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Abstract

Loco-regional treatments play a key role in the management of hepatocellular carcino‐
ma (HCC). Image-guided tumor ablation is recommended in patients with early-stage
HCC when surgical options are precluded. Radiofrequency ablation is currently es‐
tablished as the standard method for local tumor treatment. Despite major advances
in tumor ablation techniques the disease recurs in a high proportion of cases. A major
limitation in its overall effectiveness is due to the difficulties of heating large tumors.
Small regions of viable tumor may still remain even after apparently good tumor
ablation by perfusion-mediated tissue cooling, preventing the whole tumor reaching a
sufficient temperature for coagulation and necrosis. Moreover simple heating techni‐
ques have trouble discriminating between tumors and surrounding healthy tissues
leading to many side effects. In order to overcome these major limitations numerous
groups are investigating the use of energy-absorbing agents localized within tumor
tissues to facilitate localized heating. A personal answer based on the review of the
literature will be offered to the following questions: NIR photothermal therapy, RFA
with nanoparticles, or magnetic fluid hyperthermia for the long term management of
HCC? How should we deliver nanoparticles: systemically or directly intratumoral?
Ablation versus mild hyperthermia: Pros and Cons in the majority of cases, hyper‐
thermia is applied in one of two ways: a) high temperature for short time periods
commonly referred to as ablation, or b) lower temperatures for long time periods, of‐
ten called mild hyperthermia. The former is used to kill cells directly with heat and
consequently can be used to thermally ablate tumor. The second method is just above
physiological temperature, and these temperatures are more often used to trigger re‐
lease from thermosensitive drug carriers. Both approaches can be combined with
heat-sensitive drug targeting. There are many ways to induce nanoparticle mediated
thermal therapy in solid tumors including absorption of infrared light, radiofrequency
ablation and magnetically induced heating. These approaches have demonstrated
high efficacy in preclinical models of HCC and are already tested in human clinical
trials.
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1. Introduction

Hepatocellular carcinoma (HCC) occurs predominantly in patients with chronic liver disease
and limited hepatic functional reserve. Therefore, surgical removal of HCC is feasible only in
15–20% of cases and non-surgical modalities play a relatively important role in HCC manage‐
ment. There are several non-surgical methods; however, ablation therapy has become a
mainstay in particular for early-stage HCC because of its superb local control capability and
high safety profile [1].

Ablation modalities currently available include percutaneous ethanol injection (PEI), radio‐
frequency ablation (RFA), microwave ablation (MWA), cryoablation, laser ablation (LA), and
irreversible electroporation.

PEI was one of the first effective ablative techniques to be widely adopted for the treatment of
small HCC. Ethanol causes dehydration and subsequently necrosis [2]. As far as PEIs are
concerned, the 5-year survival rates in patients with HCCs measuring less than 3 cm range
from 47% to 65% and in a recent study of 685 Japanese patients, the 5-, 10-, and 20-year survival
rates—49%, 18%, and 7.2%, respectively, were similar to those observed in patients with
cirrhosis who did not have HCC [3]. PEI maintains the advantage of allowing the treatment
of tumors near sensitive organs and tissues; however the applicability of PEI in larger HCC
has been shown to produce incomplete necrosis mainly due to the heterogeneous consistency
of these tumors [4]. Moreover, PEI is of little benefit in infiltrating HCC or in metastases.

Current limitations of PEI can be overcome with RFA. Radiofrequency current induces ionic
agitation that in turn results in heating. The superiority of RFA to PEI in prolonging patient
survival has been shown in a randomized controlled trial [5]. The 3-year survival rates were
48%–67% following PEI and 63%–81% following RFA. Moreover, Chen et al. performed a
randomized control trial between RFA and hepatectomy in patients who had HCC ≤ 5 cm and
found the same overall and recurrence-free survival between the two patient groups [6]. A
major disadvantage of RFA is mainly the difficulty to target HCC located in “problem” areas
of the liver, for instance tumors adjacent to blood vessels, settings in which the diffusion of
heat is less advisable [7]. This phenomenon is also known as the heat-sink effect.

In the last two years, MWA has gained acceptance as a favorable alternative and in some cases
a preferred choice of ablation alternative. In MWA, the mechanism of heat generation is based
on rapid frictional movement of water molecules in high-frequency (900–2500 MHz) electro‐
magnetic field. The tissue's polar molecules are forced to continuously realign with the
oscillating electric field, increasing their kinetic energy, and hence the temperature of the tissue
[8]. Unlike RFA, microwaves are capable of effectively heating and propagating through many
types of tissue, even those with low electrical conductivity, high impedance, or low thermal
conductivity. Moreover, they can readily penetrate through the charred or desiccated tissues
that tend to build up around all hyperthermic ablation applicators, resulting in limited power
delivery for non-microwave energy systems [9].

MWA has several theoretical advantages, including greater penetration of energy into tissues
resulting in a larger area of ablation, higher intratumoral temperatures, faster ablation times,
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less susceptibility to the heat-sink effect, no need for grounding pads, and low sensitivity to
local variation in tissue physiological properties [10]. In some studies, MWA has been
compared with RFA for the treatment of HCCs of different sizes (< 3 cm and < 5 cm) and despite
the theoretical advantages of MWA, no significant differences have been observed in either
setting with regard to the completeness of tumor necrosis, disease recurrence, survival, or
complication rates [11, 12].

Laser thermal ablation is another technique that has been associated with high rates of
complete necrosis (an average of 95%) in HCCs measuring less than 3 cm [13]. Unfortunately,
there are only a few centers that use this type of ablation and therefore the amount of data is
limited. Moreover, it is based on sophisticated technology, requires much more substantial
operator experience, and involves placement of multiple optical fibers within the neoplastic
lesion according to a programmed spatial distribution scheme [14]. Although more expensive
to set up and support than RF, LAs are a little more predictable.

To date, there are only a few studies comparing LA with RFA in hepatocellular carcinoma. In
their randomized controlled prospective study, Ferrary et al. [15] treated 81 cirrhotic patients
with 95 biopsy proven ≤ 4 cm HCCs comparing LA with RF ablation. Two matched groups
were randomized to US-guided RF or LA under general anesthesia. The authors adopted
multiple fiber techniques using 5 W per fiber delivering a maximum of 1800 J per fiber per
single illumination. They reported no significant overall differences in survival rates between
the two methods with cumulative rates of 91.8%, 59%, and 28.4% at 1, 3, and 5 years, respec‐
tively. However, they demonstrated a statistically significant higher survival rate for RF over
LA for Child A patients (p=0.9966) and nodules ≤ 2.5 cm (p=0.01181). In a randomized
prospective trial in a single center with three years of follow-up, the authors treated 140
patients with 157 biopsy-proven HCCs to compare LA and RFA (70 patients with 77 nodules
and 70 patients with 80 nodules, respectively). Median follow-up in RFA and LA groups was
21 and 22.5 months, respectively. Complete response was observed in 97.2% and in 95.8% of
RFA and LA group patients, respectively. Median time to tumor recurrence was 25.6 and 37.8
months in RFA and in LA groups, respectively (P = 0.129). Estimated probability of survival
at 1, 2, and 3 years was 94%, 88%, and 66% in the RFA group and 94%, 81%, and 59% in the
LA group, respectively (p = 0.693). No major complications or significant treatment-related
morbidity were observed in both groups. The authors concluded that LA was non-inferior to
RFA either in obtaining the complete ablation of HCC nodules or in the long-term outcome [16].

Another type of percutaneous tumor ablation is represented by cryoablation (CRYO). Percu‐
taneous CRYO is a promising local ablation technique, which is believed to ablate cancer cells
by several mechanisms including intracellular ice formation, solute-solvent shifts that cause
cell dehydration and rupture, and small-vessel obliteration with resulting hypoxia. Perhaps,
the main advantage of CRYO relative to RFA is its precise intraprocedural monitoring of iceball
formation via various imaging techniques [17]. There are a few studies comparing CRYO with
other types of tumor ablation techniques; however Wang C et al. report the results of a
randomized, controlled multicenter trial comparing percutaneous CRYO and RFA in patients
with cirrhosis, Child-Pugh class A or B liver function, and 1-2 HCC nodules measuring ≤ 4 cm.
The primary endpoints were local tumor progression at 3 years and safety. As for the former,
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CRYO proved to be significantly superior to RFA in patients with larger tumors (i.e., those that
were 3.1 to 4 cm in diameter). The two methods were not significantly different in terms of
complication rates, which were less than 4% in both groups, or survival (overall and tumor-
free) at 1, 3, and 5 years [18]. The superiority of CRYO over RFA in the larger tumors suggests
that CRYO has the ability to necrotize larger volumes of tissue, hence increasing the chances
of ablating microsatellite lesions that are always possible with lesions of this size.

Irreversible electroporation (IRE) is a new treatment method with certain advantages over the
existing ablative techniques that have gained widespread attention. With IRE, cell death is
induced with electric energy. Under image guidance electrodes are placed around the tumor
and through multiple and short high-voltage electric pulses, the existing cell membrane
potential is disturbed. As a consequence, nanoscale defects appear in the lipid bilayer of the
cell membrane. Although IRE is believed to destroy all cells within the ablation zone effec‐
tively, the non-thermal nature of IRE results in relative preservation of the extracellular matrix.
Hence, the structural integrity of vessels and bile ducts remain intact. Moreover, IRE is not
affected by the heat-sink effect [19]. All these advantages suggest that IRE may be more suitable
for the treatment of HCCs ineligible for surgical resections or thermal ablation because of
unfavorable location.

Currently, there are no published clinical trials for the treatment of hepatic tumors using IRE.
In a recent review, Scheffer J. et al. included 221 patients with 325 lesions in different organs:
227 hepatic tumors, 70 unresectable pancreatic adenocarcinoma, 17 renal tumors, 8 pulmonary
tumors, 1 presacral tumor, and 2 lymph nodes. Most of the patients were treated by IRE owing
to tumor proximity to bile ducts, bronchi, renal pelvis, presacral neural plexus or large vessels,
making the tumor unsuitable for surgery or thermal ablation. They concluded that IRE is a
safe procedure with a promising early efficacy on smaller hepatic tumors near vascular
structures and portal triads, with reported ablation success reaching 90%, but rapidly decreas‐
ing with increasing tumor size [20].

Tremendous efforts have been made in the last decades to improve the currently available
techniques. However, given that there is not a single method available that meets all the
requirements of an ideal ablation system, based on what has been discussed above and on data
from the vast literature available, we can reasonably draw some conclusions.

Firstly, all differences between the techniques in terms of results are modest. Secondly, one
technique may be more difficult than another and more rapid than another. Thirdly, each
technique has its own major advantages and disadvantages. Finally, the rate of recurrence is
still high after tumor ablation despite the major advances in tumor ablation devices, optic
fibers, and improved imaging guidance. A major limitation in its overall effectiveness is due
to the difficulties of heating large tumors. Small regions of viable tumor may still remain even
after apparently good tumor ablation. Moreover, simple heating techniques have trouble
discriminating between tumors and surrounding healthy tissues leading to many side effects.
In order to overcome these major limitations, numerous groups are investigating the use of
different types of nanoparticles, including carbon nanotubes, gold nanoparticles, and magnetic
nanoparticles, placed/ introduced within tumor tissues to facilitate localized heating.
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2. Molecular mechanism of nanoparticle-mediated tumor ablation

A better understanding of the molecular mechanism of nanoparticle mediated tumor ablation
is of great importance in order to improve the current available ablation techniques and also
to increase the synergies between specific drugs and tumor ablation. There are several ways
in which nanoparticles (NPs) alone can affect biological processes.

Several studies have shown that NPs can increase the production of reactive oxygen species
(ROS). Cancer cells are generally deficient in antioxidative enzymes present in normal cells,
making them more vulnerable to an oxidative assault. Iron oxide nanoparticles via direct
uptake in cancer cells result in acutely elevated intracellular iron concentrations and subse‐
quent ROS generation by Fenton reaction [21]. Moreover, silver nanoparticles have also been
linked to ROS generation via a mechanism affecting calcium homeostasis. Silver ions can act
on the same sites as calcium ions that could perturbate calcium influx in and out of the
mitochondria. As a consequence, mitochondrial membrane damage results in ROS production,
inhibition of ATP synthesis, and initiation of apoptotic signaling pathways [22].

From a biological and molecular point of view, NPs can affect different structures of the cancer
cells. For instance, cellular uptake of NPs results in changes to the cytoskeleton and further
affects many biological processes including cell spreading and adhesion, cell growth, viability,
and ECM production [23]. Moreover, the accumulation of NPs in the cytoplasm may lead to
physical interactions with the cytoskeleton, an increase in size and/or number of endosomes
leading to the rearrangement of the cytoskeleton components in order to form new trafficking
routes [24]. We consider that by altering the intracellular trafficking routes many other
fundamental processes, including intracellular signaling pathways, different types of cross-
talks with other cells and proliferation may also be affected. Furthermore, NPs can be engi‐
neered to accumulate preferentially in the nucleus of cancer cells. One study used gold
nanoparticles (AuNPs) coated with polyethylene glycocol, bioconjugated with an arginine-
gyicine-aspartic acid peptide and a nuclear localization signal peptide in order to transport
the nanoparticles into the cancer cell nucleus. The results showed that nuclear targeting of
AuNPs in cancer cells cause cytokinesis arrest, leading to the failure of complete cell division
and thereby resulting in apoptosis [25].

In the past, cancer was considered an isolated self-sufficient ball of aberrant cells. However
nowadays, tumors are viewed as “organs” composed of multiple and highly interactive cell
types. Thus, the tumor is made up of primary cancer cells and of a court of stromal cells
including mesenchymal derived cells, inflammatory cells, and vascular cells. Each of these cell
types can be found in normal stroma, but in a tumorigenic setting, the cancer has appropriated,
modified, and corrupted these cells to do its bidding [26]. NPs can also be used to target the
tumor stroma changing the tumor microenvironment from its pro-tumorigenic state to an anti-
tumorigenic state. One study demonstrated the ability of nanoparticles to target the tumor
endothelium and improve the anti-tumoral efficacy of paclitaxel, both in vivo and in vitro [27].
Another approach would be to target the macrophage because they are inherently phagocytic
and may uptake nanoparticles either within the tumor or in the circulation and subsequently
migrate towards to the tumor. Another ability of macrophage is to store iron; hence, iron oxide
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NPs have been shown to induce cytotoxic effects on themselves and surrounding cells via ROS-
mediated activation of the c-jun N-terminal kinase pathway [28].

Understanding how nanomaterials affect live cell function, controlling such effects, and using
them in therapy (for example In tumor ablation), is now the most challenging aspects of
nanobiotechnology. An ideal NP would be a multifunctional one, targeting both the tumor
cells and tumor microenvironment with low toxicity, which is easy to engineer, and has low
costs. However, there is still a long way and a great deal of research has to be performed in
order to develop what we consider the ideal nanoparticle.

3. Near-infrared photothermal ablation

Near-infrared (NIR) laser light is ideal for in vivo hyperthermia applications because of its low
absorption by tissue chromophores such as hemoglobin and water. NIR light demonstrates
maximal penetration of tissue, thereby reaching deep inside the tissue. Photothermal ablation
(PTA) therapy is a recently developed technique that uses NIR laser light-generated heat to
destroy tumor cells. In recent years, PTA has gained a lot of popularity mainly because a
specific amount of photoenergy is delivered directly into the tumor without causing systemic
effects [29]. However, this therapy approach is limited by the fact that the heating is nonspecific
and nonuniform mainly in areas peripheral to large blood vessels where heat can be rapidly
dissipated by circulating blood.

The efficacy of PTA can be significantly enhanced by using different types of nanoparticles
that are applied to the target tissue to mediate selective photothermal effects. For instance,
AuNPs including gold nanorods, gold nanocages, gold nanostars, and gold nanopopcorns
with unique optical proprieties have been developed [30].

In order to treat a tumor, AuNPs are systemically administered to the subject and allowed
to passively localize in the tumor. The tumor is then exposed to an excitation source such as
the NIR laser light. The AuNPs absorb the incident energy and convert it into heat, which
raises the temperature of the tissue and ablates the cancerous cells by disrupting the cell
membrane  [31].  AuNPs  have  unique  optical-electronic  proprieties  as  a  result  of  surface
plasmon resonances (SPRs). SPR is a phenomenon in which free electrons oscillate collective‐
ly at the interface of metal and surrounding medium in resonance with external electromag‐
netic fields [30].

Nanoparticles in the tissues produce heat strong enough for thermal ablation in both tumors
and surrounding cells. Therefore, it is crucial to increase the intratumoral localization of the
nanoparticles on the one hand and to protect the surrounding tissue on the other hand.
Selective accumulation of AuNPs in the target tumor tissue can be achieved by surface
conjugation of targeting agents, such as antibodies and peptides that can recognize specific
cell types. For instance Liu et al. reported that gold nanoshells functionalized with the small
peptide A54 can significantly increase the efficiency of cancer cell death in the NIR photother‐
mal treatment due to the specific binding (targeting) between the A54-nanoshells and the liver
cancer cells, BEL-7404 and BEL-7402 [32].
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AuNP can also be functionalized to load various cargoes such as different types of anticancer
drugs. As an example in this setting, You et al. investigated DOX-loaded hollow gold nano‐
spheres (DOX@HAuNSs) and conjugated them with a peptide sequence that targets EPHB4,
a tyrosine kinase receptor that is often overexpressed in many tumor cell membranes including
HCC. NIR laser irradiation after treatment with targeted DOX@HAuNSs resulted in signifi‐
cantly suppressed tumor growth when compared with the control treatment with nontargeted
DOX@HAuNSs or HAuNSs [33]. Moreover, another study conducted by the same authors,
evaluated the triggered release of paclitaxel via NIR laser irradiation and its antitumor efficacy
by hepatic arterial administration of HAuNS and paclitaxel loaded microspheres into rabbits
with liver carcinoma in situ [34]. The results showed statistically significant increases in
necrosis and apoptosis percentage in the MS-HAuNS-PTX-plus-NIR treatment group com‐
pared with the other two treatment groups.

A different approach in the field of NPs, mediated NIR thermal ablation has been developed
in the last two years mainly due to the development of therenostic agents, which combine
diagnostic and therapeutic modalities. This approach offers tremendous potential for the
management of chronic liver injury or HCC. In a recent article, multifunctional nanoprobe
based on Glypican-3 anti-body-mediated HCC-targeting Prussian blue nanoparticles (an‐
tiGPR-PBNPs) was developed as a novel theranostic agent for the targeted PTT and MR
imaging of HCC treatments [35]. They concluded that antiGPC3-PBNPs could be used as a
promising nanoprobe for further treating and early diagnosis of HCC.

A major limitation of nanoparticle-assisted drug delivery is represented by their uptake in the
reticuloendothelial system leading to undesirable systemic toxicity and reduced efficacy.
Hence many researchers have investigated the use of different cell types for drug delivery.
Zhao J et al. in their study used adipose-derived mesenchymal cells (AD-MSCs) to deliver
superparamagnetic iron oxide (SPIO)-loaded gold nanoparticles (SPIO@AuNP) into HCC
tumors [36]. They demonstrated that AD-MSC is an effective carrier for the specific delivery
of theranostic agents to liver injuries or HCC and SPIO@AuNP is a host-compatible cargo that
enables both MRI enhancement and laser induced thermal ablation.

Besides the different types of gold nanoparticles described above, carbon nanotubes (CNT)
also have the ability to efficiently convert NIR into heat. The role on CNT-mediated thermal
therapy for the treatment of a wide variety of cancer types both in vitro and in vivo have been
recently reviewed [37]. It is hard to claim that CNTs are better than GNPs because direct
comparisons are hard to make; however, some estimates indicate that CNTs can achieve
thermal destruction of tumors at 10-fold-lower doses and a 3-fold-lower power than what is
required for gold nanorods [23]. On the other hand GNP can be synthesized with great
uniformity and have already been tested in human clinical trials.

It is worth to mentioning that there is a massive amount of research in the field of nanoparticles-
mediated PTA therapy. We only provided a few examples that we considered most suitable.
Describing all the possible applications of nanoparticles mediated thermal therapy is beyond
the purpose of this chapter.
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4. Magnetic fluid hyperthermia-iron magnetic nanoparticles

Thermotherapy represents a physical treatment induced by hyperthermia. Nowadays,
macroscopic thermotherapy (ablative methods: microwave or radiofrequency, optical laser
irradiation via fibers, focused ultrasound) is widely used to destroy focal tumors. The mech‐
anism of tumoral damage is the result of an irreparable destruction of molecular constituents
of cells (mainly protein denaturation) that appears after an exposure of a few minutes at
temperatures higher than 48°C. Even if it has lower side effects when compared to conventional
therapy (chemo/radiotherapy) and although it has proved to be a reliable alternative to
surgery, this therapy has several limits: the relative higher rate of incomplete destruction for
tumors larger than 3 cm and a higher risk of destruction of the proximate healthy tissue. These
deficiencies seem to disappear by using a new thermal method known as magnetic termic
hyperthermia [38]. This approach uses an external alternating magnetic field applied to a target
tumor where magnetic metallic particles (MNPs) have been infiltrated or injected. MNPs show
distinguishing phenomena such as superparamagnetism, high field irreversibility, high
saturation field, extra anisotropy contributions, or shifted loops after field cooling [39].
According to Reference [40], the distinguished phenomena noticed in MNPs are the result of
the interaction between the intrinsic properties (size, distribution, and finite-size effects) and
the interparticle interactions. The MNPs have the ability to absorb the energy of the alternating
magnetic field energy and transform it into heat. Two factors are implicated in producing
hyperthermia, the size of the magnetic material and the strength of the applied magnetic field.
Larger implants (seeds) generate heat by resistance to circumferential eddy currents induced
on the surface of the seeds by an alternative magnetic field [41]. Multidomain particles produce
heat by hysteresis loss effects. On the contrary, nanoparticle, particularly subdomain particle,
suspensions generate heat mainly by Brownian relaxation (heat is the result of friction arising
from the total particle oscillations) and Neel relaxation (heat is the result of friction arising
from the rotation of the magnetic moment with each field oscillation) [42, 43].

Superparamagnetic particles are particles that have sufficient high thermal motion after the
magnetic field is removed, which can be randomly reoriented so as not to leave a residual
magnetization [43].

Due to their properties, these particles may have several applications in clinical practice such
as hyperthermia (HT), drug delivery and diagnosis (s.a nuclear magnetic resonance imaging).

HT represents a therapeutic procedure used to destroy a tumoral tissue at temperatures over
43°C [38]. It has been observed that tumoral cells have an increased thermal sensitivity in
comparison to healthy cells; this feature is the result of an increased metabolism [44, 45].
Apoptosis is the result of cytotoxic effects that depend on physiological cell parameters
(hypoxia or acidity) at temperatures over 43°C. 43°C is the temperature limit over which the
expression of HSPs is stimulated, which leads to antitumor immunity and apoptosis [46]. The
antitumor immunity increases as a result of an enhanced presentation of tumoral antigenic
peptide to a major histocompatibility complex (MHC). HSP70 expression reaches its maximum
24 h after heating. The increased MHC class I surface expression is slower, so it starts 24 h after
applied hyperthermia and the peak is after 48 h [38]. Two mechanisms have been suggested.
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One of the possible mechanisms is that the heat induces the enhancement of antigenic peptide
presentation through MHC class I antigens of tumor cells. Another possible mechanism is the
cross-presentation of antigenic peptides by dedicated antigen-presenting cells (APCs) [46].

The advantage of magnetic hyperthermia is that it restricts the heating to the tumoral area,
which presents both grand opportunities and challenges for the non-invasive treatment of
tumors. Therefore, by combining this characteristic of the tumoral tissue with the MNPs
property, it is obvious that the administration of MNPs (with the purpose of delivering toxic
amounts of thermal energy to the tumoral tissue) will produce a more effective destruction of
the tumoral tissue.

For clinical practice, MNPs must meet several criteria: they must be small enough to remain
in the circulation after injection and pass through the capillary; they must not be an embolic
agent; they must be non-toxic and non-immunogenic; they must maintain the initial structure;
and they must be biodegradable. Another important property of these particles is to be highly
magnetized in order for their movement to be controlled with a magnetic field so that they can
be immobilized near the targeted tumoral area [47]. The most important factors, which
determine the biocompatibility and toxicity of these materials, are the nature of the magneti‐
cally responsive component, the final size of the particles, their core, and their coatings [39].
The most utilized MNPs are magnetite (Fe3O4) or its oxidized form, maghemite (γ-Fe2O3).
Magnetite is easier to obtain than maghemite; therefore, most of the studies utilized magnetite
[38]. In order to avoid the constitution of large aggregates, the modification from the original
form and biodegradation, the MNPs are coated with a biocompatible polymer during or after
the synthesis [39]. The particles’ size influence the stability, tissular diffusion, effective surface
areas (easier attachment of ligands), and the power of absorption at tolerable altering current
magnetic fields. Therefore, only subdomain magnetic particles (nanometer-sized), especially
particles smaller than 100 nm (so-called nanoparticles), can be utilized [48, 49]. Also, it is
important to highlight that the heating potential is dependent on particle size and shape, and
thus the use of uniform particles is essential for a rigorous control in temperature [39].
Therefore, the magnetic particles used may modify the energy, absorption rate, mode of energy
deposition, application, and focusing. For this technique, the sizes of the particles are as
follows: seeds (rods of several millimeter size), multidomain particles (1–300 mm), nanopar‐
ticles (1–100 nm), and subdomain particles (below 20 nm) [41].

Gilchrist was the first author that showed promising results obtained after selective heating
that followed the direct injection of a suspension of magnetic particles into draining lymph
nodes from colon cancer [50]. In 2001, Moroz showed that hepatic arterial infusion of lipiodol
containing ferromagnetic particles could result in an excellent targeting of liver tumors with
hyperthermia on the subsequent application of an external alternating magnetic field [51]. The
following years, encouraged by the results of the use of MNPs in animal studies (on mouse
mammary carcinoma, glioblastoma, and prostate cancer), some authors focused on the
improvement of HT techniques for clinical applications [52–56]. For in vivo delivery, the
authors used thermosensitive liposomes, direct injection into the tumor, or the intravenous
route.
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An important progress has been made in improving the quality of the MNPs; therefore, for
construction, high temperature crystallization or different coatings were used, such as dextran,
polyethylene glycol (PEG), dopamine, silanes and gold [43].

Several  authors  introduced  MNPs  either  in  the  core  or  in  between  the  lipid  bilayer  of
thermosensitive liposomes and, on alternating magnetic field AMF heating, the encapsulat‐
ed drugs  were  released [43].  Shinkai  utilized liposomes where  he  introduced magnetite
nanoparticles  (with  a  diameter  of  10  nm).  After  administration,  these  nanoparticles  in‐
creased the temperature of the tissue [57]. In another study, Ito injected magnetite cationic
liposomes (MCLs) into the tumor tissue. They heated the tissue above 43°C and obtained a
complete regression of mammary carcinomas in all mice [58]. Also, Jimbow [52] developed
a particle  with N-propionylcysteaminylphenol  (NPrCAP) conjugated onto the surface  of
magnetite nanoparticles (NPrCAP/M). The result was the inhibition of melanoma cells growth
as a result of the production of cytotoxic free radicals. In another study, a thermosensitive
polymer  was  layered onto  MNPs covalently  coupled to  doxorubicin  with  an acid-labile
hydrazine bond that  showed release on heating with AMF and a pH of  5.3  (the pH of
endosomes) [59]. The authors combined via emulsification MNPs with a polyvinyl alcohol
polymer and encapsulated hydrophobic/ hydrophilic drugs. The drugs were released after
the heating with an alternative magnetic field [60].

Direct intratumoral injection was used in the first MNP HT clinical trial treating a patient with
a recurrent prostatic tumor [61]. Through the use of transrectal ultrasound and fluoroscopy
guidance, the authors performed a transperineal injection of the MNPs into the prostate. After
the administration of MNPs, the particles were selectively heated in an externally applied
alternative magnetic field. The conclusions of these trials were encouraging. Due to the low
clearance of MNPs from tumors, serial heat treatments were possible after a single magnetic
fluid injection. Another positive aspect was the fact that a low magnetic field was used to
produce the necessary temperatures. Furthermore, this treatment does not cause discomfort
or serious side effects. In these studies, the CT exam had an accuracy rate of 85% in evaluating
the treatment-related parameters. The same good results were obtained later in human glioma
trials [62, 63].

In 2008, Takamatsu et al. combined the intra-arterial selective HT with the transcatheter arterial
embolization technique in a rabbit model for renal carcinoma [64]. For injection, they utilized
a mixture of commercially available nano-sized magnetic particles (Ferucarbotran) and
lipiodol as embolic material. The mixture was injected into the renal artery under fluoroscopic
guidance. The intratumoral temperatures of 45ºC were obtained after the area was exposed to
an external alternating-current magnetic field. Even the result was not spectacular (the treated
tumor was hypovascular) the authors speculated that this method can be used only in
hypervascular tumors. In another study, Huang HS injected IV MNPs (1.9 mg Fe/g tumor) in
a subcutaneous squamous cell carcinoma mouse model. After the injection, they applied a field
of 38 kA/m at 980 kHz; therefore, the tumors could be heated to 60°C in 2 min. The results were
encouraging, showing an ablating with millimeter (mm) precision and a surrounding tissue
intact [43].
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Intravenous administration has several advantages compared to sowing such as: it assures a
more precise cover even for an irregular tumor and small tumors; it can be used for the
treatment of metastasis (after one injection more than one tumor can be treated simultaneous‐
ly); the distribution is more overall (rather than the dotted distribution from sowing); and it is
minimally invasive [43, 48].

The evaluation of the iron concentrations can be mapped with high accuracy by MRI, com‐
puted tomography or magnetorelaxometry [43, 65, 66].

The science of MNPs is still in its early stages. The recent results of magnetic HT in cancer
therapy are very encouraging; but it is necessary to traverse the experimental stages into
clinical practice to see the real applicability of this new technique.

5. NP-based thermal therapy using radiofrequency

5.1. Standard RF-mediated nanoablation

Standard RFA is an invasive procedure that requires the insertion of electrodes within the tumor.
Tumor destruction occurs as a result of vibrations of ions within tumor tissue induced by radio
waves, which give rise to friction and lethal heat. Although it is possible to achieve local control
in liver tumors < 2.5 cm, in larger lesions local tumor recurrence is common [67, 68].

Initially, in order to increase the efficacy of RFA, the ablation guidance methods were improved
(contrast-enhanced ultrasound, fusion imaging, etc.), but this led only to a slight efficacy
improvement. Because of the changes that occur after RFA (increased vascular and cellular
membrane permeability), the periphery of the tumor becomes more susceptible to chemo‐
therapy. Thus, the combination of thermal ablation and chemotherapy seemed to lead to
promising results. The results of these methods did increase the efficacy of RFA, but it was not
enough. Therefore, new treatments that will augment cytotoxicity at the margin of the ablation
zone have been developed.

The efficiency of RFA can be significantly enhanced by administration of special thermal
absorbing agents such as NPs, which are targeted into a tumor area (actively or passively) with
the purpose to release locally the retained heat and thus enhance tumoral destruction.

The NPs in free form or those containing various anti-cancer agents may be administrated
before, at the time, or after RFA [68, 69]. Administering CYT-6091, a TNF-labeled NP, 4 h prior
to RFA yielded a significantly larger zone of central necrosis and a 23% increase in ablation
volume in comparison to RFA alone [69]. Using this NP enhanced ablation, the partially ablated
tissue at the periphery was replaced by completely ablated tissue [69].

The administration of NPs containing free doxorubicine at the time of RFA or after leads to an
increased diameter of coagulated tumor tissue (and increased concentration of doxorubicine
in the ablated tumor) [68]. The NPs accumulate in the region of ablation both in the treated
tumor (as result of an increased leakage) and in the peripheral region with thermal induced
inflammation. This is known as the enhanced permeability and retention (EPR) effect [70].
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The liposomes were the first NPs that have been utilized in combination with RFA. The studies
of Ahmed and Goldberg demonstrated that the use of lipid NPs as carriers of a drug combined
with ARF was associated with an increased accumulation of doxorubicin in the tumor, while
non-encapsulated free doxorubicin did not have increased tumor uptake following RFA [71].
Since then, an important number of investigators improved the lipid layer of liposomes that
has contributed to enhanced tumor damage secondary to formation of lipid hydro-peroxide
leading to enhanced oxidative stress. Also, the investigators demonstrated that NPs size could
influence the intratumoral drug accumulation and tissue coagulation [68].

5.2. Non-invasive RF nanoablation

As a negative relationship between the frequency of the waves and the depth of penetration
exists, radio waves may be used as an alternative to heat tumors that are deeply located. The
heating rate of a certain tissue is described by the formula HR = SAR/69.77 CH where SAR is
the specific absorption rate and CH the specific heat capacity of the tissue (kcal/kg °C). As SAR
(W/kg) depends on the dielectric conductivity of the tissue, an enhanced conductivity provided
by AuNPs or carbon nanotubes may increase the heat delivered to the tissue [72].

These low-frequency electromagnetic waves have the advantage to penetrate human tissues
and pass through the entire body with minimal perturbations until the RF fields interact with
metal. The metal particles absorb RF energy and release heat to the adjacent region. Several
reports suggested that tumoral hyperthermia may be improved through the use of targeted
nanomaterials, which produce an intracellular hyperthermia and act as RF-thermal transduc‐
ers, leaving the surrounding healthy tissue intact [68].

The delivery of RF generated heat in deep structures may be achieved either by RF needle
inserted into the tumor (standard RFA) or by an external device that generates an RF field
[68, 72].

If standard RF ablation produces a hyperthermic region of 2–4 cm diameter around the probe's
tip, the nanoparticle-mediated RF field induces a hyperthermic area of approximately 100 μm.
The heating mechanism of NPs in an RF field is a complex phenomenon that is still under
debate [73]. Most of the RF field devices produce shortwave RF fields (13.56 MHz), allowing
them to be used in the medical field. Several reports have shown that Joule heating of the
background ionic suspension where the NPs are suspended can be the main source of RF heat
production [74]. A relative high variety of NPs as AuNPs, carbon nanotubes (SWNTs),
quantum dots (cadmium-selenide and indium-gallium-phosphide), silicon nanoparticles (Si
NPs), and La0.7Sr0.3MnO3 (Dex-LSMO) have been associated with RF field [74, 75]. The use
of NPs seems to improve the standard RFA by increasing the specificity of tumor destructions
and affording a relative target therapy. Between these NPs are several differences, such as the
SWNTs are heated faster than AuNPs unlike quantum dots that are heated in a similar manner
to AuNPs [73].

SWNTs showed that they can be activated from a distance by RF field to produce thermal
cytotoxicity [75]. The SWNTs have been injected in Vx2 tumors and induced the necrosis of all
tumors within 5 min of RF field exposure. Regions of necrosis were identified with 2–5 mm
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borders. It is important to highlight that SWNTs alone or RF field exposure alone did not induce
any measurable tumor necrosis or liver injury. In another study, the authors demonstrated
that SWNTs injected into malignant cells may allow noninvasive RF field treatments to
produce lethal thermal injury to the malignant cells. In a similar study conducted by Raoof,
Hep3B and HepG2 cells were injected to kentera modified SWNT and were exposed to an 800
W RF field. Significant thermal cytotoxicity was demonstrated with 2 min of RF exposure in a
concentration-dependent manner [75]. Also the group conducted by Cardinal obtained similar
results after they exposed a rat model (with HepG2 cells) into an RFA field following the
administration of AuNPs [76]. In a study conducted by Glazer ES, AuNPs utilized cetuximab-
conjugated AuNPs in nonionizing RF radiation to investigate human pancreatic xenograft
destruction in a murine model [73]. The result showed an increased apoptosis with decreased
viability of tumoral cells after treatment with cetuximab-conjugated AuNPs and RF field
exposure. Another important observation was the lack of injury to other organs.

It becomes a reality the fact that nanotechnologies will play a major role in new antitumoral
therapies. In the last years, the thermal approach using nanoparticles, nanoemulsion, pH
responsive nanoparticles, nanoparticles combined with radiation, and nanovectors for drug
delivery have been the most evaluated nanoparticle-based cancer treatment methods. The
ability of SWNTs to convert NIR laser radiation into heat, due to the photon–phonon and
electron interactions, provides the opportunity to create a new generation of immunoconju‐
gates for cancer phototherapy. In 2011, Iancu et al. demonstrated that the HepG2 cells treated
with multi-walled carbon nanotubes (HSA–MWCNTs) following laser irradiation had a higher
necrotic rate compared with normal cells [77].

5.3. Thermosensitive liposomes currently in advanced clinical trials

Discovered in 1964 by Alec Bangham, liposomes are self-assembling, biocompatible, biode‐
gradable, and nonimmunogenic nanovesicles consisting of a lipid bilayer enclosing an aqueous
phase [78]. The features of liposomes allow for a wide range of drug delivery; consequently,
hydrophilic drugs can be trapped in the liposome’s aqueous compartments while the lipid
bilayer can be utilized to incorporate hydrophobic drugs. Due to the discontinuous endothelial
lining and the lack of efficient lymphatic drainage of the tumor, the extravasations of liposomes
into the interstitial space is increased and the liposomes can accumulate in the tumoral tissue;
therefore, they will function as a sustained drug-release formula [79]. Immordino mentioned
for the first time this process and named it as EPR effect [80]. Moreover, the combination
(liposome–chemotherapy) changes drug pharmacokinetic properties and minimizes its
systemic toxicity. Furthermore, the drug prevents the entrapped drug from premature
inactivation in the circulation. The main issue of liposomes is that they are rapidly phagocy‐
tized by the mononuclear phagocyte (MP) and removed from the blood circulation after
intravenous injection. To avoid this inconvenience, the authors developed a grafting poly-
(ethylene glycol) (PEG) or oligoglycerol-moieties on the surface of the liposomal carrier. By
reducing MP system uptake [80], long-circulating PEGylated liposomes can passively accu‐
mulate into solid tumors undergoing angiogenesis. Another improvement was the incorpo‐
ration of additional lipid compounds that further enhance membrane permeability at the phase

Old versus New – Tumor Ablation versus Tumor Nanoablation with Particular Emphasis on Liver Tumors
http://dx.doi.org/10.5772/61008

235



transition temperature of the lipid membrane (lysolipid or oligoglycerol-polyglycol) [79, 81–
84]. The result was a long blood circulation time in vivo. These types of low temperature
thermosensitive liposomes (LTSLs)[79] are injected just prior to or during the HT treatment,
with immediate release of their contents upon arrival in the heated tumor area.

The main limit of this type of therapy remains the intimate relation between the biodisponi‐
bility of liposomes and the vascular permeability. It is important to underline that vascular
permeability between different tumor types and even within tumors can be highly variable,
resulting in unpredictable liposome extravasation into the tumor tissue [85, 86]. Due to the
combination of sub-optimal drug release kinetics and unpredictable vascular permeability,
only modest results in the therapeutic index of chemotherapy have been obtained using
liposomes for target drug delivery [87].

An important progress in the use of liposomes was the invention of small, 100 nm-long
circulating liposomes that have a long blood-residence time as their main characteristic. These
favorable circulation properties resulted in an enhanced accumulation of liposomal drugs in
the tumor area.

To date, several liposomal products have been approved for clinical use: liposomes with
doxorubicin (Doxil/Caelyx, Myocet, and Lipo-Dox) for treatment of Kaposi’s sarcoma, ovarian
cancer, breast cancer, and multiple myeloma; liposomes with daunorubicin (DaunoXome) for
treatment of Kaposi’s sarcoma; and liposomes encapsulating vincristine (Marqibo) for acute
lymphoblastic leukemia [88].

Hyperthermia represents the heating of tumors to temperatures of up to 43°C. The main effect
consists of an increased tissue perfusion, oxygenation and blood flow velocity, and microvessel
permeability contributing to increased antibodies, drug, or nanoparticles levels in tumors at
clinically tolerated temperatures [89–92]. Nowadays, hyperthermia for triggering TSLs is
applied locally and in a noninvasive way from an external source to a targeted area using
focused ultrasound technology (FUS) and high-intensity focused ultrasound (HIFU), or
invasively using ARF or MWA [93, 94]. For superficial tumors, the authors used regional HT
and external antennas or applicators that emit microwaves or radio waves. Localized HT is
used to destroy deeply located tumors. The antennas (microwave antennas, radiofrequency
electrodes) are inserted directly within the tumor. The major limit of this heating method is
the tumor diameter (less than 5 cm). Focused ultrasound is used to heat small lesions (mm).
In a recent study Dromi et al. combined LTSLs with hyperthermia from FUS [95]. They
obtained an increased drug discharge at the tumoral area and the most important tumor had
a delayed growth.

The newest heating method is magnetic resonance guided focused ultrasound technology
(MRgFUS). These combinations allow simultaneous treatments, imaging to guide the treat‐
ment and MR thermometry to noninvasively monitor temperature changes and assure
feedback in real-time [87]. In two recent studies, the authors used MRgFUS and drug-loaded
liposome in rat [96] and rabbit [97] models. The results showed that the combination MRgFUS
with drug loaded liposome assured the greatest uptake of the drug when compared to controls
(liposome only and/or free drug). Several studies have analyzed the combination of RFA and
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the non-thermally sensitive liposomal doxorubicin, showing larger ablation zones compared
with RFA alone, both at the preclinical and clinical levels. The suggested mechanisms for the
synergistic effect of liposomal doxorubicine and RFA are as follows: increased markers of DNA
breakage, oxidative stress and apoptosis, increased heat-shock protein 70 in the areas sur‐
rounding the ablation zone after combination treatment [98, 99]. In addition, Ahmed and
colleagues observed that after combining RFA with Doxil, the intratumoral drug uptake
increased, while the dose of doxorubicin necessary for tumor destruction decreased [100].

In order to optimize the effects of liposomes, the use of TSLs that trigger the release of the drug
at the edge of the heated zone was suggested [101–103]. These TSLs contain thermosensitive
lipids in their bilayer, undergoing a gel-to-liquid phase transition at the desired temperature
(usually between 41°C and 43°C), after which the drug enters tumor cells in free form. This
conversion is the consequence of a conformational change in the alkyl chains of the lipids,
which leads to an increase in the volume occupied by the hydrocarbon chains in the membrane
and thus an increase in the permeability of the lipid bilayer [79]. Common TSLs have been
composed from 1, 2-dipalimitoyl-sn -glycero-3-phosphocholine (DPPC) as the primary lipid,
because its phase transition temperature (Tm) occurs at 41.5°C.

In 2009, TSLs containing Dox known as ThermoDox®, became the first heat-triggered release
formula of the anthracycline doxorubicin that reached pharmaceutical development (Celsion
Corporation, Columbia, Maryland, USA) and clinical application [104–105]. Thermodox® is
composed of DPPC:MSPC:DSPE-PEG2000 (86:10:4 molar ratio) and in combination with mild
was used in the Phase III clinical trial to treat hepatocellular carcinoma and the Phase II trial
in combination with local mild for patients with recurrent breast cancer of the chest wall and
colorectal liver. After intravenous administration, Thermodox® concentrates in the liver where
it rapidly permeates HCC lesions and their vasculature. Regarding safety and tolerability, in
Phase I ThermoDox® was associated with low side effects and the maximum tolerated dose
was established at 50 mg/m2. According to the Phase I trial, RFA and ThermoDox® may be
used as a front-line therapy for HCC > 3 cm [106]. Unfortunately, in 2013 Celsion Corp. was
unable to demonstrate the effectiveness of ThermoDox® in the improvement of free survival
[79]. It seemed that the temperature of drug release is different between in vivo and in vitro. In
a study conducted by Hossann, about 90–100% Dox release from LTSLs in plasma or serum at
39–40°C resulted in 2°C below the theoretical temperature [107]. Therefore, it might be that all
drug content is released from the LTSLs below 41–42°C, which means that the drug is
discharged in blood circulation before the accumulation of LTLS in the target heated tumoral
area [79]. In a recent study, after the incorporation of lysophosphatidylcholines (lyso-PC, e.g.
1-stearoyl-2-hydroxy-sn-glycero-3-phosphocholine, MSPC) into the liposomal membrane, it
was possible to further accelerate the encapsulated drug at Tm [108].

Fine tunings in drug release kinetics of LTSLs was demanded to assure an improved dug
release [109]. In 2014, Chen J evaluated [79] high temperature triggered TSLs (HTSLs) com‐
posed of DPPC and hydrogenated soy phosphatidylcholine (HSPC). For these types of
liposomes, the theoretical temperature of discharge of HTSLs was set at 44°C; thus, the body
temperature had less influence on the drug release from the vesicles. The result of this study
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was encouraging. Compared to conventional LTSLs, the new formula of HTSLs was associated
with higher stability and less content discharge to the heated tumor area.

Several authors recommended the attaching of targeting ligands to the nanoparticles to assure
a more specific localization and retention of the liposomal drug in tumors. Another reason to
utilize these ligands is the capacity of promoting active cellular uptake of the drug-containing
nanoparticles through binding to targeted internalizing receptors [110-112].

The cationic TSLs, called CTSLs (cationic thermosensitive liposome) is a new class of LTSL that
contains a cationic lipid in its membrane. The CTSLs are absorbed by vascular endothelium
and tumor cells; afterwards, they release their contents upon applying a temperature trigger
[113]. It seems that, once accumulated, rapid drug release by intracellular cationic liposomes
may achieve high intracellular concentrations of drug, thereby maximizing damage to both
the endothelial cell and tumor cell compartments [113]. To evaluate tumoral accumulation of
liposomes, radionuclides and nuclear imaging may be used. Even if the authors have obtained
good results, in the future these types of treatment will have to demonstrate their therapeutic
potential in clinical practice.

6. Conclusions and future perspectives

As we have already seen, there are several types of thermal-based therapies that have shown
modest efficacy in HCC treatment. Unfortunately, simple heating techniques have trouble
discriminating between tumors and surrounding healthy tissues. Moreover, the use of thermal
therapies in large HCC is of limited value. In order to overcome these limitations many groups
have investigated the use of NPs to increase the tumor ablation zone.

There are many types of NPs, each type with its own major advantages and disadvantages.
Based on currently available literature, we could not say which of the above-described NPs is
better for the long-term management of HCC. Unfortunately, there are no studies comparing
AuNPs with carbon nanoparticles or magnetic nanoparticle. The use of NPs such as AuNPs,
carbon nanoparticles, and magnetic nanoparticles have shown great promise as light absorbers
for cancer therapy, demonstrating an ability to destroy cancerous lesions both in vivo and in
vitro [31].

We believe that an ideal NP should be a good light absorber in order to achieve complete
ablation of the tumor tissues. To avoid systemic toxicity, the NPs should show selective
accumulation in target tissue with minimal nonspecific distribution. Not at least, they should
be rapidly cleared from the body after their mission to prevent redistribution into off-target
sites [38].

Future research should focus on the development of multifunctional NP. For instance,
theranostic agents could improve both the diagnostic accuracy and therapy of HCC. Small
HCC means better outcomes. The majority of NPs are functionalized to target the tumor cells,
leaving the tumor stroma unaffected. A pro-tumorigenic stroma or better said a pro-tumori‐
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genic microenvironment could lead to tumor recurrence, therefore dual targeting of both
tumor cells and tumor stroma could overcome these limitations.

Specific targeting in HCC is still a major problem. There are many molecular pathways
involved in HCC development. Moreover, not all HCC express the same receptors on the cell
surface. In order to specifically deliver NP in the tumor area, immunohistological staining must
be performed. This is hard to perform, particularly in HCC, since liver biopsy is no longer
recommended for HCC diagnosis. Maybe it is time to go back where we started and reconsider
the role of liver biopsy in HCC management.

In the last 50 years, despite tremendous advances in our knowledge of the molecular mecha‐
nism of cancer, there has been no change in the age-adjusted mortality from cancer [39]. This
data clearly suggests that what we are doing now is wrong and an individualized treatment
could bring new hopes for HCC patients.
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