colorectum, breast, and lungs, combined with standard chemotherapy regimens.
[19] Cetuximab achieved potent antitumor responses in patients with chemotherapy-refrac‐
tory colorectum cancer. [20] Herceptin has been shown to prolong the disease-free and overall
survival of patients with breast cancer. [21]

2.2. Immunoglobulin-like antibodies

Immunoglobulin is a protein manufactured by plasma cells and lymphocytes and character‐
istic of these types of cells. Immunoglobulins play a key role in the body’s immune system.
Antibody, also known as an immunoglobulin, is a large Y-shaped protein used by the immune
system to detect and neutralize foreign objects such as bacteria and viruses. The antibody
recognizes a unique part of the foreign target, termed an antigen. Recent gene engineering
could redesign the antibody by structure modification. After gene engineering, several
antibodies still maintain their immunoglobulin-like structure but significantly enhanced the
binding affinity or cytotoxic effects. Li et al. developed two genetically engineered tetravalent
antibodies (TetraMcAb), respectively, derived from the anti-CD20 mAbs C2B8 and 2F2. [22]
TetraMcAbs were not only effective in inducing complement-dependent cytotoxicity (CDC)
and antibody-dependent cellular cytotoxicity (ADCC) against B-lymphoma cells as native
divalent antibodies (DiMcAbs) but also had antiproliferative and apoptosis-inducing activity
markedly superior to that of DiMcAbs. Wu et al. developed dual-specific and tetravalent
immunoglobulin G (IgG)-like molecule-termed dual-variable-domain immunoglobulin
(DVD-Ig)-that can be engineered from any two mAbs while preserving activities of the parental
antibodies. [23] This molecule can be efficiently produced from mammalian cells and exhibits
good physicochemical and pharmacokinetic properties. In an animal disease model, preclinical
studies of a DVD-Ig protein demonstrate its potential for therapeutic application in human
diseases.
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2.3. Antibody fragments

In addition to mAbs and immunoglobulin-like antibodies, antibodies could also be reduced
in size, dissected into minimal binding fragments, and rebuilt into multivalent high-avidity
reagents. There are many kinds of antibody fragments. (i) The scFv is a fusion protein of the
variable regions of the heavy (VH) and light chains (VL) of immunoglobulins, connected with
a short peptide linker consisting of 10~25 amino acids. To provide flexibility and enhance the
hydrophilicity of the peptide backbone, the most commonly used linker contains a combina‐
tion of glycine and serine residues. The linker is usually rich in glycine for flexibility, as well
as serine or threonine for solubility, and can either connect the N-terminus of the VH with the
C-terminus of the VL. Despite of the removal of the constant regions and the introduction of
the linker, this engineered antibody retains the specificity of the original immunoglobulin. (ii)
Multivalent antibodies are constructed by multiple Fab or scFv. [24] (iii) Domain antibodies
(dAbs), derived from the “heavy chain” of the immunoglobulins from camels, are the smallest
known antigen-binding fragments of antibodies, ranging from 11 kDa to 15 kDa. They are the
robust variable regions of the heavy and light chains of immunoglobulins (VH and VL,
respectively). Due to the small size and inherent stability, dAbs are bioactive as monomers
and can be formatted into larger molecules, which could be created with prolonged serum
half-lives or other pharmacological activities. [25] (iv) Qiu et al. reported that the mimetics
fused by two CDRs, VHCDR1 and VLCDR3, through a cognate framework region (VHFR2)
retained the antigen recognition of their parent molecules and had a superior penetration
capacity. [26] The antigen-recognition abilities of these B3 kDa mimetics surpass those of
comparable fragments lacking the framework region. To our knowledge, these small antibody
mimetics are the smallest antibodies among all the present antibodies.

3. Finely assembled micelles for promoting antitumor therapy

Almost 40% of newly discovered drugs have delivery problems due to their low solubility,
permeability, and stability. In comparison with the traditional small molecule therapeutic
agent, nanomedicine has offered new hope for detection, prevention, and treatment in cancer
therapy because it extensively improves the solubility of poorly water-soluble drugs, [27]
prolongs the half-life of drug systemic circulation, [28] releases drugs at a controlled rate, [29]
delivers drugs in a targeted manner with little side effects, suppresses drug resistance, and
reduces the immunogenicity. [30] Nanomedicine was generally not allowed to be used for the
development of nanoscale or nanostructured materials to solve the problems in medicine via
its unique medical effects. With the rapid advances in nanotechnology, many cancer thera‐
peutic agents delivering systems have been developed based on nanoparticles, such as
polymeric micelles, polymer-drug conjugates, dendrimers, liposomes, nanopolymer compo‐
sition, and inorganic particulates with a size range of 1-1, 000 nm. Some of these products have
been introduced into the pharmaceutical market. Doxil was the first liposomal drug formula‐
tion for the treatment of AIDS associated with Kaposi’s sarcoma in 1995. [31] The polymer-
drug conjugate, Abraxane, an albumin-bound paclitaxel drug formulation, was approved by
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the Food and Drug Administration, USA (FDA) in 2005 as a second-line treatment for the breast
cancer. [32-34]

However, some major challenges are raised as the clinical test of numerous ensuing nanome‐
dicine products. The obvious drawbacks are the in vivo instability[35] and the fast clearance
from the blood by the reticuloendothelial system (RES). [36] The most widely used strategy
overcoming the instability is covering the carrier’s with some hydrophilic polymers such as
poly(ethylene glycol) (PEG) or poly(vinylalcohol) (PVA). Nanocarriers linked with highly
hydrated flexible PEG successfully escaped from the RES. [37] The PVA coating also improved
the particle’s stability. However, it should be a commonsense that introducing too much
adjuvant into the body resulted in the undesirable toxicity. Moreover, the size, structure, and
surface electronic properties of the formulations were changed resulting in unfavorable
therapy index. On the contrary, the micellar system mainly including the polymeric micelle
and phospholipid micelle has successfully overcome the above drawbacks because these
spherical nanoparticles have simple structure and no adjuvant. The lipid based micelles show
high potential in the doxorubicin entrapping. [38] However, its intrinsic phospholipid
structure resulted in the untunable micellar structure with D > 100 nm, which considerably
limited the intratumor accumulation. Additionally, drug release from conventional liposome
formulations is quite limited once these particles reach the tumor. [39]

Fortunately, the nanosized polymeric micelles (10-100 nm in diameter) self-assembled from
amphiphilic block copolymers can significantly improve the hydrophobic drug solubility in
the core via the similar-to-similar interaction. The micelle possesses well-defined hydrophobic
core and hydrophilic corona structure in aqueous media. [40] On the other hand, the densely
packed corona forming hydrophilic polymer chain can protect micellar system from the RES
by reducing the interaction with serum proteins and renal filtration. [41] In comparison with
lipid-based micelles, block copolymeric micelles provide a unique and powerful nanoplatform
for anticancer drug delivery. The size of polymeric micelles can be easily tuned by varying the
block lengths of the amphiphilic copolymer. It is also easy to modify micellar surface via the
functional shell forming polymer. Both the tunable size range and the tailorable structure
successfully reduce the renal filtration and obviously enhance tumor penetration. Some
nanosized micelles such as PEG-PLA/PCL or PEG-PPO-PEG have significantly improved the
in vitro /vivo application. Several polymeric micellar formulations are currently undergoing
phase I/II clinical trials, which have shown significant antitumor efficacy and reduced systemic
toxicity. [40, 41]

It is known that the endothelial cells of the tumor blood vessels proliferate at a 30- to 40-fold
higher rate than those in normal tissues, which results in the larger endothelial cells gaps
(200-700 nm, or sometimes even larger, up to 1. 2 μm) than 7 nm in the normal tissue. [42]
Additionally, the high metabolism of tumor cells requires much more oxygen, nutrients, gas
exchange, and waste removal. However, the heterogeneity structure and distribution of the
tumor blood vessels as well as the blood capillaries slow down the energy exchange between
intra- and extratumor. All these result in unique characteristics of tumor, that is, the unnormal
tumor blood vessels with gap in 200-700 nm, [43] the relative high temperature of tumor (T >
37°C), [44] and the relative low pH (5∼6). In order to further improve micellar delivering
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profile, including the lesion’s accumulating, cellular uptake, and intracellular release, many
new stimulate-responsive micelles were extensively investigated with special focus on the
tumor microenvironment. Utilizing the lower pH value in solid tumors and endosomes (5. 5),
Kataoka’s group explored the novel multifunctional pH-sensitive doxorubicin-conjugated
PEG-p(Asp-Hyd-DOX) copolymer micelles. The pH linker broke as pH <6. 0 ensued a sustain
release. [46] An enhanced accumulation in lung and colon tumors of the micelle-forming PEO-
PAsp (ADR) conjugates after 24 h (ca. 10% dose per g tumor) was much higher than the free
ADR (ca. 0. 90% dose per g tumor). Later, they further investigated the pH triggered intracel‐
lular release profile of poly(ethyleneglycol)-poly(aspartate hydrazone adriamycin) micelles
and observed that the micelles can stably circulated in physiological conditions (pH 7. 4) and
selectively release drug by sensing the intracellular low pH (pH 5-6). In vitro and in vivo
studies show that the micelles had a good pH-triggered drug release capability, tumor-
infiltrating permeability, and effective antitumor activity with extremely low toxicity. [45, 46]
Okano’s group used the temperature-sensitive poly(N-isopropylacrylamide) (PNIPAM) to
investigate the cellular uptake of bovine carotid endothelial cells. As T>LCST, the cell uptake
was significantly enhanced. In addition, the LCST of such PNIAPM can be tuned to ∼39°C by
introducing some hydrophilic monomer into the chain backbone. Thus, the system can
shabbily circulate at 37°C but be disassociated as T approaching to 39°C. This PNIPAM was
designed to enhance the intracellular release because the cargo structure was disrupted as
phase transition. [47, 48] The oxidative condition in the extracellular medium and reductive
conditions in the tumor was used to enhance intracellular release. For example, the bioredu‐
cible PEG-SS-P[Asp(DET)] micelles bearing the disulfide bridge showed both 1-3 orders of
magnitude higher gene transfection efficiency and a more rapid onset of plasmid DNA release
than micelles without disulide linkages. [49] Feng’s group recently developed a micellar
system containing a functional polymer of D-α-tocopheryl polyethylene polyethylene glycol
succinate (Vitamin E TPGS or TPGS), which stabilized the micelle and further promotes
synergistic effects with the encapsulated drug. [50] This is a novel micellar system. The
formulation formed by folic acid-conjugated D-α-tocopheryl polyethylene glycol succinate
2000 (Vitamin E TPGS2k) micelles successfully suppress the tumor cell growth. [51] For
improving the therapeutic effect, some other intelligent micellar systems such as light respon‐
sive poly(methacrylate) and poly(acrylic acid) (PAzoMA-PAA) micelle were developed. This
trans-cis photoisomerization of the azobenzene group improved drug release. [52] In addition,
the polymeric micelles conjugated tumor targeting V3lig-and cyclic-(arginine-glycine-aspartic
acid-D-phenylalanine-lysine) (cRGDfK) to DOXO-loaded polyethylene glycol-polycaprolac‐
tone (PEG-PCL) micelles greatly enhanced internalization of the micelles through receptor-
mediated endocytosis. [53]

These significant advances in intelligent block copolymer micelles have dawned upon a new
era for nanomedicine. However, for translating an optimal micelle to clinical practice, there is
still a big gap between in vitro and in vivo for lacking of understanding of the correlation
between tumor unique characteristics (needs) and micellar physical chemistry properties
(seeds). It is helpful to know that the micellar in vitro/vivo performance is strongly affected
by its physical chemistry properties such as composition, dimension, microstructure, and the
intelligent properties. The driving force for self-assembly is the strict solubility difference
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between the hydrophobic and the hydrophilic blocks as described by the Flory-Huggins
parameter.

4. Immunoliposome

Although liposomes have already achieved significant advance, antitumor activity could be
further ehanced for liposomes through ligand-mediated targeting. For liposomes, the ligands
would promote the selective binding and facilitate the intracellular delivery. The most
commonly used ligands include mAbs or antibody fragments, folic acid, or receptor ligands.
[54-59] MAbs or their derivatives (e. g. , Fab fragments, single-chain variable fragments (scFv))
are often adopted as the targeted ligands in LTLs. LTLs decorated with mAbs or their deriv‐
atives are termed as immunoliposomes. Immunoliposomes can be used to deliver various
drugs, like chemotherapeutics, gene, or protein drugs, and significantly improve the thera‐
peutic efficacy of conventional strategies in cancer. [60-64] When conjugated with antibodies
as targeting ligands, immunoliposomes can target tumor cells with high specificity and
affinity, resulting in significantly improved antitumor activity over untargeted liposomes. [65]
The development of immunoliposomes, which perfectly combine antibody engineering and
liposomes, is becoming a possible state-of-the-art in liposome research. This review discusses
the recent development and therapeutic effect of immunoliposomes in cancer therapy. This
review includes the following sections: antibody engineering, antibody conjugation strategies,
therapeutic potential of immunoliposomes in cancer, challenges, and future perspectives of
immunoliposomes.

4.1. Conjugation of thiolated antibody with liposomes

The most common conjugation strategy employs the reaction between thiol functions and
maleimide groups, which form thioether bonds. This strategy consists of two steps. First, after
reaction with traut’s reagent (2-imiothiolane), the antibodies modified with free sulfhydryl are
obtained. [66] Alternately, antibodies reacts with the heterobifunctional crosslinking agents
such as N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP) or succinimidyloxycarbonyl-
α-methyl-α-(2-pyridyldithio) toluene (SMPT). Once modified with SPDP or SMPT, antibodies
are treated with dithiothreitol (DTT) and form the free sulfhydryl. [67, 68] Also, antibodies
react with the heterobifunctional crosslinking agents such as N-succinimidyl S-acetylthioace‐
tate (SATA), S-acetylmercaptosuccinic anhydride (SAMSA), or succinimidyl acetylthiopropi‐
onate (SATP). [69-71] Once modified with SATA, SAMSA, or SATP, antibodies are treated with
hydroxylamine and form free sulfhydryl. Second, thiolated antibody bearing the free sulf‐
hydryl reacted with maleimide groups on the liposomes, and the resultant liposomes conju‐
gated with antibodies were obtained. Attachment of antibodies to liposomes via a disulfide
linkage A disulfide bond formed by two thiols is easily obtained. However, the disulfide bond
is relatively unstable under reductive conditions. Thiolated antibodies could react with the
pyridyldithio moiety of the anchor (PE-PDP) to form a disulfide linkage. This coupling strategy
achieved efficient conjugation of antibodies to liposomes without denaturation of antibodies.
[72-74]
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4.2. Crosslinking between carboxylic acid on liposomes and the ligand

Antibodies could be conjugated to the liposomes by an amide bond using the membrane-
anchored lipid functionalized with carboxylic acid end groups. This conjugation commonly
used distearoyl-N-(3-carboxypropionoyl poly(ethylene glycol) succinyl) phosphatidyletha‐
nolamine (DSPE-PEG-COOH) offering carboxylic acid groups at the distant end of surface-
grafted PEG chains as the membrane-anchored lipid. [75, 76] In the coupling reaction, 1-
ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) and N-hydroxysulfosuccinimide
(NHS) are usually used to form an acyl amino ester, which subsequently react with the primary
amine of the ligand, yielding an amide bond. Suzuki et al. prepared liposomes conjugated with
transferrin specific for transferrin receptor overexpressing solid colon 26 tumor cells, and the
results indicated that the immunoliposomes recognized and bound specifically to target cells
in vivo.

4.3. Antibody conjugation with Liposomes via a hydrazone bond

Antibodies can be covalently bound to hydrazide groups of the liposomes through their
carbohydrate moieties to form a hydrazide bond. In the conjugation strategy, the carbohy‐
drates groups on the constant region of the heavy chain of the antibody are oxidized by sodium
periodate to produce reactive aldehydes, which form hydrazone linkages with the hydrazide
groups on the PEG-terminus. [77, 78] It is has to be noted that the oxidation reaction should
be performed in mild conditions to avoid the loss of antibody activity. The antibodies are
correctly orientated on the surface of the liposomes because only the Fc region is involved in
the conjugation reaction and the antigen binding site are protected. Furthermore, this conju‐
gation strategy avoids the recognition of the immunoliposomes by the macrophages, resulting
in longer circulation time of immunoliposomes.

4.4. Crosslinking between primary amines on liposomes with the antibody

Direct amine-amine crosslinking has also been investigated in antibody conjugation. [79] In
the conjugation, two homobifunctional crosslinkers including glutaraldehyde and suberimi‐
date are used, and no prior modification is required to add functional groups to the antibody.
Briefly, the primary amine of phosphatidylethanolamine of the liposomes is firstly activated
using the crosslinkers and subsequently conjugated to the antibody. It is reported that almost
60% of the antibodies were coupled to the liposomes, and these conjugated antibodies still
retained their binding affinity. However, this conjugation strategy was rarely applied because
the uncontrollable homopolymerization of antibodies or liposomes would happen during the
crosslinking reaction.

4.5. Noncovalent methods for antibodies conjugated with liposomes

A noncovalent technique is an alternative means to for antibody conjugation to liposomes. The
unique advantage of a noncovalent technique is easy and rapid performance without the need
of aggressive reagents. For example, simply mixing antibodies and phospholipids during the
preparation of the liposomes would achieve the binding of antibodies to the liposomes. [80]
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However, the disadvantages of the noncovalent technique are obvious. The conjugation
efficiency of antibodies is relatively low and liposome aggregation would happen. Further‐
more, the amount of antibody conjugated to the liposome is not easily controllable, and the
correct orientation of the antibodies is not guaranteed. Finally, conjugated antibodies are not
stable and may detach easily. Thus, due to the weak interaction between the liposome and the
antibodies, the noncovalent technique has not been widely used. However, it is noteworthy
that one noncovalent technique, which uses the binding between streptavidin and biotin for
attachment of antibodies to liposomes, is an exception. The binding of streptavidin to biotin
is simple, highly stable, and reproducible; thus, the attachment of antibodies to liposomes
using such a strategy is rather favorable and promising. [81] Generally, two strategies of
antibody conjugation use the streptavidin-biotin interaction.

First, the streptavidin-modified antibodies were conjugated to the anchor lipid DSPE-PEG-
biotin. The immunoliposomes redirected the biodistribution of entrapped drugs and showed
specific targeting to the targeted organ overexpressing specific antigens, leading to significant
accumulation in the targeted organ. [82] Second, the biotinylated antibodies were incubated
with the targeted cells overexpressing specific antigens. Then streptavidin was added,
followed by biotinylated liposomes. The results showed that the liposomes specifically bound
to the targeted cells coated with antibodies but not to the control cells, which do not express
the specific antigen. [83]

5. Well-defined nanocarrier’s engineering for immunotherapy

Various immune cells such as B cells, T-lymphocytes (TL), and dendritic cells (DCs) are
retained to the tumor. The modification of host immune system and/or the utilization of
components of the immune system for cancer treatment are called immunotherapy, which
mainly contains the active and passive form. Passive immunotherapy is to supply high
amounts of effector molecules such as tumor-specific monoclonal antibodies (mAbs) to
complement the immune system. Active immunotherapy is the utilization of humoral and/or
cytotoxic T-cell effector mechanisms of the immune system following vaccination, namely, the
cancer vaccines. This method can simultaneously activated antigen presenting cells (APCs),
CD4+ T cells, CD8+ T cells, B cells, and innate immune cells, for example, granulocytes and NK
cells. DCs are the most specialized and important APCs, which are responsible for an adaptive
immune response. [84] Vaccines based on lipid-based nanocarriers can not only promote the
accumulation in DCs in tumor-bearing hosts but also has a profound effect on DC function.
[85] Poly(D, L-lactic acid-co-glycolic acid) (PLGA) nanoparticles carrying cancer-associated
antigen (MUC1 mucin peptide: BLP25) and mouse-specific peripheral lymphocyte antigen
(MPLA) obviously promoted native T-cell activation in normal and MUC1-transgenic mice.
[86] The efficiency of vaccination strongly depends on tumor-specific antigens (TSAs) and
vaccine delivery system. Polymeric nanoparticles attract extensive interest due to their facilely
tunable composition, tailorable structure, unique intelligent properties, and high potential in
cancer immunotherapy (i. e. , the nanoimmunotherapy).
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Immunotherapy cannot only kill tumor cells in a specific manner but also alert the immune
system to eradicate the disseminated tumor cells in blood circulation and micrometastases in
distant organs. [87, 88] However, tumor cells can survive when they either maintain chronically
or immunologically sculpt by immune “editors. ” This well-known “immunoediting” refers
to the elimination, equilibrium, and escape. [88] The new populations of tumor variants may
eventually evade the immune system and escape from host immune surveillance by a variety
of mechanisms including loss of MHC-I, adhesion molecules, tumor-associated antigens
(TAAs), generation of regulatory T-(Treg-) lymphocyte, expansion of myeloid-derived
suppressor cells (CD11b+ Gr-1+ cells, MDSCs), immunosuppression, blocking of NKG2D-
mediated activation, and apoptosis induction of antitumor effector cells. [89, 90] Tumor-
specific immune activation and nonspecific immune activation have been applied for
overcoming such tumor escape. The tumor-specific immune responses are teaching the
immune cells to recognize tumor cells specifically. B cells secrete antigen-specific antibodies
that recognize, bind, and help to destroy the targets with the help of the CD4+T cells. CD4+ T
cells recognize the antigens presented by MHC-II molecules and then stimulate B cells to
produce antibodies to that specific antigen. Such antibody-coated cancer cells recognized and
killed by NK cells, macrophage, and activated monocytes are called antibody-dependent cell-
mediated cytotoxicity (ADCC). The nonspecific immune activation strategy mainly utilizes
the cytokines (IL2 and IL8), the interferons (IFN-α, β, and IFN-γ), and the Toll-like receptors
(TLRs) for trigging DC maturation, stimulating proliferation of CD4+ and CD8+ T cells and
modulating the suppressive function of regulatory T cells (Treg cells). [91] Treg cells suppress
TAA-specific immunity by inhibiting TAA-specific priming in tumor draining lymph nodes
and further recruiting into the tumor microenvironment. [92] Thus, depletion, blocking, and
tracking Treg cells in tumors or reducing their differentiation and suppressive mechanisms
represent new strategies for cancer treatment. It was known that the knockdown of transcrip‐
tion factor Foxp3 gene in mature Treg cells resulted in the loss of their suppressive function.
[93] However, the transfection efficiency is very low. The newly developed novel carbon
nanotubes (CNTs) can enhance the transfection of Treg cells. [92] The PLGA nanoparticle
(PLGA-NP) carrying murine melanoma antigenic peptides hgp10025−33 and TRP2180−188 can also
induce cytotoxic T lymphocyte responses against tumor-associated self-antigens in C57BL/6
mouse. [94]

Thus, finely engineering nanocarriers from homopolymers, copolymers, and lipids with high
loading and transferring efficiency, site-specific targeting to immune cells, high in vitro/vivo
stability, and intelligent responsive to tumor microenvironment show high potential in
nanoimmunotherapy. [95, 96] Tumor microenvironment is the main battlefield for tumor
escape and immune system activation. As shown in Figure, the high proliferation and
metabolism of tumor endothelial cells resulted in the unique properties of tumor microenvir‐
onment, including large endothelial cells gaps (200-1000 nm), the relative high temperature
(T>37°C), low pH (5∼6), lacking lymphatic nodes, and lymph vessels. [97] This unique
pathological condition of microenvironment offers challenges for novel nanocarrier’s engi‐
neering. Based on the self-assembly mechanism, well-defined micelle and vesicle with surface
targeting decorating were finely engineered. [98] We found that the temperature-regulated
passive and mAb-tuned active dual targeting immunomicelles significantly enhanced
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intratumor accumulation and cellular uptake. The nanostructure and the dimension were also
tailored to match the large endothelial cells gaps in tumors with enhanced permeability and
retention (EPR). [86] The extracellular pH is ∼7. 4, but the pH in the endosome and microen‐
vironment is ∼6. 0. This value is still lowered to ∼5. 0 in the lysosome. The hydrolysis rates of
polyester such as polylactic acid, polyglycolic acid, and their copolymers can thus be tuned
for endosomal and/or lysosomal delivery. [99] Additionally, the endosome is reductive, but
the lysosomal is oxidative. This difference is very important for spatial delivery antigens for
MHC presentation. The antigens for MHC class I pathways must be available in cytosol,
whereas those for MHC class II molecules must be present in endolysosome. The finely
engineered lipids with protein antigens in nanovesicle core and lipid-based immunostimula‐
tory molecules in the walls successfully elicits endogenous T cell and antibody responses,
which showed rapid release adjuvants in the presence of endolysosomal lipases. [100] Some
danger signals (adjuvants) for APC activation are present on the plasma membrane. So
nanocarriers engineered from polycations such as polyethyleneimine (PEI) or its graft
copolymers (Figure) hold favorable effect on membrane destabilization by the “proton-
sponge” effect, which can also control the endosomal release. [101] Both structural defects and
fibrosis of the interstitial matrix result in poor/dysfunctional T-cell priming in tumor micro‐
environment. However, the forced expression of the tumor necrosis factor (TNF) can induce
naive T-cell priming. Thus, delivery stimulator such asCD80, interleukin-4 (IL-4), and cyto‐
kines by intelligent nanocarriers to tumor microenvironment can produce T-cell priming with
the microenvironment reversion. [102]

DCs appear in most peripheral tissues where antigens typically first encounter the immune
system. Immature DCs phagocytose the encountered antigens followed by the activation,
maturation, and migration to draining lymph nodes. They present antigens to their cognate
naive T-cell partners and instruct the anergy, tolerance, or immunity. Then the antigen-specific
T-cell immunity is initiated. Noted here is the timing at which antigen and adjuvant reach DCs
is crucial. If the maturation stimulus is too late, tolerance will be induced. If the antigens reach
mature DCs, they will not be efficiently presented. The intelligent responsive polymer carriers
can be finely designed to regulate the antigen’s communication with DCs. Some lipids had
successfully been used to promote the lymphatic trafficking and endue the DCs mutation.
[103] The DCs preferentially take up smaller particles with size similar to viral (∼20 nm),
whereas macrophages ingest the large particles with size around bacterial. It is also worth
mentioning that PLGA-NPs (500 nm) are more effective than microparticles (∼2 nm) in
stimulating CTL responses. The DC’s phagocytosis is also affected by nanoparticle’s surface
charge. [104] Cationic particles are particularly effective for uptake by DCs and macrophages
due to that the ionic attraction increases the particle binding and internalization. Above-
mentioned nanocarrier’s size, microstructure, charge, and intelligent properties can be facilely
engineered by tuning polymer composition and particle formation process. In addition,
specific DC-specific antibodies such as anti-CD11c and anti-DEC205 can enhance nanocarrier’s
accumulation in DCs. The PLA nanoparticles loaded dacarbazine (DTIC) decorated with
TRAIL-receptor2 (DR5) mAb (DTIC-NPs-DR5) showed high internalization by DR5-overex‐
pressing metastatic melanoma and chemo-immunocooperative therapeutic effects. [105] Based
on our understanding of the molecular mechanism of immunoescape and the physiologic
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conditions of tumor, the nanocarriers in nanoimmunotherapy should be further finely
engineered with well-defined dimension, intelligent properties, specific targeting, advance
lymphatic imaging, and precisely intracellular release for optimizing the therapeutic index.
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