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Abstract

In this chapter, a three-dimensional phenomenological constitutive model for the
simulation of shape memory alloys is introduced. The proposed macromechanical
model is based on microplane theory. Microplane approach is chosen to have limited
material parameters in that all of those are measurable by simple tests. User material
subroutine is developed to implement the proposed model in a commercial finite
element package. NiTi hollow tube specimens are under various loading conditions
in order to experimentally study the superelastic response of shape memory alloys.
Comparing experimental data with numerical results in simple tension and pure
torsion as well as proportional and nonproportional tension-torsion loadings
demonstrates the capability of proposed model in constitutive modeling of shape
memory alloys.

Keywords: Shape memory alloy, phenomenological model, microplane, proportion‐
al, nonproportional, experiment

1. Introduction

Shape memory alloys (SMAs) can recover their original shape when subjected to thermome‐
chanical loading. If the original shape is remembered under external load, it is in superelastic
form, and when the original shape is remembered under thermal load, it is in shape memory
effect form. Commercial applications of these materials get more attention in recent years.
Some of these unique properties are including biocompatibility, good mechanical properties
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(very similar to the different parts of human body), hysteresis damping, excellent fatigue
properties in cyclic loads, and strain hardening. These characteristics make them attractive for
diverse fields of application such as biomedical tools (blood clot filters, vascular stents,
orthodontic arches), aerospace applications (space shuttle, morphing aircraft, hydraulic
fittings and couplings for airplanes), automotive (engines and actuators for smart systems,
thermostats), robotic (human robots, artificial muscle), eyeglass frames, cellular phone
antennae, coffee maker, and so on [1-9].

In order to design new application of shape memory alloys, basic understanding behavior of
these materials under different conditions is essential. Different aspects of SMAs are identified
with constitutive modeling. Most models are based on thermodynamics using free energy
formulation. However, some models are based on micromechanics concepts or macrome‐
chanics model [10]. Micromechanic models deal with crystallographic texture in microscale
response of SMAs [11-17]. These models are used to model the phase transformation and grains
propagation and consequently are appropriate for modeling the response of SMAs at the
microscale [18]. In order to study SMAs polycrystalline, crystallographic texture is a key
property. A micromechanic model for single crystals is used to study polycrystal structures
[19]. In the micromechanics models, a volume fraction coefficient is defined for variants, and
transformation strain is obtained from martensite variants by averaging procedure.

Even though micromechanical models reflect microscopic physical nature of SMAs, they are
not suitable for finite element implementation and structural analysis. Therefore, macrome‐
chanical models based on phenomenological findings are proposed. These models are efficient
in modeling the thermomechanical behavior of SMAs in different engineering applications. In
a macromechanic model, macro-scale response of SMAs is considered [20-24]. Phenomeno‐
logical models belong to a class of macromechanic models that are defined by macroscopic
energy functions. These models are calibrated from material characterization and experimental
data that depend on the internal variables.

Macrophenomenological  models  are  categorized  to  one-  and  three-dimensional  models.
One-dimensional models are used for the simulation of wire and bar samples under uniaxial
loads, while 3-D models can be used for complicated devices under complex loadings. Since
most SMA devises are used in multidimensional or under complex loadings, one-dimension‐
al  models  should  extend  to  three-dimensional  models.  Three-dimensional  constitutive
modeling is an important step in analysis and design of SMAs in different industries. Some
of  the  existing  macro  phenomenological  models  with  specifications  and  limitations  are
summarized in Table 1.

Group Formulation Characteristics Limitation

Tanaka [25] Helmholtz free
energy

(1) 1-D model
(2) Exponential phase transformation equation

3-D, shape memory

Liang and Rogers [26] Helmholtz free
energy

(1) 1-D model, extension of the Tanaka model
(2) Cosine phase transformation equation

Shape memory
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Group Formulation Characteristics Limitation

Brinson [27] Helmholtz free
energy

(1) 1-D model, martensite volume fraction separate
into two parts induced by stress and temperature
(2) Cosine phase transformation equation
(3) Different elastic moduli for austenite and
martensite

3-D

Auricchio et al. [22, 28] Based on phase
diagram

(1) 1-D and 3-D model
(2) Finite-strain regime, rate-dependent behavior
(3) Asymmetry behavior and numerical
implementation

Shape memory

Lagoudas et al.
[2, 20, 29-31]

Gibbs free energy (1) 3-D model, exponential phase transformation
equation
(2) Tension-compression asymmetry behavior
(3) Nonassociated flow rule during reverse
transformation

Depend on the
specific alloy

Panico and Brinson [32] Helmholtz free
energy

(1) 3-D model, extension of the Lexcellent model
[33, 34]
(2) Variant reorientation modeling under
nonproportional loadings
(3) Computational modeling of porous SMAs

Depend on the
specific alloy

Helm and Haupt [35] Free energy (1) 3-D model based on continuum
thermodynamics framework
(2) Simulation of nonproportional loading
(3) Finite strain regime

Depend on the
specific alloy

Oliveira et al. [36] Helmholtz free
energy

(1) 3-D model
(2) Based on Fremond’s method
(3) Asymmetric behavior and based on plasticity

Unmeasurable
material parameter

Brocca et al. [37] Microplane theory (1) 3-D model
(2) Constant module for different phases
(3) Simulation of nonproportional loading

Fundamental concept
need to be revised

Arghavani et al. [21, 38] Helmholtz free
energy

(1) 3-D model
(2) Finite deformations
(3) Martensite volume fraction is a scalar parameter
and variant orientation is a tensor

Unmeasurable
material parameter

Saleeb et al.
[23, 39]

Gibbs free energy (1) 3-D model
(2) Deviation from normality and reorientation
under nonproportional loading
(3) Cyclic behavior

Unmeasurable
material parameter

Mehrabi et al.
[40, 41]

Gibbs free energy (1) 3-D model, microplane formulation Under investigation

Modeling and Simulation of Shape Memory Alloys using Microplane Model
http://dx.doi.org/10.5772/61124

205



Group Formulation Characteristics Limitation

(2) Anisotropic behavior under nonproportional
loadings
(3) Tension-compression asymmetry and numerical
implementation

Patoor et al.
[15, 39, 42]

Gibbs free energy (1) 3-D model
(2) Tension-compression asymmetry
(3) Cyclic behavior and nonproportional loading

Unmeasurable
material parameter

Zaki et al. [43-46] Helmholtz free
energy

(1) 3-D model
(2) cyclic and asymmetry behavior
(3) Capture plastic deformations

Unmeasurable
material parameter

Table 1. Macromechanical models

One-dimensional constitutive model was proposed by Tanaka [47] based on exponential phase
transformation equation. Liang and Rogers [26] proposed a one-dimensional phase transfor‐
mation based on cosine type. Martensite volume fraction suggested by Liang and Rogers is
modified by Brinson [27] into two different parts. These two fractions included martensite
volume fraction induced by stress and temperature. This assumption was done to distinct
superelastic behavior from shape memory effect. Boyd and Lagoudas [30] had developed 1-D
model to 3-D constitutive model. For this development, they used effective stress and strain
in phase transformation equations. A three-dimensional constitutive model includes twinned
martensite and detwinned martensite. In addition, multidimensional models could predict
behavior of shape memory effect as well as superelastic behavior. A 3-D model based on the
phase transformation equation of exponential type was proposed by Peng et al. [48]. They used
classical plastic theory and defined equivalent stress and strain for modeling SMA response.
Reali et al. [22] proposed a 3-D constitutive model, which is capable of simulating superelastic
and shape memory behavior. Proposed model is developed within the framework of thermo‐
dynamics by defining a scalar and a tensorial internal variable [21]. The 3-D phenomenological
model demonstrates the ability of developed model in proportional and nonproportional
loadings. In most existing 3-D phenomenological constitutive models, some internal variables
are necessary to be calibrated. In calibration process, most models estimate various material
parameters in which some of those are not simply measurable by experimental tests. Among
various phenomenological models, the microplane model is utilized due to its simplicity and
the limited material parameters needed for calibration.

The behavior of some quasi-brittle materials, such as concrete, soil, and stiff foams, is studied
using the microplane method [49-52]. A one-dimensional phase transformation model using
microsphere formulation was proposed by Ostwald et al. [53] to simulate the polycrystalline
materials. The three-dimensional model based on the microplane model was proposed by
Brocca et al. [37]. In the microplane model, all material parameters can be determined from
uniaxial tension tests at different temperatures. The microplane model considers 1-D equations
for some directions on arbitrary plane and is extended to 3-D model using homogenization
process [54]. Mehrabi et al. [40, 41, 55] developed this idea within the framework of thermo‐
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dynamics and proved the capability of the proposed model under multiaxial loadings. Some
unique characteristics of SMAs such as deviation from normality in nonproportional loading,
anisotropic behavior, and tension-compression asymmetry behavior of SMAs were studied by
Mehrabi et al. [56, 57] using the microplane approach.

The proposed microplane model is implemented in a standard commercial finite element
package. Some experimental studies under tension, torsion, proportional, and nonpropor‐
tional loadings have been performed on SMA hollow tubes to assess the proposed model
[58]. The numerical results extracted from the microplane model compared with experimental
data demonstrate the ability of the microplane approach.

2. Phenomenological constitutive modeling

In this section, phenomenological model based on microplane theory is used to describe SMAs
material behavior in a simple way. The general definition of the microplane approach is that
the 1-D constitutive law is defined for associated normal and tangential stress/strain compo‐
nents on any microplane at each material point. The generalization of 1-D equation to 3-D
model is done by homogenization process. In microplane formulation, strain tensor is in closed
form of stress tensor. Mehrabi and co-workers have done a thorough research on 3-D phe‐
nomenological model based on microplane theory to demonstrate their model features [40, 41,
55, 57, 59, 60]. The three main steps of the microplane model are summarized in Figure 1.

Figure 1. General schematic of the microplane model based on the volumetric-deviatoric split.

For any plane on the shape memory alloys, microscopic Gibbs free energy (Gmic) is defined as

( )mic mic
V DG G , , ,ˆ Ts x= σ (1)
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Here, σV  and  σDare stress components on each microplane, T is temperature, and ξ is mar‐
tensite volume fraction, which is defined as internal variable [27, 61].

Macroscopic strain tensor is defined as [41]
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These integrals calculated on different orientations of hemisphere at a material point. Projec‐
tion tensor Dev and the transpose of the deviatoric projection tensor Dev T are defined as [62]

dev T dev: . , : .= =Dev I Dev In n (3)

in which n represents the unit normal vector on the plane and I dev is deviatoric projection
tensor (forth-order identity tensor) that is defined as follows

dev T3 .
2

d
p W

= WòI Dev Dev   (4)

The local 1-D constitutive laws in the volumetric and deviatoric components of the strain for
SMAs are defined as

*V D
V D0 0

V D

,  
E E
s

e e x= = +Rσ
ε (5)

where  ε * is the axial maximum recoverable strain, EV
0and ED

0 are the local linear elastic
modulus, which are a function of the global elastic constants. Transformation strain is only
initiated in deviatoric direction of microplanes.

Here a standard procedure in the microplane model [57] is used to generalize the 1-D equations
to 3-D formulation. Macroscopic strain tensor for shape memory alloys is calculated as

( ) ( )
T * T3 1 2 1 3: . : .  

2 2
d d

E E
u u e x

p px xW W
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= + = Ä + W + Wç ÷ç ÷

è ø
ò òV V Dev Dev Dev Re trε ε ε σ σ (6)
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where R is a vector that is defined in reference [41]. In order to numerically calculate these
integrals, an integration technique consisting of 21 Gaussian integration points is utilized
[63].

3. Experimental study

In order to have a robust constitutive modeling, an experimental study of polycrystalline SMAs
gets more attention in recent years. Since some SMA devices experience complex loading paths,
investigation of material behavior under multiaxial loadings is essential. Some of the experi‐
mental findings are summarized in Table 2. In this table, some of the famous groups and
loading schemes on the specific materials are introduced. As it is shown, most experimental
studies are on the NiTi materials and copper based SMAs.

Group Specification Material

Sittner et al. [64, 65] Tension-Torsion CuAlZnMn

Jacobus et al. [66, 67] Triaxial stress CuZnAl, NiTi

Tokuda et al. [68, 69] Tension-Torsion CuAlZnMn

Lim and McDowell [70] Tension-Torsion NiTi

McNaney et al. [71] Tension-Torsion NiTi

Grabe and Bruhns [72, 73] Tension-Torsion NiTi

S. Arbab-Chirani and C.
Lexcellent [74, 75]

Tension-Pressure-Torsion CuAlBe, NiTi

Wang et al. [76, 77] Tension-Torsion NiTi

Reedlunn et al. [78] Tension-Pressure-Bending NiTi

Mehrabi et al. [55-58] Tension-Torsion NiTi

Table 2. Experimental study

A vast experimental study of the NiTi hollow tubes under uniaxial tension, pure torsion, and
proportional and nonproportional tension-torsion were done by the author in the Dynamic
and Smart Systems Laboratory at the University of Toledo, USA. The Johnson Matthey
provided NiTi tube specimens, and the experimental tests were performed using BOSE
ElectroForce machine. All mechanical tests were performed at room temperature, and in order
to have an isothermal condition, the loading rate was below 10-3s-1 [76]. The experimental
results are compared with numerical findings to show the capability of the proposed approach
in the next section.
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4. Numerical simulation

In order to use microplane approach to simulate real SMA devices, the proposed model is
implemented and developed into the FE code. The computational algorithm is outlined in
Table 3.

1. Import the strain increment and the stress evaluated from ABAQUS
2. Check for transformation according to the phase diagram and compute the transformation strain if necessary
3. Compute the elastic strain
4. Compute the total strain
5. Compute the Jacobian matrix
6. Compute the incremental stress tensor
7. Update stress
8. End the program

Table 3. Algorithm for implementation of constitutive modeling of SMA

Tensile and torsional tests are conducted on the NiTi tubes to investigate the capability of the
microplane approach in capturing the behavior of SMAs. The material parameters calibrated
for the microplane model are listed in Table 4 [55].

Symbols Values Units

EA 20,000 MPa

EM 13,300 MPa

υA =υM 0.33

T f
M -32 °C

Ts
M -15 °C

Ts
A -5 °C

T f
A 15 °C

σs
cr 20 MPa

σ f
cr 100 MPa

CM 6 MPa / °C

CA 8.2 MPa / °C

ε * 0.038

Table 4. Material properties

Superalloys210



Figures 2 and 3 represent comparison between the axial stress-strain responses of the micro‐
plane model and the experimental results as well as shear stress-strain response at room
temperature. These comparisons confirm the fact that material parameter calibration process
is done as well. Calibrated material parameters are constant during numerical study of
proportional and nonproportional loadings.
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Figure 2. Comparison of the microplane model with experimental result [55].

To demonstrate other aspects of the microplane model, proportional tension-torsion loading
is experimentally performed. Proportional loading path is shown in Figure 4(a). According to
this loading path, axial stress and shear stress are increasing in step 1 and are decreasing to
zero during step 2. The experimental findings are compared with the numerical results for
axial stress-strain and shear stress-strain in Figures 4(b) and (c). The studied proportional
loading demonstrates the capability of the proposed model.

In order to show the capability of the proposed approach in multiaxial loading, one complex
loading path is considered here. In Figure 5, nonproportional tension-torsion loading path is
shown. At first, shear stress increases while axial stress is zero. During step 2, shear stress is
constant, and axial stress increases. Then, shear stress and axial stress are recovered to zero,
respectively. Experimental results are compared with microplane numerical results in Figure
6. Comparison of results shows that the proposed model has good agreement with experi‐
mental results in both axial stress-strain and shear strain-axial strain. It is obvious that a
discrepancy between experimental results and numerical results in the shear stress-strain
curve is found. As the proposed model could predict general behavior of SMAs in different
loadings, this negligible discrepancy is acceptable.
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Figure 3. Comparison of the microplane model with experimental result [55].
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Figure 4. Comparison of the microplane model with experimental result in proportional loading: (a) proportional load‐
ing path, (b) axial stress-strain, (c) shear stress-strain [55].
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Figure 5. Nonproportional loading path.
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Figure 6. Comparison of the microplane model with experimental result in nonproportional loading: (a) axial stress-
strain, (b) shear stress-strain, (c) axial strain-shear strain [57].

Modeling and Simulation of Shape Memory Alloys using Microplane Model
http://dx.doi.org/10.5772/61124

213



In recent years, some biomedical applications [5] such as stent [79], catheters [80], muscle [81],
artificial muscles [82], and shape memory implants [83] are produced by SMAs. Therefore, the
simulation of biomedical devices using 3-D finite element method [84] is an interesting topic
that leads to future works.

5. Conclusion

Constitutive modeling of shape memory alloys (SMAs) is a key property that leads researchers
to find new engineering applications. Phenomenological modeling in macroscopic frame is an
appropriate way for modeling the thermomechanical response of SMAs. One of the unique
constitutive models based on the microplane model is utilized to investigate behavior of SMAs.
Material parameters defined in the proposed model are limited and are calibrated with simple
experimental tests. The proposed model is developed to implement and analyze in a finite
element package. Some multiaxial loadings as proportional and nonproportional loadings are
investigated with constitutive model. Numerical results in comparison of experimental
findings show the microplane approach ability in simulation of SMAs behavior.
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