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Abstract

The general mathematical formulation of the equilibrium statistical mechanics based
on the generalized statistical entropy for the first and second thermodynamic
potentials was given. The Tsallis and Boltzmann-Gibbs statistical entropies in the
canonical and microcanonical ensembles were investigated as an example. It was
shown that the statistical mechanics based on the Tsallis statistical entropy satisfies
the requirements of equilibrium thermodynamics in the thermodynamic limit if the
entropic index z=1/(q-1) is an extensive variable of state of the system.

Keywords: Equilibrium statistical mechanics, Tsallis nonextensive statistics

1. Introduction

In modern physics, there exist alternative theories for the equilibrium statistical mechanics [1,
2] based on the generalized statistical entropy [3-12]. They are compatible with the second part
of the second law of thermodynamics, i.e., the maximum entropy principle [13-14], which leads
to uncertainty in the definition of the statistical entropy and consequently the equilibrium
probability density functions. This means that the equilibrium statistical mechanics is in a
crisis. Thus, the requirements of the equilibrium thermodynamics shall have an exclusive role
in selection of the right theory for the equilibrium statistical mechanics. The main difficulty in
foundation of the statistical mechanics based on the generalized statistical entropy, i.e., the
deformed Boltzmann-Gibbs entropy, is the problem of its connection with the equilibrium
thermodynamics. The proof of the zero law of thermodynamics and the principle of additivity

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



in general serves as a primarily problem. The equilibrium thermodynamics is a phenomeno‐
logical theory defined on the class of homogeneous functions of the zero and first order [15].

The formalism of the statistical mechanics agrees with the requirements of the equilibrium
thermodynamics if the thermodynamic potential, which contains all information about the
physical system, in the thermodynamic limit is a homogeneous function of the first order with
respect to the extensive variables of state of the system [14, 6-7]. It was proved that for the
Tsallis and Boltzmann-Gibbs statistics [6, 7], the Renyi statistics [10], and the incomplete
nonextensive statistics [12], this property of thermodynamic potential provides the zeroth law
of thermodynamics, the principle of additivity, the Euler theorem, and the Gibbs-Duhem
relation if the entropic index z is an extensive variable of state. The scaling properties of the
entropic index z and its relation to the thermodynamic limit for the Tsallis statistics were first
discussed in the papers [16, 17].

The aims of this study are to establish the connection between the Tsallis statistics, i.e., the
statistical mechanics based on the Tsallis statistical entropy, and the equilibrium thermody‐
namics and to prove the zero law of thermodynamics.

The structure of the chapter is as follows. In Section 2, we review the basic postulates of the
equilibrium thermodynamics. The equilibrium statistical mechanics based on generalized
entropy is formulated in a general form in Section 3. In Section 4, we describe the Tsallis
statistics and analyze its possible connection with the equilibrium thermodynamics. The main
conclusions are summarized in the final section.

2. Equilibrium thermodynamics

2.1. Thermodynamic potentials

In the equilibrium thermodynamics, the physical properties of the system are fully identified
by the fundamental thermodynamic potential f = f (x1, …, xn) as a real-valued function of n
real variables, which are called the variables of state. The macroscopic state of the system is
fixed by the set of independent variables of state x =(x1, …, xn). Each variable of state xi, which
is related to the certain thermodynamic quantity, describes some individual property of the
system. The first and the second partial derivatives of the thermodynamic potential with
respect to the variables of state define the thermodynamic quantities (observables) of the
system, which describe other individual properties of this system. The first differential and
the first partial derivatives of the fundamental thermodynamic potential with respect to the
variables of state can be written as

1
,      ,

=

¶
= =

¶å i i

n

i
i i

fdf u dx u
x (1)

Recent Advances in Thermo and Fluid Dynamics304



where the vector u =(u1, …, un). Equation (1) is the fundamental equation of thermodynamics
and expresses the first law of thermodynamics. The second differential of the fundamental
thermodynamic potential is written as a quadratic form

2
2

1 1
,      ,

= =

¶
= =

¶ ¶åå
n n

ij i j ij
i j i j

fd f a dx dx a
x x (2)

where aij is the element of the symmetric matrix A of the dimension (n ×n). The symmetry
conditions for the matrix elements, aij =a ji, lead to the equalities (Maxwell relations)

        ( , 1, , ).
¶ ¶

= = ¼
¶ ¶

j i

i j

u u i j n
x x (3)

If the function f (x1, …, xn) is convex (concave) on s ≤n variables of state, then the quadratic
form (Eq. (2)) in s variables is positive definite (negative definite). The quadratic form (Eq. (2))
in s variables for which aij =a ji is positive definite (negative definite) if [18]
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for every nonzero vector x, where ξ =1 for the positive definite quadratic form and ξ = −1 for
the negative definite quadratic form. Note that the fundamental thermodynamic potential f ,
the set of variables of state x, and the vector u constitute the complete set of 2n + 1 variables,
which completely define the given thermodynamic system.

The first thermodynamic potential g = g(y)  is a function of a new set of independent variables
of state y =(u1, …, um, xm+1, …, xn), which is obtained by the Legendre transform from the
fundamental thermodynamic potential f (x1, …, xn) changing m≤n variables of state
(x1, …, xm) with their conjugate variables (u1, …, um). The set of unknown variables x1, …, xm

is a solution of a system of m differential equations [19]:

     ( 1, ).,¶
=

¶
¼=i

i

f u i m
x (5)

Solving this system of equations, we obtain m functions of the variables of state,
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1 1( , , , , , )     ( 1, , ).+¼ ¼ == ¼i i m nmu u x ix x mx (6)

Substituting Eq. (6) into the fundamental thermodynamic potential f  and using the Legendre
transform, we obtain [19]

1 1
.

= =

= - = -
¶
¶å å

m

i i i
i i

m

i
g f x uf xf

x (7)

This Legendre transform is always well defined when the fundamental thermodynamic
potential f (x1, …, xn) is a convex function of the variables (x1, …, xm), i.e., the quadratic form

∑i , j=1
m aijd xid xj is positive definite [19]. To obtain this, it is necessary and sufficient to satisfy the

relations (4) for s =m [18].

The first differential and the first partial derivatives of the first thermodynamic potential g  can
be written as

1
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(8)

The second differential and the second partial derivatives of the first thermodynamic potential
g  are

2
2
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¶ ¶
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gd g b dy dy b
y y (9)

The symmetry conditions for the matrix elements, bij =b ji, impose the following equalities
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If the function g(u1, …, um, xm+1, …, xn) is convex (concave) on s ≤n variables of state, then the
quadratic form (Eq. (9)) in s variables is positive definite (negative definite). The quadratic
form (Eq. (9)) in s variables for which bij =b ji is positive definite (negative definite) if [18]
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for every nonzero vector y, where ξ =1 for the positive definite quadratic form and ξ = −1 for
the negative definite quadratic form.

The Legendre transform (Eq. (7)) is involutive [19], i.e., if under the Legendre transformation
f  is taken to g , then the Legendre transform of g  will again be f . The fundamental thermo‐
dynamic potential f (x1, …, xn) can be obtained from the first thermodynamic potential
g(u1, …, um, xm+1, …, xn) by the Legendre back-transformation

1 1
,

= =

= - = +
¶
¶å å

m

i i i
i i

m

i
f g u g xg u

u (12)

where m functions ui =ui(x1, …, xn), i =1, …, m are the solutions of the system of m differential
equations

    ( 1, , ).¶
¼= - =

¶ i
i

g x i m
u (13)

This Legendre transform is well defined when the function g(u1, …, um, xm+1, …, xn) is a

convex function of the variables (u1, …, um), i.e., the quadratic form ∑i , j=1
m bijduiduj is positive

definite [19]. To obtain this, it is necessary and sufficient to satisfy the relations (Eq. (11)) for
s =m [18].

The second thermodynamic potential h =h (r) is obtained from the fundamental thermody‐
namic potential f = f (x1, …, xn) by expressing the variable xk  through the set of independent
variables r =(x1, …, xk−1, f , xk +1, …, xn) :

1 1 1( , , , , , , ),- += ¼ ¼k k k nh x x x f x x (14)

where, now, xk  is the second thermodynamic potential and f  is a variable of state. The
condition of independence of the variables of state r  can be written as

Foundation of Equilibrium Statistical Mechanics Based on Generalized Entropy
http://dx.doi.org/10.5772/60997

307



0.¶ ¶ ¶
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Then the first differential and the first partial derivatives of the second thermodynamic
potential h  can be written as
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The second differential and the second partial derivatives of the second thermodynamic
potential h  can be written as

2
2
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hcd h c drdr
r r (18)
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The symmetry conditions for the matrix elements, cij =c ji, impose the following equalities
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2.2. Principle of additivity

In the equilibrium thermodynamics,  all  thermodynamic quantities belong to the class of
homogeneous functions of zero and first order, which imposes the additional constraints
on the thermodynamic system. The homogeneous function of k  th order satisfies the relation
[14, 15, 20]
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( ) ( )1 1 1 1, , , , , , , , , ,l l l+ +¼ ¼ = ¼ ¼k
m m n m m nf x x x x f x x x x (21)

and the Euler theorem1

1
,

=

¶
=

¶å
m

i
i i

f x kf
x (22)

where (x1, …, xm) are extensive variables and (xm+1, …, xn) are intensive variables. Note that
the function f  is extensive if k =1, and it is intensive if k =0.

Let us divide the system into two subsystems: system(1+2) = system(1) + system(2).

Then m -extensive and n −m -intensive variables of state satisfy the additivity relations [6, 15]

( )
( )

1 2 1 2

1 2 1 2

1, , ,

1,= ., 

+

+

= + = ¼

= = + ¼
i i i

i i i

x x x i m

x x x i m n
(23)

The homogeneous function of the first degree (k =1), which is extensive, is an additive function
of the first order [15]

( ) ( ) ( )1 2 1 2 1 2 1 1 1 2 2 2
1 1 1, , , ,, ,+ + +¼ = ¼ + ¼n n nf x x f x x f x x (24)

and the homogeneous function of the zero degree (k =0), which is intensive, is an additive
function of zero order [15]

( ) ( ) ( )1 2 1 2 1 2 1 1 1 2 2 2
1 1 1, , , , , , .+ + +¼ = ¼ = ¼n n nf x x f x x f x x (25)

Note that the zero law of thermodynamics is expressed by Eqs. (21) and (25) when the
temperature T  is a function or the second equation of Eq. (23) when temperature T  is a variable
of state.

3. Equilibrium statistical mechanics

In comparison with the equilibrium thermodynamics, the system in the equilibrium statistical
mechanics is described by two additional elements: the microstates of the system and the

1 In this subsection, the symbol f denotes any function not only the fundamental thermodynamic potential.

Foundation of Equilibrium Statistical Mechanics Based on Generalized Entropy
http://dx.doi.org/10.5772/60997

309



probabilities of these microstates. As in the equilibrium thermodynamics, the macrostates of
the system are fixed by the set of independent variables of state. The thermodynamic potential
is a universal function that depends not only on the macroscopic state variables of the system
but also on the microstates of the system and their probabilities. The extensive thermodynamic
quantities are calculated as averages over the ensemble of microstates. However, the intensive
thermodynamic quantities are defined in terms of the first derivatives of the thermodynamic
potential with respect to the extensive variables of state.

Let us formulate the main statements of the equilibrium statistical mechanics. Let the thermo‐
dynamic potential be a function Y =Y (p1, …, pW ; X 1, …, X n) of W  -independent variables
(p1, …, pW ) and n variables of state (X 1, …, X n). All arguments of the function Y  are inde‐
pendent.2

The first thermodynamic potential Y = g(p1, …, pW ;u 1, …, u m, x m+1, …, x n) is a function of m
intensive variables of state X j =u j ( j =1, …, m) conjugated to the variables (x 1, …, x m) and
n −m extensive variables of state X j = x j ( j =m + 1, …, n). The first thermodynamic potential Y
is related to the fundamental thermodynamic potential f = f (p1, …, pW ; x 1, …, x n) by the
Legendre transform (7) [19]

1
,      .

=

= -
¶

=
¶

å
m

j j

j

j
jY f u fu

x
x (26)

Here and in the following, the first thermodynamic potential will be considered only for the
statistical ensembles for which x 1 =S , X 1 =u 1 =T , and f = E , where S  is the entropy, T  is the
temperature, and E  is the energy.

The second thermodynamic potential Y =h = x k (p1, …, pW ; x 1, …, x k−1, f , x k +1, …, x n) is a
function of n −1 variables of state X j = x j ( j =1, …, n, j ≠k ) and one variable X k = f  for
1≤k ≤n. In the following, the second thermodynamic potential will be associated only with the
microcanonical ensemble (k =1) for which Y = x 1 =S  and X 1 = f = E .

Let Y
i
 and xi

1, …, xi
n be the values of the dynamical extensive variables Y  and x 1, …, x n,

respectively, in the i th microscopic state of the system. Moreover, let us impose an additional
constraint on the variables (p1, …, pW ) [18],

( ) 1 11 , ,
1, 0;, ,, 1,j d d+ +¼ ¼ -¼= =å m m n n

i i
iX X X X

i

n
Wp pp X X (27)

where δx ,x ' is the Kronecker delta for the integer x, x ' and the Dirac delta function for the real
x, x '. In Eq. (27), the variables X i

j = xi
j ( j =m + 1, …, n) are for the first thermodynamic potential,

2 In this section, the thermodynamic quantities are numbered by the index at the top. The index at the bottom of the
variable denotes the microstate of the system.
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and m =0, X 1 = f = E , X i
1 = f i = Ei, and X i

j = xi
j ( j =2, …, n) are for the second thermodynamic

potential.

The ensemble averages for the extensive dynamical variables A can be written as

( ) 1 11 ,
1

,
, ,, ,; , d d+ +¼ ¼ = ¼å m m n n

i i
i iX X X X

i

n
Wp X XA p p A (28)

where Ai is the value of the variable A in the i th microscopic state of the system.

The first and the second thermodynamic potentials, which are the extensive functions of the
variables of state, can also be written as (28)

1 11 ,
1

,
, ; ) ,,, ,( d d+ +=¼ ¼ ¼å m m n n

i i

n
X X XW i iX

i
p pXY YXp (29)

1
       for ,

=

= - =å
m

j j
i i i

j
Y f u x Y g (30)

1 1        for ,= = = =i i iY x S Y x S (31)

where Si and f i are the values of the entropy S  and the fundamental thermodynamic potential
f , respectively, in the i th microstate of the system, which are both determined by Eq. (28).

In the equilibrium statistical mechanics, the unknown probabilities of microstates {pi} are
found from the second part of the second law of thermodynamics, i.e., from the constrained
extremum of the thermodynamic potential (Eq. (29)) as a function of the variables (p1, …, pW )
under the condition that the variables (p1, …, pW ) satisfy Eq. (27). Moreover, it is supposed
that the value of the entropy in the i th microstate of the system is a function of the probability
pi of this microstate, i.e., xi

1 =Si =Si(pi). Then to determine the unknown probabilities {pi} at
which the function Y  attains the constrained local extrema, the method of Lagrange multipliers
[18] can be used

( ) ( ) ( )1 1 1, ,, ; , ; ,, ; ,lj¼ ¼F = - ¼W W Wp X p pX pY p Xp (32)

1 , ;( , )
0     ( 1, ),,

¶F
= =

¼
¶

¼W

i

X ip Wp
p (33)

where λ is an arbitrary constant and the vector X =(X 1, …, X n). Substituting Eqs. (27) and (29)
into Eq. (32), we obtain
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( )0    1, .,l
¶

+ - = = ¼
¶

i
i i

i

YY p i W
p (34)

Substituting Eq. (30) into Eq. (34) and using Eq. (27), we obtain the probabilities related to the
first thermodynamic potential

1
2

1 ,y
=

æ öæ ö
= L - +ç ÷ç ÷ç ÷ç ÷è øè ø

å
m

j j
i i i

j
p f u x

u
(35)

1 1 1, ,
2

1 1,d d y+ +
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æ öæ ö
L - +¼ =ç ÷ç ÷ç ÷ç ÷è øè ø

å åm m n n
i i

m
j j

i ix x x x
i j

f u x
u

(36)

where Λ ≡ϕ(λ)=Λ(u 1, …, u m, x m+1, …, x n) is the solution of Eq. (36) and ψ(x) is a function
related to the given function xi

1 =Si(pi).

Substituting Eq. (31) into Eq. (34) and using Eq. (27), we obtain the probabilities related to the
second thermodynamic potential

( )2

1 ,
, , ,

=
¼i n

p
W f x x (37)

( ) 2 2
2

, , ,
, , , ,d d d¼ ¼=å n n

i i i
f f x

n
x x x

i
W xf x (38)

where pi =ψ(λ) is a constant the same for all microstates of the system. Note that in these
derivations, the conditions ∂ f i / ∂ pi =0, ∂u j / ∂ pi =0 ( j =1, …, m), and ∂ xi

j / ∂ pi =0 ( j =2, …, m)
were used.

Let us consider the first thermodynamic potential. Substituting Eq. (35) into Eq. (26) and using
Eq. (36), we obtain the expression for the first thermodynamic potential as

( ) ( )
( )

1

1

1 1 1

1 1                                      

, , , , , , , , , ,

, , , ., ,
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+ +
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m
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j

m m n m m n

m m n

u u x x u u x x

u u x

Y

x

f

u x
(39)

Then the partial derivatives of the first thermodynamic potential (Eq. (39)) with respect to the
variables of state can be written as
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Here we used the conditions ∂ f i / ∂u k =0, ∂ xi
j / ∂u k =0 ( j =2, …, n) and Eqs. (34) and (36).

The fundamental thermodynamic potential can be written as

1 1, ,
1

.d d+ +

=

= = ¼
¶

-
¶

å å m m n n
i i

m
j

i ij x x x x
j i

Yf Y u p f
u (42)

Let us consider the second thermodynamic potential. Substituting Eqs. (37), (38), and (31) into
Eq. (29), we obtain the expression for the second thermodynamic potential

( ) ( )2, , , ,=¼ i i
nxY f x S p (43)

where pi is determined from Eq. (37) and Y =S . The partial derivatives (Eq. (17)) of the second
thermodynamic potential (Eq. (43)) with respect to the variables of state can be written as

( )
1

1 ln ,                         ,g g
¶¶ ¶

= = - º
¶ ¶ ¶

i i
i

i

S pY W p
f f pu

(44)

( )1 ,ln     2, ,g
=

¶¶ ¶
¼= - = - =

¶ ¶ ¶
i

j
i

j j j
p const

Su Y W j
u x x x

n (45)

where W  is determined from Eq. (38).

Finally, it should be mentioned that the equilibrium statistical mechanics is thermodynami‐
cally self-consistent if the statistical variables (x 1, …, x n), the potentials ( f , g , …), and the
variables (u 1, …, u n) are homogeneous variables of the first- or zero-order satisfying Eqs.
(21)-(25).
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4. Tsallis statistical mechanics

The Tsallis statistical mechanics is based on the generalized entropy which is a function of the
entropic parameter q and probing probabilities pi [3, 4]:

( )1/, 1 ,= = -å z
i i i B i

i
S p S S k z p (46)

where z =1 / (q −1), kB is the Boltzmann constant, and q∈ℝ is a real parameter, 0<q <∞. In the
limit q →1 (z → ± ∞), the entropy (Eq. (46)) recovers the usual Boltzmann-Gibbs entropy
S =∑i piSi, where Si = −kBlnpi [3]. Note that throughout the work, we use the system of natural
units ℏ= c =kB =1.

4.1. Canonical ensemble

The thermodynamic potential of the canonical ensemble, the Helmholtz free energy, is the first
thermodynamic potential g = F , which is a function of the variables of state u 1 =T , x 2 =V ,
x 3 = N , and x 4 = z. It is obtained from the fundamental thermodynamic potential f = E  (the
energy) by the Legendre transform (Eq. (7)), exchanging the variable of state x 1 =S  of the
fundamental thermodynamic potential with its conjugate variable u 1 =T . In the canonical
ensemble, the first partial derivatives (Eq. (1)) of the fundamental thermodynamic potential
are defined as u 2 = − p, u 3 =μ, and u 4 = −Ξ. The entropy (Eq. (46)) for the Tsallis and Boltzmann-
Gibbs statistics in the canonical ensemble can be rewritten as

, , , ,d d d=å i i iV V N N z z i i
i

S p S (47)

1/       (1 )     for ,= - < ¥iz
i i iz p zS (48)

                 fln or .-= = ¥i iS zp (49)

The first thermodynamic potential (Eqs. (26) and (29)), Y = F , for the Tsallis and Boltzmann-
Gibbs statistics can be rewritten as

, , , , ,d d d= - = º -å i i iV V N N z z i i i i i
i

F E TS p F F E TS (50)

( )1/1           for ,= - - < ¥iz
i i i iF E Tz p z (51)
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                  ln   for .= + = ¥ii i pF E T z (52)

Here the constraint (Eq. (27)) in the canonical ensemble is in the form

, , , 1 0.j d d d= - =å i i iV V N N z z i
i

p (53)

Applying the method of Lagrange multipliers (Eqs. (32)-(34)) with the Lagrange function
Φ = F −λφ to Eqs. (50)-(53), we can write down Eqs. (34) and (35) for the Tsallis and Boltzmann-
Gibbs statistics immediately as

0l
¶

+ - =
¶

i
i i

i

FF p
p (54)

and [7]

11     for ,
1

é ùL -
= + < ¥ê ú

+ë û

iz

i
i

i

Ep z
z T

(55)

                           for ,
L-

= = ¥
iE

T
ip e z (56)

where Λ ≡λ −T  and ∂Ei / ∂ pi =0. Then the constraint (Eq. (53)) for the probabilities (Eqs. (55) and
(56)) of the Tsallis and Boltzmann-Gibbs statistics can be written as [7]

, , ,
11 1    for ,

1
d d d

é ùL -
+ = < ¥ê ú

+ë û
å

i

i i i

z

i
V V N N z z

i i

E z
z T

(57)

, , , 1                            for ,d d d
L-

= = ¥å
i

i i i

E
T

V V N N z z
i

e z (58)

where Λ =Λ(T , V , N , z) is the solution of Eq. (57) for the Tsallis statistics and Λ = −T lnZG is the

solution of Eq. (58) for the Boltzmann-Gibbs statistics, where ZG =∑i δV ,V i
δN ,N i

δz ,zi
e −Ei/T  is the

partition function. Substitution of the probabilities given in Eqs. (55) and (56) into Eqs. (50)-(53)
gives the Helmholtz free energy [7]
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           for ,
1
æ ö

= L + < ¥ç ÷+ è ø

z EF z
z z

(59)

            ln  for ,= L = - = ¥GT ZF z (60)

where E  is the energy (Eq. (42)), which can be written in terms of the canonical ensemble as

, , , .d d d¶
= - =

¶ å i i iV V N N z z i i
i

FE F T p E
T

(61)

Making use of Eqs. (40), (50), and (54), we can write the entropy of the system as

, , , .d d d¶
= - =

¶ å i i iV V N N z z i i
i

FS p S
T

(62)

Here we have used the conditions that the derivative of the constraint (Eq. (53)) with respect
to T  is zero, ∂Ei / ∂T =0, ∂Ei / ∂ pi =0, and ∂T / ∂ pi =0. Substituting Eqs. (48), (49), (55), and (56)
into Eq. (62) and using Eqs. (57) and (58), we obtain [7]

          for ,
1
L -

= - < ¥
+
z ES z

z T
(63)

                  for .L -
= - = ¥

ES z
T

(64)

Using Eqs. (41), (50), and (54), we obtain the pressure, u 2 = − p, and the chemical potential,
u 3 =μ :

,
, , , , , ,

d
d d d d d

æ ö¶¶¶
- = = + ç ÷ç ÷¶ ¶ ¶è ø

å å i

i i i i i

V Vi
V V N N z z i N N z z i i

i i

EFp p p F
V V V

(65)

,
, , , , , .

d
d d d d dm

æ ö¶¶¶
= = + ç ÷ç ÷¶ ¶ ¶è ø

å å i

i i i i i

N Ni
V V N N z z i V V z z i i

i i

EF p p F
N N N

(66)

Here we have used the conditions that the derivatives of the constraint (Eq. (53)) with respect
to the variables of state N  and V  are zero, ∂Ei / ∂ pi =0 and ∂T / ∂ pi =0.
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Substituting Eqs. (50) and(54) into Eq. (41), we obtain the variable Ξ :

( )1/ 1/
, , ,

,
, ,

1 1

                                          for ,

ln

 

d d d

d
d d

¶ é ù-X = = - - -ë û¶
æ ö¶

+ < ¥ç ÷ç ÷¶è ø

å

å

i i

i i i

i

i i

z z
V V N N z z i i i

i

z z
V V N N i i

i

F T p p p
z

p F z
z

(67)

0                                                                for ,¶
-X = = = ¥

¶
F z
z

(68)

where we have used the conditions that the derivative of the constraint (53) with respect to z
is zero, ∂Ei / ∂ z =0, ∂Ei / ∂ pi =0, and ∂T / ∂ pi =0.

Thus, from the results given in Eqs. (62) and (65)-(67), we see that the differential of the
thermodynamic potential (Eq. (50)) satisfies [7, 15]

.m= - - + - XdF SdT pdV dN dz (69)

Using Eqs. (50) and (69), we obtain the fundamental equation of thermodynamics [7, 14, 15]

.m= + - + XTdS dE pdV dN dz (70)

To prove the homogeneity properties of the thermodynamic quantities and the Euler theorem
for the Tsallis statistics in the canonical ensemble, we will consider, as an example, the exact
analytical results for the nonrelativistic ideal gas.

4.1.1. Nonrelativistic ideal gas: canonical ensemble

Let us investigate the nonrelativistic ideal gas of identical particles governed by the classical
Maxwell-Boltzmann statistics in the framework of the Tsallis and Boltzmann-Gibbs statistical
mechanics.

It is convenient to obtain the exact results for the ideal gas in the Tsallis statistics by means of
the integral representation for the Gamma function (see [9] and reference therein):

1

0

1 ,                    Re 0,  Re 0,
( )

¥
- - -= > >

G òy y txx dtt e x y
y

(71)

( )1 ( ) ,           Re 0,  .
2p

-- -= G - > < ¥òÑ
yy tx

C

ix y dt t e x y (72)
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Thus, solving Eqs. (57) and (58) for the ideal gas in the canonical ensemble, the norm function
Λ is [7]

( )
( ) ( )

1
3 / 2

3 / 2

3 / 211      for 1,
1 1

-
+

-

é ùG - -L ê ú+ = < -
ê ú+ - - G -ë û

z N

NG

z N
z

z T z z
Z (73)

( ) ( )
( )

1
3 / 2 3 / 21 111 0,

1 1 3 / 2
     for 

-
+é ù+ G +L ê ú+ = >

ê ú+ G + +
ë û

N z N

G

z z
Z z

z T z N
(74)

( )
3
2

! 2p
æ ö

= ç ÷
è ø

N N

G

gV mTZ
N

(75)

and Λ = −T lnZG for | z | =∞. Here m is the particle mass, and Eq. (73) is restricted by the
condition − z −3N / 2>0.

The energy (Eq. (61)) and the thermodynamic potentials (Eqs. (59) and (60)) for the ideal gas
in the canonical ensemble for the Tsallis and Boltzmann-Gibbs statistics can be written as [7]

1

    fo3 1 1 3,    1 1
2 1 1

r
2

 ,h h
-

æ öæ öL
= = + +ç ÷ç <÷+ +è øè ø

¥E TN N z
z T z

(76)

                                    3    
2

 forh
é ùæ ö

= - - +ê úç ÷
è øë û

< ¥F T z z N z (77)

and E =3TN / 2 and F =Λ = −T lnZG for | z | =∞.

The entropies (Eqs. (63) and (64)) and the pressure (Eq. (65)) for the ideal gas in the canonical
ensemble for the Tsallis and Boltzmann-Gibbs statistics can be written as [7]

( )                         for1  ,h- < ¥=S z z (78)

               fo2
3

r h= < ¥=
N ET
V

zp
V

(79)

and S = lnZG + 3N / 2, p = NT / V  for | z | =∞.
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The chemical potential (Eq. (66)) and the variable (Eqs. (67) and (68)) for the ideal gas in the
canonical ensemble for the Tsallis and Boltzmann-Gibbs statistics become [7]

3/ 2

1

1 1

1 3 1ln ( 1) 1
2 1 2 1 3 / 2

3 3  ( 1                                                for 
2

,)
2

m h g
p

h y y g

é ùæ öæ öæ öLê úç ÷= - + + -ç ÷ç ÷ê úç ÷+ + +è øè øè øë û
é ùæ ö

+ + + +ê ú < ¥ç ÷
è øë û

mTT gV z
z T z N

T N za N

(80)

1

2

1 1 1

3 1 31 1 1
2 1 2

                        f

( 1)

1 3   ln 1 ( )  
1

r
2

o

h

h y y g

-é ùæ öæ öê úX = - + +ç ÷ç ÷++ê úè øè øë û
é ùæ ö æ öL

+ + + - +ê úç ÷ ç ÷+è ø è øë û
< ¥

zT N N
zz

T a a N
z

z
T

(81)

and μ = −T ln(gV (mT / 2π)3/2)−ψ(N + 1) , Ξ =0 for | z | =∞, where ψ(y) is the psi-function, a1 = − z,
γ1 = −1 for z < −1 and a1 = z + 1, γ1 =1 for z >0.

4.1.2. Nonrelativistic ideal gas in the thermodynamic limit: canonical ensemble

Let us try to express the thermodynamic quantities of the nonrelativistic ideal gas directly in
terms of the thermodynamic limit when the entropic parameter z is considered as an extensive
variable of state

,  ,  ,  ,  .®¥ ®¥ ®¥ = = = =%V zV N z v const z const
N N

(82)

Note first that the canonical partition function (Eq. (75)) for the nonrelativistic ideal gas for the
Boltzmann-Gibbs statistics can be rewritten as

3/ 2

.,   
2p

æ ö
= º ç ÷

è ø
% %N

G G G
mTZ Z Z gve (83)

The norm functions (Eqs. (73) and (74)) for the ideal gas in the thermodynamic limit in the
Tsallis and Boltzmann-Gibbs statistics can be rewritten as [7]

( )
1

3/ 2 3
2

3=     for ,
2

-
+

é ùæ ö
L - - + < ¥ê úç ÷

è øê úë û
%%% % %zGTN z z Z e z (84)

Foundation of Equilibrium Statistical Mechanics Based on Generalized Entropy
http://dx.doi.org/10.5772/60997

319



= ln                                      for ,L - = ¥% %GTN Z z (85)

where Eq. (84) is restricted by the conditions z̃ < −3 / 2 and z̃ >0.

In the thermodynamic limit (Eq. (82)), the energy of the system (Eq. (76)) and the thermody‐
namic potential (Eq. (77)) for the ideal gas in the canonical ensemble for the Tsallis and
Boltzmann-Gibbs statistics become [7]

( )
1

3/ 2 3
2

3            for ,
2

-
+= < ¥%% %zGE TN Z e z (86)

3                            for
2

  = = ¥%E TN z (87)

and [7]

( )
1

3/ 2 3
2

3=     for ,
2

-
+

é ùæ ö
- - + < ¥ê úç ÷

è ø
= L

ê úë û
%%% % %zGTN z z Z eF z (88)

= ln                                    for ,= L - = ¥% %GF TN Z z (89)

respectively. The entropy (78) and the pressure (79) for the ideal gas in the Tsallis and
Boltzmann-Gibbs statistics in the thermodynamic limit can be written as [7]

( )
1

3/ 2 3
2

1        for ,
-

+
é ù

= - < ¥ê ú
ê úë û

%%% %zGS Nz Z e z (90)

( )ln 3 / 2              for + ¥= =% %GS Z zN (91)

and [7]

( )
1

3/ 2 3
2

2=
3

         for ,e-
+= < ¥%% %zG

Tp
v

Z e z
v

(92)

=                             fo
3

r ,2 e
= = ¥%Tp z

vv
(93)
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where ε = E / N  is the specific energy given in Eqs. (86) and (87).

In the thermodynamic limit (82), the chemical potential (80) and the variable (81) for the ideal
gas in the canonical ensemble for the Tsallis and Boltzmann-Gibbs statistics are [7]

( ) ( )
1 1

3/ 2 3/ 23 3
2 2

5 ln    for ,
2

m
- -

+ +
é ù

= + < ¥ê ú
ê úë û

% %% %% %z zG GT Z e z Z e z (94)

( )1 ln                                          for m = - = ¥% %GT Z z (95)

and [7]

( ) ( )
1 1

3/ 2 3/ 23 3
2 2

1 1 ln      for ,
- -

+ +

é ùæ ö
X = - - < ¥ê úç ÷ç ÷ê úè øë û

% %% % %z zG GT Z e Z e z (96)

0                                                                for .X = = ¥%z (97)

Thus, from the results for the Tsallis statistics given in Eqs. (86), (90), (92), (94), and (96), we
see that the Euler theorem (Eq. (22)) is satisfied [7]

.m= + - + XNT E pV zS (98)

Moreover, the thermodynamic quantities (86), (88), (90), (92), (94) and (96) satisfy the relation
for the thermodynamic potential

.m= - = - X- +F E TS p N zV (99)

Next we shall verify that, when the entropic parameter z is an extensive variable of state in the
thermodynamic limit, the ideal gas is in accordance with the principle of additivity. Suppose
that the system is divided into two subsystems (1 and 2). Then the extensive variables of state
of the canonical ensemble are additive

1 2 1 2 1 2 1 2 1 2 1 2,    ,      .  + + += + = + = +V V N N N z z zV (100)

However, the temperature and the specific variables of state (Eq. (82)) are the same in each
subsystem
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1 2 1 2 1 2 1 2 1 2 1 2,     .,     + + += = = = = =% % %T T T v v v z z z (101)

Considering Eqs. (83), (100), and (101), we can verify that the Tsallis thermodynamic potential
(Eq. (88)) and the entropy (Eq. (90)) of the canonical ensemble are homogeneous functions of
the first order, i.e., F (T , V , N , z) / N = F (T , v, z̃) and S (T , V , N , z) / N =S (T , v, z̃), respectively,
and they are additive (extensive)

( ) ( ) ( )1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 2 2 2 2 2, , , , , , , , , ,+ + + + + = +F T V N z F T V N z F T V N z (102)

( ) ( ) ( )1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 2 2 2 2 2, , , , , , , , , .+ + + + + = +S T V N z S T V N z S T V N z (103)

The Tsallis pressure (Eq. (92)), the chemical potential (Eq. (94)), and the variable (Eq. (96)) are
the homogeneous functions of the zero order, i.e., p(T , V , N , z)= p(T , v, z̃),
μ(T , V , N , z)=μ(T , v, z̃), and Ξ(T , V , N , z)=Ξ(T , v, z̃), respectively, and they are the same in
each subsystem (intensive)

( ) ( ) ( )1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 2 2 2 2 2, , , , , , , , , ,+ + + + + = =p T V N z p T V N z p T V N z (104)

( ) ( ) ( )1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 2 2 2 2 2, , , , , , , , , ,m m m+ + + + + = =T V N z T V N z T V N z (105)

( ) ( ) ( )1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 2 2 2 2 2, , , , , , , , , .+ + + + +X = X = XT V N z T V N z T V N z (106)

Thus, the principle of additivity (Eqs. (21), (24), and (25)) is totally satisfied by the Tsallis
statistics. Equations (101) and (103) prove the zero law of thermodynamics for the canonical
ensemble.

4.2. Microcanonical ensemble

The thermodynamic potential of the microcanonical ensemble, the entropy, is the second
thermodynamic potential h = x 1 =S  defined in Eq. (14), which is a function of the variables of
state f = E , x 2 =V , x 3 = N  and x 4 = z. It is obtained from the fundamental thermodynamic
potential f  by exchanging the variable of state x 1 with variable f . In the microcanonical
ensemble, the first partial derivatives of the fundamental thermodynamic potential (1) are
defined as u 1 =T , u 2 = − p, u 3 =μ, and u 4 = −Ξ.

The entropy S  for the Tsallis and Boltzmann-Gibbs statistics in the microcanonical ensemble
can be written as

Recent Advances in Thermo and Fluid Dynamics322



, , , , ,d d d d=å i i i iE E V V N N z z i i
i

S p S (107)

where Si is defined in Eqs. (48) and (49). The set of probabilities {pi} is constrained by Eq. (27):

, , , , 1 0.j d d d d= - =å i i i iE E V V N N z z i
i

p (108)

Applying the method of Lagrange multipliers (Eqs. (32)-(34)) with the Lagrange function
Φ =S −λφ to Eqs. (107), (108), (48), and (49), we can write down Eqs. (34), (37), and (38) for the
Tsallis and Boltzmann-Gibbs statistics immediately as [6]

0,l
¶

+ - =
¶

i
i i

i

SS p
p (109)

1 ,=ip
W

(110)

, , , , ,d d d d=å i i i iE E V V N N z z
i

W (111)

where W =W (E , V , N ) is the statistical weight for the Tsallis and Boltzmann-Gibbs statistics
and zi = z for all microstates. Substituting Eqs. (110) and (111) into Eqs. (107), (48), and (49) and
using Eq. (108), we can express the second thermodynamic potential (Eq. (43)) as [6]

( )1/         f1 or ,-= <- ¥zS z W z (112)

                    for ln .= = ¥S W z (113)

Then the first derivative (Eq. (44)) of the thermodynamic potential S  with respect to the variable
of state E , i.e., the temperature T , can be rewritten as [6]

1/1 ln         for ,-¶ ¶
= = < ¥
¶ ¶

zS WW z
T E E

(114)

1 ln                  for .¶ ¶
= = = ¥
¶ ¶

S W z
T E E

(115)
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The first derivative (Eq. (45)) of the thermodynamic potential S  with respect to the variable of
state V , i.e., the pressure p, becomes [6]

1/ ln         for ,-¶ ¶
= = < ¥

¶ ¶
zS Wp T TW z

V V
(116)

ln                  for .¶ ¶
= = = ¥

¶ ¶
S Wp T T z
V V

(117)

The first derivative (Eq. (45)) of the thermodynamic potential S  with respect to the variable of
state N , i.e., the chemical potential μ, is [6]

1/ ln         for ,m -¶ ¶
= - = - < ¥

¶ ¶
zS WT TW z

N N
(118)

ln                 for .m ¶ ¶
= - = - = ¥

¶ ¶
S WT T z
N N

(119)

The first derivative (Eq. (45)) of the thermodynamic potential S  with respect to the variable of
state z, i.e., the variable Ξ, can be rewritten as [6]

( )1/ 1/1 1         for ln ,- -¶ é ùX = = - - < ¥ë û¶
z zST T W W z

z
(120)

0                                                            for ,X = = ¥z (121)

where ∂W / ∂ z =0. Then the differential of the thermodynamic potential (107) satisfies the
fundamental equation of thermodynamics (70).

4.2.1. Nonrelativistic ideal gas: microcanonical ensemble

Let us consider the nonrelativistic ideal gas of N  identical particles governed by the classical
Maxwell-Boltzmann statistics in the framework of the Tsallis and Boltzmann-Gibbs statistics
in the microcanonical ensemble. For this special model, the statistical weight (111) can be
written as (see [6] and reference therein)

33 1
22( ) ,

! 2 3
2

p

-
æ ö
ç ÷ æ öè ø Gç ÷

è

=

ø

NNNgV m E

N
W

N (122)
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where m is the particle mass. Then the entropies of the ideal gas for the Tsallis and Boltzmann-
Gibbs statistics are calculated by Eqs. (112), (113), and (122).

The temperatures (Eqs. (114) and (115)) for the ideal gas for the Tsallis and Boltzmann-Gibbs
statistics in the microcanonical ensemble correspond to [6]

1/

            for ,
3 / 2 1

= < ¥
-

zEWT z
N

(123)

             for .
3 / 2 1

= = ¥
-

ET z
N

(124)

The pressures (Eqs. (116) and (117)) and the chemical potentials (Eqs. (118) and (119)) for the
ideal gas for the Tsallis and Boltzmann-Gibbs statistics in the microcanonical ensemble can be
written as [6]

                                 for  and ,  
3 / 2 1

= < ¥ = ¥
-

N Ep z z
V N

(125)

3/ 2

 
3 / 2 1

                   

3 3ln

                                       for  and .

( 1)
2 2 2

m y y
p

æ öæ ö æ öç ÷ - + -ç ÷ ç ÷ç ÷

é ù
ê ú= -

- ê úë û
< ¥

è ø èø
=

ø

¥
è

mEgVE N
N

z z

N
(126)

The variable (Eq. (120)) for the ideal gas for the Tsallis statistics in the microcanonical ensemble
is [6]

1/ 1/1         ln for .
3 / 2 1

é ùX = - - + < ¥ë û-
z zE W W z

N
(127)

However, the variable (Eq. (121)) for the Boltzmann-Gibbs statistics vanishes, Ξ =0.

4.2.2. Nonrelativistic ideal gas in the thermodynamic limit: microcanonical ensemble

Let us rewrite the thermodynamic quantities of the nonrelativistic ideal gas in the microca‐
nonical ensemble in the terms of the thermodynamic limit when the entropic parameter z is
considered to be an extensive variable of state

,  ,  ,  ,

,  ,  .  e

®¥ ®¥ ®¥ ®¥

= = = = = =%

E V N z
E V zconst v const z const
N N N

(128)
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Then in the thermodynamic limit (Eq. (128)), the statistical weight (Eq. (122)) for the nonrela‐
tivistic ideal gas can be rewritten as [6]

3/ 25/ 3

,         
3

.e
p

æ ö
= º ç ÷ç ÷

è ø

N m eW w w gv (129)

Substituting Eq. (129) into Eqs. (112) and (113) and using Eq. (128), we obtain the entropy as [6]

( )1/              o  ,1 f r-- <= ¥%% %zS Nz zw (130)

                        for ln .= = ¥%zS N w (131)

The temperatures (Eqs. (123) and (124)) for the nonrelativistic ideal gas in the thermodynamic
limit (128) can be rewritten as [6]

1/2             for ,
3
e= < ¥% %zT w z (132)

2                   for .
3
e= = ¥%T z (133)

The pressure (125) and the chemical potential (126) for the nonrelativistic ideal gas in the
thermodynamic limit (128) become [6]

2                         for  and ,  
3
e

= < ¥ = ¥% %p z z
v

(134)

2 5       for  and .
3

n
2

lm e æ ö
= - < ¥ = ¥ç ÷

è ø
% %w z z (135)

The variable (Eq. (127)) for the Tsallis statistics in the thermodynamic limit (Eq. (128)) corre‐
sponds to [6]

1/ 1/2 1         fln or .
3
e é ùX = - - + < ¥ë û

% % %z zw zw (136)
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For the Boltzmann-Gibbs statistics, we have Ξ =0. Using the results so far obtained for the
Tsallis statistics given in Eqs. (130), (132), and (134)-(136), we can verify that the Euler theorem
defined in Eqs. (22) and (98) is satisfied [6], i.e., TS = E + pV −μN + Ξz.

Let us verify the principle of additivity for the nonrelativistic ideal gas in the microcanonical
ensemble in the thermodynamic limit when the entropic parameter z is an extensive variable
of state. Suppose that the system is divided into two subsystems (1 and 2). Then the extensive
variables of state of the microcanonical ensemble are additive [6]

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2    ,    , ,     .+ + + += + = + = + = +E E E V V N N N z zV z (137)

However, the specific variables of state (Eq. (128)) are the same in each subsystem (intensive)

1 2 1 2 1 2 1 2 1 2 1 2 .,      ,      e e e+ + += = = = = =% % %v v v z z z (138)

Considering Eqs. (129), (137), and (138), we can verify that the Tsallis thermodynamic potential
(Eq. (130)) of the microcanonical ensemble is a homogeneous function of the first order, i.e.,
S (E , V , N , z) / N =S(ε, v, z̃), and it is additive (extensive) [6]

( ) ( ) ( )1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 2 2 2 2 2, , , , , , , , , .+ + + + + = +S E V N z S E V N z S E V N z (139)

Now, considering Eqs. (129), (137), and (138), we find that the Tsallis temperature (Eq. (132)),
the pressure (Eq. (134)), the chemical potential (Eq. (135)), and the variable (Eq. (136)) are the
homogeneous functions of the zero order, i.e., T (E , V , N , z)=T (ε, v, z̃),
p(E , V , N , z)= p(ε, v, z̃), μ(E , V , N , z)=μ(ε, v, z̃), and Ξ(E , V , N , z)=Ξ(ε, v, z̃), respectively,
and they are the same in each subsystem (intensive) [6]

( ) ( ) ( )1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 2 2 2 2 2, , , , , , , , , ,+ + + + + = =T E V N z T E V N z T E V N z (140)

( ) ( ) ( )1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 2 2 2 2 2, , , , , , , , , ,+ + + + + = =p E V N z p E V N z p E V N z (141)

( ) ( ) ( )1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 2 2 2 2 2, , , , , , , , , ,m m m+ + + + + = =E V N z E V N z E V N z (142)

( ) ( ) ( )1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 2 2 2 2 2, , , , , , , , , .+ + + + +X = X = XE V N z E V N z E V N z (143)
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Thus, the principle of additivity (Eqs. (21), (24), and (25)) is totally satisfied by the Tsallis
statistics in the microcanonical ensemble. Equation (140) proves the zero law of thermody‐
namics for the microcanonical ensemble [6].

4.3. Equivalence of canonical and microcanonical ensembles

We can now easily prove the equivalence of the canonical and microcanonical ensembles for
the Tsallis statistics in the thermodynamic limits (Eqs. (82) and (128)). Using Eqs. (83) and (129),
it is easy to verify that Eq. (132) for the temperature of the microcanonical ensemble and Eq.
(86) for the energy of canonical ensemble are identical. Comparing Eqs. (83) and (129) and
using Eq. (86), we have

( )3/ 2 3
2

.+=
%

%%
z

zGZw e (144)

Substituting Eq. (144) into Eq. (130) for the entropy of the microcanonical ensemble, we obtain
the entropy of the canonical ensemble (Eq. (90)). Equation (134) for the pressure of the
microcanonical ensemble is identical to Eq. (92) for the pressure of the canonical ensemble.
Substituting Eqs. (144) and (86) into Eq. (135) for the chemical potential of the microcanonical
ensemble, we obtain Eq. (94) for the chemical potential of the canonical ensemble. Moreover,
substituting Eqs. (144) and (86) into Eq. (136) for the variable Ξ of the microcanonical ensemble,
we obtain Eq. (96) for the variable Ξ of the canonical ensemble. Thus, for the Tsallis statistics,
the canonical and microcanonical ensembles are equivalent in the thermodynamic limit when
the entropic parameter z is considered to be an extensive variable of state.

5. Conclusions

In conclusion, let us summarize the main principles of the equilibrium statistical mechanics
based on the generalized statistical entropy. The basic idea is that in the thermodynamic
equilibrium, there exists a universal function called thermodynamic potential that completely
describes the properties and states of the thermodynamic system. The fundamental thermo‐
dynamic potential, its arguments (variables of state), and its first partial derivatives with
respect to the variables of state determine the complete set of physical quantities characterizing
the properties of the thermodynamic system. The physical system can be prepared in many
ways given by the different sets of the variables of state and their appropriate thermodynamic
potentials. The first thermodynamic potential is obtained from the fundamental thermody‐
namic potential by the Legendre transform. The second thermodynamic potential is obtained
by the substitution of one variable of state with the fundamental thermodynamic potential.
Then the complete set of physical quantities and the appropriate thermodynamic potential
determine the physical properties of the given system and their dependences. In the equili‐
brium thermodynamics, the thermodynamic potential of the physical system is given a priori,
and it is a multivariate function of several variables of state. However, in the equilibrium
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statistical mechanics, the thermodynamic potential is a composed function that can depend
on the set of independent variables of state explicitly and implicitly through the probabilities
of microstates. The probabilities of microstates are determined from the second part of the
second law of thermodynamics, i.e., the maximum entropy principle. The equilibrium
probability distributions are found from the constrained extremum of the thermodynamic
potential as a function of a multidimensional set of probabilities considering that the statistical
entropy is defined. The equilibrium thermodynamics and statistical mechanics are defined
only on the class of homogeneous functions, i.e., all thermodynamic quantities describing the
thermodynamic system should belong to the class of homogeneous functions of the first or
zero orders.

In the present work, the general mathematical scheme of construction of the equilibrium
statistical mechanics on the basis of an arbitrary definition of statistical entropy for two types
of thermodynamic potential, the first and the second thermodynamic potentials, was pro‐
posed. As an example, we investigated the Tsallis and Boltzmann-Gibbs statistical entropies
in the canonical and microcanonical ensembles. On the example of a nonrelativistic ideal gas,
it was proven that the statistical mechanics based on the Tsallis entropy satisfies the require‐
ments of the equilibrium thermodynamics only in the thermodynamic limit when the entropic
index z is an extensive variable of state of the system. In this case the thermodynamic quantities
of the Tsallis statistics belong to one of the classes of homogeneous functions of the first or zero
orders.
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