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Abstract

The unique optical, magnetic, and electronic properties of metal nanoparticles (NPs)
give rise to photothermal, therapeutic, and electronic device applications, correspond‐
ingly. On the other hand, the limited range of the properties of simple spherical metal
NPs has complicated their ability to function in many of these applications. Therefore,
this chapter starts by reviewing a specific type of NP that can be classified into three
main groups: silica coated with metal (silica@metal) NPs, metal coated with silica
(metal@silica) NPs, and other similar forms of core@shell structures. The objective of
this review is to introduce the concept of multi-responsive core@shell nanoparticles.
More specifically, this chapter highlights "smart" core@shell composite NPs having
multiple response mechanisms (e.g., temperature, light, and/or an applied magnetic
field) due to the ability of these systems to perform a task by remotely responding to
stimuli. Additionally, hydrogel-coated metal@silica NPs, with the ability to store
drugs in a mesoporous silica (m-silica) interlayer, are examined because these nano-
materials potentially provide substantial advantages for carrying cargos to targeted
sites. To demonstrate this capability, we examine recent research that provided initial
tests of composite NPs with a pH- and temperature-responsive hydrogel coating, in‐
cluding the application of an underlying m-silica interlayer to improve the capacity of
these NPs to load and release small molecules.

Keywords: Nanoshells, core@shell nanoparticles, surface plasmon resonance, smart
multi-responsive nanoparticles

1. Introduction

Metal nanoparticles (NPs) provide optical, magnetic, and electronic properties which are
different from the corresponding bulk metal materials, leading to photothermal, therapeutic,
and electronic device applications, respectively. Recent research efforts have explored NPs
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having complex compositions with controllable sizes and morphologies. Special attention has
been given to metal NPs for use as optical materials (i.e., using palladium [1, 2], silver [3-12],
copper [13-18], and particularly gold [19-31]). This is due to the ease of fabrication of these
metal nanoparticles and their unique physical properties [32-34], such as the ability to absorb
or scatter light [25, 35, 36]. However, the narrow scope of simple spherical metal NPs’ optical
properties has limited their use in practical applications. Thus, investigators have pursued
new classes of nanostructured materials such as triangular prisms [37-40], disks [41, 42],
nanorods [43-46], nanocubes [47-51], and NPs coated with a shell (core@shell NPs) [52-58], to
overcome the restrictions on the optical properties associated with simple spherical metal NPs.
Among these, core@shell NPs represent a promising nanoscale tool for biomedical research
[59-63]. A number of metals have been used as the shell for these NPs (as detailed in Table 1),
but silica has proven to be the favorite core for such structures [64-76].

Core@Shell Nanoparticles References

gold@silica
silver@silica
palladium@silica
gold alloy@silica

[57, 64-68]
[54, 69-73]
[53, 74]
[53, 54, 75, 76]

Table 1. References for core@shell nanoparticles with silica cores and metal shells.

Recent research has also centered on the capacity of core@shell NPs containing metal/metal
oxide cores to respond to an external stimulus (e.g., a magnetic field or near IR light) and to
affect their local surroundings, resulting in their use in diagnostic, therapeutic, and drug
delivery applications utilizing either a polymer coating or a more complex shell design [77-80].
The development of these more sophisticated NP structures has been presaged by a number
of simpler particle architectures.

2. Types of Core@Shell nanoparticles

Core@shell NPs can be categorized according to their material properties (e.g., dielectric,
semiconductor, etc.) and form (e.g., single-layered shell, multilayered shell, etc.). In this
chapter, the core or shell materials in a core@shell NP are considered in terms of their consti‐
tution or shape. For this report, the core@shell NPs of interest are classified into three main
groups: (i) silica@metal NPs; (ii) metal@silica NPs; and (iii) other forms of core@shell NPs.

Silica@Metal Nanoparticles. Since the publication of the "Stöber Method" of preparing silica
particles, various metals and metal oxide shell materials have been deposited on silica spheres
[81]. Because of the unique qualities of gold, silica-based core@shell NPs with gold as the shell
material became the focus of efforts to produce the first of these structures in the late 1990’s [64,
68, 82]. A gold coating on the silica core provides improved biocompatibility, photonic energy
absorption, catalytic properties, chemical stability, bio-affinity (through greater diversity in
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the functionalization of the surface), and tunable optical properties [64]. Similar to the size-
dependent color of pure gold NPs, the optical response of gold nanoshells (GNSs) depends
dramatically on the relative size of the core NP as well as the thickness of the gold shell [67,
83]. Importantly, the surface-enhanced Raman scattering (SERS) activity of GNSs can be
increased or decreased by decreasing or increasing the thickness of the gold shell material [84,
85]. By adjusting the relative core size and shell thickness, an intense light absorption associ‐
ated with the gold in the GNSs can be varied across a broad range of the optical spectrum,
spanning the visible and the near-infrared spectral regions. This phenomenon is known as
surface plasmon resonance (SPR) and its impact upon the extinction spectra of GNSs is
illustrated in Figure 1 with regards to changes in shell thickness.

Figure 1. Illustration of the optical resonances of various sizes of silica@gold composite particles (gold nanoshells) as a
function of their shell thickness. Reproduced with permission from reference [67].

The development of these gold shells has been followed by a number of alternative metal and
metal oxide coatings, broadening the number of applications for such core@shell structures
[53, 54, 69, 74]. These data indirectly indicate that GNSs with a silica core (SiO2@Au NPs) may
be useful for biomedical imaging, cancer treatment, and optical materials in future applications
owing to the ability of certain wavelengths of light to penetrate human tissue.

Metal@ Silica Nanoparticles. Using a silica coating as the shell on a metal core to form NPs with
core@shell architectures offers several benefits. First, a silica shell diminishes the bulk metal
conductivity and improves the chemical and physical stability of the core component [86].
Second, silica particles produced via the Stöber Method have been shown to be chemically
biocompatible [87, 88]. And silica can be used to block the core surface from making contact
with a biological environment without disrupting key phenomena involving the core surface,
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such as light absorption. This is an important feature for metals/metal oxides that have been
shown to be cytotoxic. Third, the silica coating can be used to modulate the position and
intensity of the surface plasmon absorption band due to both the optical transparency of silica
at technologically important wavelengths of light and the shift in these bands associated with
a small change in the metal's optical properties because of the material in contact with their
surfaces [89]. And the fourth point is that an outer silica shell on a metal nanoshell can help
stabilize the metal shell when it is generating intense localized heat in response to intense light
absorption [90, 91]. Therefore, scientists have recently focused more on silica coatings as a shell
for a variety of core materials such as metals [92-99] and metal oxides [100-103], than on any
other material. Many research groups have investigated the use of silica on coinage metals
such as gold [92, 93] and silver [98]. Silica-coated gold or silver NPs are synthesized by using
a slightly modified Stöber (or sol-gel) Method. The resulting coating does not interfere with
the intensity of the light absorption for targeted wavelengths, and only produces a minor shift
in the absorption band toward the higher wavelength region, as compared to an uncoated NP,
as shown in Figure 2 [104]. This coating method has been adjusted further to control the
uniformity of the thickness of the silica layer on gold NP cores [105].

Figure 2. UV-visible absorption spectra of aqueous dispersions that contained gold@silica NPs with different shell
thicknesses (t). The gold cores were 50 nm in diameter for all samples. Reproduced with permission from reference
[104].

Figure 2 provides the absorption spectra of aqueous dispersions of gold@silica (Au@SiO2) NP
colloids with different shell thicknesses. The characteristic surface plasmon peak of the core
of these NPs is ~528 nm before adding the silica coating to the gold cores. After coating with
silica, the metal’s plasmon peak red-shifted to ~540 nm. This is because the refractive index of
silica (n = 1.52) is slightly higher than that of water (n = 1.31), the solvent used to suspend the
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nanoparticles for collecting spectroscopic data [106]. The optical intensity of these Au@SiO2

NPs was increased correspondingly when thicker silica shells were created. But the specific
positioning of this peak was not sensitive to the change in the silica coating thickness.

In the report by Lu et al. referenced above, the silica-coated gold NPs were assembled into
ordered arrays [104]. The transmission spectra collected from these lattices of Au@SiO2 NPs
are shown in Figure 3. All samples were wet with the hollow spaces between NPs being
completely filled with water, when these spectra were measured. The incident light was kept
vertical to the (111) planes of these face-center-cubic lattices (Au).

Figure 3. Transmission spectra taken from the arrays produced from Au@SiO2 NPs with different shell thicknesses (t).
The incident light was perpendicular to the (111) planes of these face-center-cubic crystalline lattices for all measure‐
ments. The gold cores were 50 nm in diameter for all samples. Reproduced with permission from reference [104].

These transmission spectra show two peaks resulted from the surface plasmon resonance of
the gold core NPs around ~540 nm and the Bragg diffraction of each opaline lattice. Depending
on the changes in the silica shell’s thickness, the position of the Bragg diffraction peak varied.
For example, the Bragg diffraction peak overlapped with the surface plasmon resonance band
when the silica shell was 70 nm in thickness, as shown Figure 3. In this case, only one broad
absorption peak was observed at ~540 nm.

Figure 4 demonstrates the reflection spectra acquired from the surface array of Au@SiO2 NPs.
All samples were wet with the hollow spaces between NPs being completely filled with water
when these spectra were measured. The incident light was kept vertical to the (111) planes of
these face-center-cubic lattices (Au).

For the reflectance spectra, the Bragg diffraction features were the only peaks detected, and
they aligned with the features in the transmission spectra. Additionally, the peaks in Figure
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4 associated with particles that possessed various shell thicknesses, were narrow and well-
resolved. This shows that such core@shell nanoparticle arrays provide two pathways for
modulating their interaction with light. Liz-Marzan et al. also recently illustrated the fabrica‐
tion of 3D crystalline lattices from Au@SiO2 NP colloids; however, these authors failed to
provide similar optical characterization [95]. Above all, the spectra displayed in Figures 2, 3,
and 4 provide perspective regarding the potential for utilizing the optical properties of
Au@SiO2 NP colloids, and their crystalline lattices.

To tune the shell thickness from 20 to 100 nm, the experimental parameters (e.g., coating time
and concentration of reactants, catalyst, or other precursors) can be precisely and systemati‐
cally controlled. Li et al. demonstrated how the shell thickness for Ag@SiO2 NPs can be tuned
by controlling certain parameters, the molar volume ratio of water to surfactant, R (R = [water]/
[surfactant]), and the molar volume ratio of water to TEOS, H (H = [water]/[TEOS]) [98]. The
manipulation of these parameters provides control over the availability of water molecules for
the hydrolysis of TEOS (tetraethyl othosilicate).

Other researchers have developed the magnetic properties of alternative silica-coated cores
(e.g., Fe, Ni, Co, and alloyed metal compounds) to be used in the presence of external magnetic
fields for the improvement of bio-imaging, biological labeling, information storage, catalysis,
etc. [101, 107-109]. Magnetic NPs can be easily synthesized by using wet chemical processes
in aqueous systems, but there is a disadvantage; the difficulty of making a stable dispersion
of these NPs for use in aqueous environments or biological systems. To resolve this restriction,
a silica-coating on the magnetite core NPs offers excellent dispersion and improved biocom‐
patibility [110]. More recently, magnetic NPs formed from different core and shell magnetic

Figure 4. Reflectance spectra taken from the arrays produced from Au@SiO2 NPs with different shell thicknesses (t).
The incident light was perpendicular to the (111) planes of these face-center-cubic crystalline lattices for all measure‐
ments. The gold cores were 50 nm in diameter for all samples. Reproduced with permission from reference [104].
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materials have been reported [111]. These unique core@shell structures allow the magnetic
properties of the resulting assembly to be more precisely tuned through the choice of magnetic
materials and the dimensions of the component parts.

Other Forms of Core@Shell Nanoparticles. Various shaped core@shell NPs have proven to be
similarly important in research because of their potential applications in the fields of catalysis
[112], nanoelectronics [113], information storage [114], and sensors [115]. To synthesize these
variously shaped core@shell NPs, researchers have employed a soft or hard core NP template
particle to establish the physical shape [116, 117]. The most familiar examples are the use of a
firm core NP of a specific shape as the template. Therefore, a soft shell material on a rigid core
NP is deposited evenly to present a core@shell NP resembling the shape of the template core.
Researchers synthesize core NPs through careful control of the reaction parameters, a process
that relies upon controlled crystal growth using surfactants to manipulate the resulting
structure [113, 116]. Examples of the types of shapes that can be made (cubic, cuboctahedral,
and octahedral) are shown in Figure 5 [113]. These specific examples are Cu@Cu2O NPs and
such shaped NPs can be synthesized on a similarly formed core by electro-deposition with a
free capping agent.

 

 
Figure 5. SEM images of Cu@Cu2O NPs in the form of a) cubic, b) cuboctahedral, and c) octahedral shapes. Repro‐
duced with permission from reference [114].

The fitness of the coating of the shell material can be impacted by the shape of the core NP or
the nature of the materials used. This means that the production of a uniform coating might
be reduced with shape distortions from spherical or when the material used to form the shell
reacts with the core material [118]. In the case of the octahedral gold@platinum NPs, the shell
material is incompletely coated on the octahedral core because there is an incomplete reduction
of the salt by the core material. Additionally, in some bimetallic "core@shell" structures, the
shell is formed by a reduction-transmetalation process which fails to produce a distinguishable
shell [119]. On the other hand, with the example given above, a spherical core can be more
completely coated with a shell material due to a more perfect reduction of the salt and a more
uniform exposure of the metal core surface in solution. These examples highlight the impor‐
tance of the choice of materials used to prepare core@shell composite NPs.
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3. Smart, multi-responsive Core@Shell nanoparticles

The development of a stimuli-responsive composite nanoparticle requires an efficient trigger
mechanism. One such trigger is the heat generated by the light absorption of metal nanostruc‐
tures. The optical properties of GNSs can be specifically controlled to maximize the absorption/
scattering of light in the wavelength range of 700 to 1000 nm [64, 83]. This is advantageous
because light at wavelengths between 800 nm and 1200 nm, a range called the "water window",
can penetrate human tissue, enabling its use in biomedical applications [59]. Several studies
have pursued the use of this technology in combination with mesoporous silica shells that can
carry model drugs. This drug carrying capacity exists in part because of the large pore volume
in the etched silica surface, a feature that is tunable to achieve a specific mesopore diameter
(2-50 nm). However, mesoporous silica nanoparticles by themselves are not "smart" materials
because these NPs cannot release drugs in a precise and controlled manner at a specific location
(i.e., they have irreversible pore openings). To overcome this drawback, our research group
has explored the growth of a stimuli-responsive hydrogel polymer coating on gold nanoshells
that can release a model drug upon the collapse of the hydrogel matrix. These hydrogel
polymers are very useful materials in a variety of applications such as drug delivery, chemical
separations, and catalysis. But such polymers need an appropriate stimulus to initiate the
release of a drug remotely. For many hydrogel applications, heat is used to initiate the collapse
of the polymer hydrogel. Since specific frequencies of light can be used to generate heat at the
surface of GNSs that are responsive to such light, the combination of a well-tuned nanoshell
for specific light absorption and a thermally-responsive hydrogel provide the potential for
remotely controlled drug delivery, a smart, multi-responsive core@shell nanoparticle system.

Additionally, core@shell composite particles that respond to magnetic stimuli can also be used
to perform useful tasks in controlled drug delivery [77, 78], bio-separation [120], chemical
catalysis [121, 122], and electronics [1, 3]. By integrating the application of both their physical
and chemical properties, these magnetic core@shell materials can become multifunctional
devices that enable a variety of advanced applications that cannot be accomplished by simple
magnetic NPs alone. Recent examples of the application of magnetic NPs in research have
demonstrated their usefulness because of their capacity to produce heat under an external
oscillating magnetic field or to be manipulated remotely, allowing for their use as an anti-
tumor treatment, cell tracking tag, or drug delivery vehicle [123-125]. These core@shell
composite particles that respond to both a magnet and other external stimuli, typically consist
of a magnetic core encapsulated in a stimuli-responsive hydrogel copolymer layer that
responds rapidly to changes in temperature slightly above that of the body. And such a coating
heightens the particles’ biocompatibility and chemical stability in an aqueous medium
[126-138].

Core@shell composite particles that respond to optical, magnetic, and other external stimuli
(e.g., temperature, ionic strength, and pH), can be used to perform more useful tasks in
research. For this project, we employed a biocompatible mesoporous silica interlayer between
the magnetic core and the hydrogel copolymer outer layer to improve the composite particle’s
loading capacity and payload release effectiveness. The advantages that such porous struc‐
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tures provide is their high surface area (ca. 1000 m2/g), large pore volume (ca. 1 cm3/g), tunable
mesopore diameter (2-50 nm) and biocompatibility [139, 140]. Thus, impregnation of these
mesoporous silica and poly(N-isopropylacrylamide-co-acrylic acid; NIPAM-co-AAc)-coated
magnetic NPs (or gold GNSs as the core) with drugs produces a nanoscale drug-delivery
system that can be specifically targeted and magnetically (or phothermally) activated. We call
them "smart" core@shell NPs.

4. Synthesis of smart multi-responsive Core@Shell nanoparticles

To accomplish the research goals described above, hydrogel-based core@shell composite NPs
were fabricated by encapsulating a mesoporous silica-coated GNS (or Fe3O4 NP) as the core
with a PNIPAM-co-AAc copolymer coating [141]. The oleylamine-functionalized mesoporous
silica-coated GNS (or Fe3O4 NP) was used as a nano-template for the shell layer growth of a
hydrogel copolymer. Ammonium persulfate (APS) was used as a polymerization initiator to
produce a hydrogel-encapsulated composite NP. The amount of NIPAM monomer was
optimized for the hydrogel-encapsulated mesoporous silica-coated composite NPs [142]. The
shell layer thickness was increased with an increase in polymerization time until no further
increase in the shell layer thickness was clearly observed [143]. Hydrogel-encapsulated
mesoporous silica-coated composite NPs exhibited systematic changes in particle size
corresponding to the variation of temperature, which originates from hydrogen-bonding
interactions between PNIPAM amide groups and water, as well as electrostatic forces attrib‐
uted to the ionization of carboxylic groups in the acrylic acid.

5. Long term research objectives

Lee and co-workers recently reported the initial methodology to precisely control drug
delivery by employing gold NPs and GNSs coated with a pH- and temperature-responsive
hydrogel originating from the co-polymerization of NIPAM and acrylic acid [142-144]. These
nontoxic composite NPs were designed to be loaded with drug molecules, providing the ability
for the NP cores to be photothermally activated, initiating collapse of the hydrogel coating and
releasing the drug molecules, as illustrated in Figure 6.

Furthermore, we have been working to employ a mesoporous silica interlayer between a gold-
coated silica core and a hydrogel outer layer to prevent unwanted structural changes to the
gold shell during photomodulation and to assist in the carrying of hydrophobic or hydrophilic
drugs to targeted sites [141]. The advantages that such porous structures provide is their high
surface area (ca. 1000 m2/g), large pore volume (ca. 1 cm3/g), tunable mesopore diameter (2-50
nm) and biocompatibility [139, 140]. By using smart hydrogel technology as an outer layer and
a mesoporous silica coating as an interlayer, GNSs that are activated by tissue-transparent
near-IR light can be more effectively used for advanced medicinal applications. With our initial
investigation, once these nontoxic composite NPs were loaded with methylene blue (MB; a

The Development of Smart, Multi-Responsive Core@Shell Composite Nanoparticles
http://dx.doi.org/10.5772/61262

111



dye used as a model drug), and the NPs thermally activated, the hydrogel coating collapsed
and released the test molecules. The potential for such smart, multi-responsive core@shell
nanoparticles for use as drug delivery carriers, contrast agents, and therapeutic entities will
clearly encourage the application of this new technology in future research projects.
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