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Abstract

High level of ROS (Reactive Oxygen Species), due to an increased production of
oxidant species and/or a decreased efficacy of antioxidant system, can lead to
oxidative stress (OS) an emerging health risk factor involved in the aging and in many
diseases, either in humans or in animals. ROS are a double-edged sword – they serve
as key signal molecules in physiological processes, but also have a role in pathological
processes involving the female reproductive tract.

ROS affect multiple physiological processes in reproduction and fertility, from oocyte
maturation to fertilization, embryo development and pregnancy. Several studies
indicate that follicular atresia in mammalian species due to the accumulation of toxic
metabolites often results from oxidative stress. It has been suggested that ROS under
moderate concentrations play a role in signal transduction processes involved in
growth and protection from apoptosis. Conversely, increase of ROS levels is primarily
responsible for the alteration of macromolecules, such as lipids, proteins and nucleic
acids, that lead to significant damage of cell structures and thereby cause oxidative
stress. To prevent damage due to ROS, cells possess a number of non-enzymatic and
enzymatic antioxidants. Non-enzymatic antioxidants include vitamin C, glutathione
and vitamin E. Enzymatic antioxidants consist of superoxide dismutases (MnSOD and
Cu/ZnSOD) that convert superoxide into hydrogen peroxide; glutathione peroxidase
(GPX) and catalase (CAT) which neutralize hydrogen peroxide. Intracellular
homeostasis is ensured by the complex interaction between pro-oxidants and
antioxidants.

This chapter describes gathering evidence that oxidative stress is involved in ovarian
physio-pathology caused by diverse stimuli. There is strong evidence that ROS are
involved in initiation of apoptosis in antral follicles caused by several chemical and
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physical agents, in the fluid follicular environment, influencing the folliculogenesis
and the steroidogenesis. Although less attention has been focused on the roles of ROS
in primordial and primary follicle death, several studies have shown protective effects
of antioxidants and/or evidence of oxidative damage, suggesting that ROS may play
a role in these smaller follicles as well. Oxidative damage to lipids in the oocyte has
been implicated as a cause of persistently poor oocyte quality. Developing germ cells
in the fetal ovary have also been shown to be sensitive to toxicants and ionizing
radiation, which induce oxidative stress. Recent studies have begun to elucidate the
mechanisms by which ROS mediate ovarian toxicity. It has been investigated the role
of antioxidant enzymes, such as catalase, glutathione peroxidase and the SOD
isoforms in maintaining low levels of oxidative stress.

The literature provides some evidence of oxidative stress influencing the entire
reproductive cycle. OS plays a role in multiple physiological processes from oocyte
maturation to fertilization and embryo development. An increasing number of
published studies have pointed towards increased importance of the role of OS in
female reproduction. Of course, there is much to learn about this topic, whereby it
cannot be underestimated.

Keywords: Assisted reproductive technologies (ART), reactive oxygen species, ova‐
ry functions

1. Introduction

High level of ROS (Reactive Oxygen Species), due to an increased production of oxidant species
and/or a decreased efficacy of antioxidant system, can lead to oxidative stress (OS) an emerging
health risk factor involved in the aging and in many diseases, either in humans or in animals.
ROS are a double-edged sword – they serve as key signal molecules in physiological processes,
but also have a role in pathological processes involving the female reproductive tract.

ROS affect multiple physiological processes in reproduction and fertility, from oocyte matu‐
ration to fertilization, embryo development and pregnancy. Several studies indicate that
follicular atresia in mammalian species due to the accumulation of toxic metabolites often
results from oxidative stress. It has been suggested that ROS under moderate concentrations
play a role in signal transduction processes involved in growth and protection from apoptosis.
Conversely, increase of ROS levels is primarily responsible for the alteration of macromole‐
cules, such as lipids, proteins and nucleic acids, that lead to significant damage of cell structures
and thereby cause oxidative stress. To prevent damage due to ROS, cells possess a number of
non-enzymatic and enzymatic antioxidants. Non-enzymatic antioxidant include vitamin C,
glutathione and vitamin E. Enzymatic antioxidants consist of superoxide dismutases (MnSOD
and Cu/ZnSOD) that convert superoxide into hydrogen peroxide; glutathione peroxidase
(GPX) and catalase (CAT) which neutralize hydrogen peroxide. Intracellular homeostasis is
ensured by the complex interaction between pro-oxidants and antioxidants.
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This chapter describes gathering evidence that oxidative stress is involved in ovarian physio-
pathology caused by diverse stimuli. There is strong evidence that ROS are involved in
initiation of apoptosis in antral follicles caused by several chemical and physical agents, in the
fluid follicular environment, influencing the folliculogenesis and the steroidogenesis. Al‐
though less attention has been focused on the roles of ROS in primordial and primary follicle
death, several studies have shown protective effects of antioxidants and/or evidence of
oxidative damage, suggesting that ROS may play a role in these smaller follicles as well.
Oxidative damage to lipids in the oocyte has been implicated as a cause of persistently poor
oocyte quality. Developing germ cells in the fetal ovary have also been shown to be sensitive
to toxicants and ionizing radiation, which induce oxidative stress. Recent studies have begun
to elucidate the mechanisms by which ROS mediate ovarian toxicity. It has been investigated
the role of antioxidant enzymes, such as catalase, glutathione peroxidase and the SOD isoforms
in maintaining low levels of oxidative stress.

The literature provides some evidence of oxidative stress influencing the entire reproductive
cycle. OS plays a role in multiple physiological processes from oocyte maturation to fertiliza‐
tion and embryo development. An increasing number of published studies have pointed
towards increased importance of the role of OS in female reproduction. Of course, there is
much to learn about this topic, whereby it cannot be underestimated.

2. Follicular development and ovary functions

The study of folliculogenesis and factors involved in its function is important in order to
develop techniques able to increase the effectiveness of therapies or biotechniques included in
assisted reproductive technologies (ART).

The follicle and oocyte development in mammals starts in fetal life. Briefly the primordial
germinal cells undergo to mitosis until the ovogonias formed become primary oocytes. The
meiotic development starts and at the birth the progression stops to the diplotene phase of the
first meiotic division [1]. It will continue at the puberty. During the period of meiosis inter‐
ruption the chromosomes become relaxed and nuclear structure so formed is named germinal
vescicle (GV). At the puberty the GV disappears, the chromatin is recondensed, the pairs of
homologous chromosomes are separated and half of them are expelled forming the first polar
body. At this point the meiosis is interrupted again (metaphase II - MII). In this moment the
oocyte is mature and fertile [2-4]. Luteinizing hormone (LH) is responsible of resumption of
meiosis [5, 6]. The oocytes included in primordial follicles form a finite stock which leave this
stage just when they are stimulated [7]. However, it was found that young adult rats have
mitotic activity in germinative cells in order to maintain the follicular pool. The mechanisms
involved in growing are not yet known [8].

During folliculogenesis the ovarian steroids, estradiol (E2) and progesterone (P), and the
peptide hormone, inhibin, are synthesized in the granulosa cells and theca cells. These
hormones feed back to regulate the synthesis and secretion of GnRH, LH, and FSH. The
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majority of ovarian follicles do not ovulate, but undergo an apoptotic process of degeneration
called atresia at the small antral follicle stage [9].

Growth of the antral follicles, in most cases, can be divided into two phases. In the first phase,
characterized by slow growth stage, early growth of follicles can be attributed to an increase
in the number of granulose cells and therefore an increase in the surface of the granulose layer
[10]; this stage is critical for the development of oocyte capacity, in which it reaches the final
size and competence [11, 12]. In the second phase, characterized by fast growth, in follicles
larger than 2-5 mm, follicular growth appears to result from antrum development rather than
an increase of the number of granulosa cells. This exponential increase in the antrum surface
extends up to a possible ovulation of this follicle [13]. Modest are the information about the
endocrine dependence or influence on the growth of small antral follicles. Several were the
experiments performed to determine which hormone(s) is involved in this process. In cows,
the immunization of GnRH, hence inactivation of the hormone, demonstrated that the first
stage of the antral follicular growth can occur in an environment characterized by basal levels
of follicle stimulation hormone (FSH) and without luteinizing hormone (LH) pulses [14-16]. It
has not been demonstrated how the growth of small antral follicles is possible under basal
levels of FSH. In mice the follicular wall is not responsive to FSH up to follicles develop from
pre-antral stage to small antral follicles [17]. In any case, the second phase is absolutely under
FSH control and adequate pulse of LH [18]. Stimulation of preovulatory follicle development
in rodents via injection of equine chorionic gonadotropin (eCG, also called pregnant mare’s
serum gonadotropin), which has FSH and LH receptor-binding activity, followed 46–48 h later
by an ovulatory dose of human chorionic gonadotropin (hCG), which has only LH receptor-
binding activity, is commonly used in experiments assessing the effects of gonadotropin
hormones on ovarian gene expression and other endpoints and for generating preovulatory
follicles or ovulated oocytes for other studies [19].

In mammalian species, the main function of the corpus luteum (CL) is the synthesis of
progesterone which is required for the establishment of a uterine environment suitable for the
development of peri-implantation conceptus (embryo and associated extra-embryonic
membranes) and the successful progression and maintenance of pregnancy [20]. Progesterone
acts on the endometrium to regulate the synthesis of growth factors, cytokines, transport and
adhesion proteins, protease inhibitors, hormones and enzymes which are primary regulators
of conceptus implantation, survival and development [21]. Thus, compromised CL proges‐
terone production Although the mechanisms of CL rescue from cell death and maintenance
of progesterone production are very complex and vary among mammalian species [22], there
is substantial evidence that reactive oxygen species (ROS) are key factors in determining the
CL lifespan [23] and that antioxidants play significant roles in CL physiology during the
oestrous/menstrual cycle [24-27]. Luteal ROS production and propagation depends upon
several regulating factors, including luteal antioxidants, steroid hormones and cytokines, and
their crosstalk. However, it is unknown which of these factors have the greatest contribution
to CL function. In addition, the sequence of events leading to the functional and structural
luteal regression at the end of the oestrous/menstrual cycle is still not clear. The scarce in-vivo
reports studying the CL of rats [29], women [28] and sheep [28, 29] have shown the importance
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of antioxidant enzymes in the control of CL function during the peri-implantation period. As
a luteal phase defect can impact fertility by preventing implantation and early conceptus
development in livestock and humans, this review attempts to address the importance of ROS-
scavenging antioxidant enzymes in the control of mammalian CL function and integrity [30].

3. Reactive Oxygen Species (ROS): Chemical and Oxidative Stress (OS)

Free radicals are believed to play an important role in regulating the metabolic activity and
functioning of some organs. There is a complex interaction of the pro-oxidants (free radicals)
and antioxidants, resulting in the maintenance of the intracellular homeostasis. Whenever
there is an imbalance between the pro-oxidants and antioxidants, favorable to free radicals, a
state of oxidative stress (OS) is initiated. It is an emerging health risk factor involved in the
aging and in many diseases, either in humans or in animals. Under normal conditions, paired
electrons create stable bonds in biomolecules. A free radical is defined as any species capable
of independent existence that contains one or more unpaired electrons in the outer orbit,
independently upon the expressed electric charge. Depending on the distribution of the charge
(electron cloud) and/or of its redox potential, free radicals have a more or less marked
reactivity, linked to the spontaneous tendency to exist as entities having all the electrons
arranged in pairs. This state corresponds to the chemical stability. The radicals are not equally
reactive, in general the increase of charge and volume ratio of free radicals is directly propor‐
tional to their reactivity, therefore, they will tend to reach their own stability stripping electrons
to any chemical species with which they are in contact and oxidize them [31].

Free radicals are classified on the basis the nature of the atom to which it belongs the orbital
with the unpaired electron. There are, therefore, free radicals centered on oxygen, carbon,
nitrogen, or chlorine, and so on. The present chapter, however, will reference mainly to free
radicals centered on the oxygen, known more simply as oxygen free radicals. The latter, in fact,
besides being one of quantitatively the most important elements of living matter, as well as
the primary source of life itself, through a variety of mechanisms – not last the same cellular
respiration – induces continuously the formation of chemical species with reactivity charac‐
teristics.

The oxygen free radicals are included into more large family of reactive oxygen species (ROS).
This term indicates a class of reactive chemical species derived from oxygen, not necessarily
radical, all united by more or less marked tendency to oxidize various organic substrates
(carbohydrates, lipids, amino acids, proteins, nucleotides, etc.). Classic examples of radical
origin of ROS are singlet oxygen and hydroxyl radical. The ozone and hydrogen peroxide,
however, are not radical reactive oxygen species.

In living organisms, ROS are generated during normal cellular metabolic activity; some
exogenous agents, however, can increase production, even with direct mechanism. It is
possible to identify at least five sources of primary metabolic free radicals, in relation to the
cellular site mainly interested in the production of ROS: the plasma membrane, mitochondria,
peroxisomes, the smooth endoplasmic reticulum (microsomes) and the cytosol. In each of these
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locations ROS are produced either spontaneously or as a result of reactions catalyzed by
enzymes or by transition metals (eg. iron or copper) [31].

The free radicals can be generated by different mechanisms and, once formed, generally give
rise to a series of chain reactions, in the course of which the radicalic site can be transferred or
inactivated [31, 32].

Free radicals are mainly generated by homolytic cleavage or interaction with the transition
metals. The term homolytic cleavage refers to the division of the covalent bond of a molecule
as effect of the administration energy (thermal or radiant), with generation of two new
chemical species, each one with an unpaired electron, distinctive element of free radicals. A
classic example of homolytic cleavage is the radiolysis or photolysis of water that generates
an atom of hydrogen and a hydroxyl radical. This chemical reaction is different from the
ionization observed, for example, after dissolved in water molecules having at least one
covalent bond polarized (eg. HCl). In this case, the water molecules, because of their polarity
and without any administration of energy, are able to crack one of the polarized covalent bonds
of the molecule solute generating two chemical species loaded of opposite sign, a cation and
an anion (H+ and Cl-, respectively, in the example considered). The ionization, unlike the
homolytic cleavage, the doublet electronic binding of the original molecule is not separated
but remains in one of the new ionic species (anion) [33].

In the interaction with the transition metals, the electron generated by oxidation of a metal
transition in ionic form (eg. from Fe2+ to Fe3+ or Cu+ to Cu2+) breaks a covalent bond to a target
molecule generating a radical free and an anion. Alternatively, the electron required for
reducing a transition metal in ionic form (eg. from Fe3+ to Fe2+ or Cu2+ to Cu+) is extracted from
the covalent binding of a target molecule, which is decomposed into a free radical and a cation.
Through this mechanism, for example, iron (Fe2+/Fe3+) or copper (Cu+/Cu2+) act as catalysts in
a sequence of redox reactions generating alkoxy radicals (RO*) and peroxyl (R-O-O*) from
peroxides (R-O-O-R). In the simplest case - described for the first time by Fenton - one ferrous
ion (Fe2+), oxidizes to ferric ion (Fe2+), transfers its electron to a molecule of hydrogen peroxide
(H2O2) and it breaks one of covalent bonds, generating a free radical (the hydroxyl radical,
HO*) and an anion (hydroxyl ion). In turn, the ferric ion (Fe3+) is reduced - regenerating as any
catalyst – to ferrous ion (Fe2+), ripping an electron from a second molecule of hydrogen
peroxide, which is split into a free radical (radical perhydroxyl (HOO*), and a cation (a
hydrogen ion, H+). Similarly, the hydroperoxides are split, for catalytic action of the iron, in
the radical alkoxyl (RO*) and peroxyl (ROO*). In the absence of catalysts, the split of peroxides
- which gives rise to a single species radical, the alkoxy - can take place only with energy
consumption. A method of great biological relevance that gives rise to the formation of free
radicals, includes the decomposition of nitrocompounds. In fact, alkyl radicals originate
following the removal of molecular nitrogen (N2) [31].

Once a radical reaction is triggered, it tends to propagate chain. There are four basic mecha‐
nisms of propagation of radical reactions: transfer, addition, fragmentation and rearrange‐
ment. The most common among these is the transfer. In this mode, the free radical - generated
by one of previous reactions - attacks a molecule subtracting to it one of its atoms (generally a
hydrogen atom). The result is the formation of a new reactive species and, in practice, radical
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site has been transferred. With this mechanism, for example, the hydroxyl radical (HO*),
attacking an organic molecule (R-H), rips to this one atom of hydrogen and generates, with a
molecule of water (H2O), an alkyl radical (R*). With this mechanism, the radical site is
transferred from the hydroxyl radical to the alkyl one.

Finally, a radical reaction chain may stop (term) by two mechanisms: combination or dispro‐
portion. In particular, in the combination, which is the homolytic cleavage of the reverse
reaction, two radicals react with each other giving rise to a molecule not more reactive. The
first radical acts as the oxidant, while the second acts as a generic antioxidant. This mechanism
is exploited to block a radical reaction, and in general, any radical process chain can be
interrupted by the intervention of agents called, generically, antioxidants.

In living organisms ROS are generated during normal cellular metabolic activity; some
exogenous agents, however, may increase production, even with direct mechanism (figure 1).

As mentioned above, it is possible to identify at least 5 of primary metabolic free radical
sources, in relation to cellular site: the plasma membrane, the mitochondria, peroxisomes,
smooth endoplasmic reticulum (microsomes) and the cytosol (figure 2).

Figure 1. General mechanism of ROS production.

Figure 2. Primary source of ROS cell production
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The plasma membrane is one of the most important sources of ROS, particularly (but not
exclusively) in polymorphonuclear leukocytes (PMNs). In fact, in the plasma membrane of
PMNs are located several enzymes, such as the NADPH oxidase and lipoxygenase, whose
activation is accompanied by the production, respectively, of superoxide anion and metabolic
intermediates with chemical characteristics of peroxides. The NADPH oxidase is an enzyme
that catalyzes the formation of superoxide anion by NADPH (H+) and molecular oxygen, after
specific stimulation of PMNs, due, for example, to endotoxins, bacteria, or antibodies).

The reaction is made possible by the increased availability of NADPH (H+), for the increased
oxidation of glucose through the shunt of hexoses, and of molecular oxygen, under the so-
called "respiratory burst". The system of lipoxygenase, localized also at the level of the plasma
membrane, includes three enzymes, the 5-, 12-, and 15- lipoxygenase, which catalyze the
formation, from arachidonic acid, of 5-, 12-, and 15-HPETE (hydroperoxyeicosatetraenoic
acid), respectively. These substances are chemically hydroperoxides acids, theybelong to a
group of ROS named ROM (reactive oxygen metabolites, ie metabolites or derived reactive
oxygen). The production of ROS at the level of PMNs plasma membrane for activation NADPH
oxidase and/or lipoxygenase, takes place, typically, in the course of reactive processes (eg.
infections, immunoreactions pathogenic, inflammation) [31].

The mitochondria are the primary metabolic source of ROS because the enzyme complexes of
respiratory chain are localized on their crests and are involved in oxidative phosphorylation.
Ideally, the transfer of electrons from reduced NAD to cytochrome C and from the latter to
oxygen should end with the production of H2O, once synthesized ATP, (reduction tetravalent
of molecular oxygen). However, already in normal conditions, this process is not perfect so,
for not easily controllable reasons, a certain amount of electrons (1-2%) escapes the system
transport of various coenzymes (eg. ubiquinone, flavoproteins, cytochromes, etc.) and reacts
directly with molecular oxygen, generating, thus, superoxide anion and/or hydrogen peroxide
(reduction uni- and bivalent molecular oxygen). In fact, this process, during a intense exercise
in skeletal muscle, this electronic shunt can reach 15% of the oxygen used by mitochondria
due to the intense stimulation of cellular metabolism. The phenomenon of the reduction in one
or bivalent molecular oxygen takes place, in the mitochondria, without the intervention of
enzymes, as opposed to what is observed in other cell locations. In other words, from a purely
chemical point of view, the production of free radicals during oxidative phosphorylation is
not just a mode of enzymatic production of reactive species. In fact, as it has just been men‐
tioned, the generation of free radicals in living organisms is closely related to vital phenomena
and, therefore, constitutes a "physiological" phenomenon that takes place continuously in the
course of redox reactions through both enzymatic and non-enzymatic mechanisms. It should
be stressed that, in addition to mitochondria, there are other sources of non-enzymatic free
radicals in cells. For example, peroxynitrite spontaneously generates hydroxyl and nitroxide
radicals. However, the most important non-enzymatic reactions from a biological standpoint
for the production of free radicals are those catalyzed by transition metals. In these reactions,
which generally require iron or copper in the reduced state (respectively Fe2+ and Cu+),
hydrogen peroxide is split into hydroxyl radical and hydroxyl ion for incorporation of the
electron ripped to transition metal, which is released in the oxidized form (Fe3+ and Cu2+,
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respectively), according to the mechanism discussed above of the interaction with transition
metals. Hydroperoxides undergo a similar reaction, which generate the alkoxy radical. The
enzymes that regenerate the transition metals in the reduced state constitute a complex
indicated with MCO (metal-catalyzed oxidation systems). They include xanthine oxidase,
NADPH and NADH oxidase, nicotinic acid hydroxylase, the cytochrome P450 system, the
NADH reductase (with coenzyme quinone), the succinic-reductase (with coenzyme quinone)
and an amount of iron-sulfur proteins non-heme. The quinones and reduced flavin prosthetic
groups generated by these enzymes in their turn reduce the transition metals, resulting in the
direct reduction of molecular oxygen to hydroxyl radical and/or peroxide hydrogen (through
the mediation or not of superoxide anion).

In addition to the plasma membrane and mitochondria, peroxisomes also represent an
important source of ROS. In these cell organelles, in fact, a particular process of fatty acid
oxidation takes place, which is different from the conventional way (beta-oxidation). In the
first stage of this sequence of reactions, a flavoprotein extracts a pair of hydrogen atoms from
one molecule of activated fatty acid (acyl-CoA) by transferring it directly to molecular oxygen,
with the formation of hydrogen peroxide (subsequently inactivated by catalase).

In the endoplasmic reticulum (microsomes) production of reactive species passes through the
cytochrome P450. The latter plays a major role in detoxification processes. The cytochrome
P450 acts as immediate donor of electrons in many reactions of hydroxylation, particularly
those that take place within the hepatocytes and that are aimed to inactivation of hormones
(eg. steroid) and not physiological compounds (xenobiotics, such as toxic and hydrophobic
drugs which are thereby made more soluble and less toxic). The P450 is a heme iron protein
localized not only in the endoplasmic reticulum of the liver but also in the mitochondria of the
adrenal cortex that, in a process very complex and not yet fully clarified, acts as connection
between NADPH (H+) (electron donor) and the substrate that should be hydroxyled. In this
complex reaction, a substrate able to be hydroxylated (SH) reacts with NADPH (H+) and
molecular oxygen (O2) to form the corresponding hydroxylated derivative (S-OH), plus NADP
+ and water. A production of free radicals in the cell also occurs in the course of many other
biochemical reactions, such as during oxidation of hypoxanthine to xanthine and xanthine to
uric acid, which mark the final phase of the catabolism of purine nucleotides. Both of these
reactions are catalyzed by xanthine dehydrogenase, a molybdenum enzyme. Under special
conditions, such as during the so-called ischemia-reperfusion, xanthine dehydrogenase is
converted to xanthine oxidase (probably for proteolytic cleavage calcium-dependent). The
latter, using as a final electron acceptor the oxygen, generates hydrogen peroxide and super‐
oxide anion, starting, respectively, from hypoxanthine and xanthine.

Other reactions that generate free radicals are described in the synthesis of catecholamines.

From the above, it is clear that ROS represent intermediate obligated cellular metabolism. And
since their production is closely linked to the vital phenomena, they have been called "irre‐
placeable companions" of our existence.

It appears evident that in each cell site, the production of reactive species has its own specific
function. In fact, it has been recognized that ROS play an important role "in the service of life"
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because they are not only involved in cell metabolism but also in the "reactive processes" such
as infection and inflammation. Actually, the superoxide anion and other ROS are generated
on the outer surface of the plasma membrane of activated leukocytes. These reactive species
attack extraneous components such as bacteria, weakening the wall and making them more
readily accessible to phagocytosis and, ultimately, to their destruction. These "immunological"
activities are expressed not only in respect of extraneous components but also against "self"
components, such as tissues or transplanted organs (rejection reaction). This strategy is also
used in the course of healing of organs or tissues subject to trauma. In fact, the leukocytes
migrate to the injured, are activated and begin bombing damaged cells with free radicals, that
accelerate their destruction, remove lysis products, and promote the recovery (regeneration).
The production of free radicals by the cells may sometimes undergo a considerable increase
depending on external stimuli. In fact, physical, chemical and biological agents, alone or in
combination, may also induce the generation of ROS or increase the "physiological" production
through a specific metabolic stimulation. Ionizing and UV radiation are reported to be physical
agents. Both these sources of energy can induce the phenomenon of homolytic cleavage of
water, also called radiolysis or photolysis, depending on the type of radiation involved.

In this reaction, the water molecule absorbs energy and uses it to break one of its two covalent
bonds with the hydrogen: the products will be two free radicals, the hydroxyl radical and the
hydrogen atom. Considering that a living organism is made up primarily of water and he
spends most of his life under the influence of radiation (UV or ionizing they are) it is clear how
this phenomenon affects substantially the production of free radicals.

As chemical agent, capable of stimulating the production of free radicals, ozone (ROS) is to be
quoted. It directly generates peroxyl radicals by interaction with phenolic compounds. The
two cases considered so far (radiation and ozone) are examples of direct production of reactive
species. Other chemical agents, however, such as polycyclic aromatic hydrocarbons, or certain
drugs, induce increased production of free radicals through an indirect mechanism, activating
the cytochrome P450 microsomal level. Biological agents that typically lead to increased
production of ROS for metabolic activation are bacteria, as part of the physiological process of
defense against infection, and certain antibodies, as part of some reactions immune-pathogen.
In these cases, as mentioned with regard to the plasma membrane, the PMNs are directly
implicate. They, in fact, possess NADPH oxidase and a series of enzymes directly involved in
the production and, in part, inactivation of reactive chemical species, such as superoxide
dismutase (SOD), myeloperoxidase (MPx), catalase (CAT) and glutathione peroxidase (GPx).

SOD catalyzes the conversion of superoxide anion into hydrogen peroxide which, in turn, can
be inactivated to water by CAT or GPx. However, the availability of chlorides - even at
physiological concentrations - makes the hydrogen peroxide a substrate for MPx. The end
result is the production of a highly oxidising agent, the hypochlorous acid (HClO). The HClO
can attack numerous organic substrates and, in particular, amino acids and proteins, to
produce chloramines, a potential source of alkoxyl and peroxyl radicals. Finally, an increase
in free radical production may be observed in "physiological " situations, such as after an
intense muscular effort or in the course of many diseases. In the latter case, often, it is not clear
how far the ROS are the cause or the effect of a certain pathology [31].

New Discoveries in Embryology50



4. The antioxidant defense system

ROS are chemical species potentially detrimental. For this reason, living organisms have
developed over millennia of evolution a complex antioxidant defense system, consisting of a
set of enzymes, vitamins, trace elements and other vitamin-like substances. These antioxidants
may be classified according to different criteria: on the basis of the origin, in endogenous and
exogenous, on the basis of the chemical nature, in the enzymatic and non-enzymatic, and on
the basis of the solubility in fat-soluble and water-soluble. On the basis, however, of the
mechanism of action prevalent, physiological antioxidants can be easily assembled into four
main groups: preventive antioxidants, scavenger, shelter agents and adaptation agents [34].

Preventive antioxidants are agents that, through various mechanisms, such as the chelation of
transition metals, prevent the formation of reactive species.

The scavengers act through different mechanisms. They may be of hydrophilic nature
(albumin, urate, ascorbate, urate) or lipophilic (carotenoids, vitamin E, ubiquinol). According
to some researchers, the scavenger should be distinguished from antioxidants proper. In fact,
while the scavenger (eg. A-tocopherol) are agents that reduce the concentration of free radicals
removing them from the medium in which they are located, antioxidants (eg. Diphenylamine)
are agents that inhibit the auto-oxidation process, e.g. the fat rancidity. This phenomenon, well
known in food science, is called auto-oxidation since it occurs through a sequence of autoca‐
talytic radical reactions in the presence of oxygen. Alternatively, you can use the term
peroxidation, as the same process generates intermediates with characteristics of peroxides (R-
O-OR).

Through this process some dietary fat rancid and cellular membranes of living organisms are
oxidized.

Shelter agents include only enzymes involved after the damage from reactive species has been
established. Their action - often sequential - provides first the identification of the molecular
segment oxidized, then the separation of the fragment unusable and, finally, the synthesis and
the insertion of a new segment in substitution of the damaged one. The category of shelter
antioxidants includes hydrolases (glycosidases, lipases, proteases), and the transferase and
polymerases, all essential for the repair of free radical damage of important molecules or
cellular structures (eg. DNA, membranes, etc.).

Finally, the agents of adaptation include all substances or techniques or procedures through
which it is possible to strengthen the physiological antioxidant system of an organism. For
example, a proper physical exercise or the adoption of a proper and balanced diet are measures
by itself able to check the oxidative metabolism by reducing the production of reactive species,
and induction of enzymes with antioxidant activity.

The antioxidant defense system is regularly distributed in the body, both at the extracellular
and intracellular levels.

In plasma, the set of substances potentially able to give equivalent reducing (hydrogen atoms
or single electrons) so as to meet "the greed of electrons" that makes free radical constitutes

Influence of ROS on Ovarian Functions
http://dx.doi.org/10.5772/61003

51



unstable is the so-called barrier antioxidant. In the plasma, all protein and, in particular,
albumin, bilirubin, uric acid, cholesterol, and various exogenous antioxidants introduced with
food or in the form of dietary supplements (ascorbate, tocopherol, polyphenols etc.) are part
of it. The thiol groups (-SH), commonly found in the cysteine side chain, play a role of particular
importance in the context of this barrier. In addition, thiol groups, are the most chemically
reactive sites on proteins, such as albumin, and have strong reducing properties [35, 36].

Inside the cells, the antioxidant system of cell defense has its precise compartmentalization
(figure 3). The antioxidant system includes some enzymes (glutathione, superoxide dismutase,
catalase) and a series of substances taken from outside (vitamins and substances similar to
antioxidant activity, such as polyphenols, trace elements etc.). Some of these agents are fat-
soluble (eg. tocopherols) and, entering the team of biomembranes, constitute the first line of
defense against the attack of free radicals. Others, however, are water soluble (eg. ascorbate)
and intervene especially in the context of soluble matrix of the cytoplasm and cellular organ‐
elles.

Figure 3. Compartmentalization of antioxidant system

Glutathione (GSH) is a tripeptide (L-g-glutamyl-L-cysteinyl-glycine, with multiple biological
functions and that has been found in all mammalian cells [37-39]. Its biological activity is
primarily related to the active thiol group of the cysteine residue [40]. The reduced and
oxidized forms of glutathione (GSH and GSSG) act in concert with other redox-active com‐
pounds (e.g., NAD(P)H) to regulate and maintain cellular redox status. It is an abundant low-
molecular-mass thiol antioxidant, which either interacts directly with reactive oxygen and
nitrogen species (ROS and RNS, respectively) or serves as a cofactor for many antioxidant and
associated enzymes such as peroxidases and transferases [41]. The chemical structure of GSH
determines its potential functions and its broad distribution among all living organisms reflects
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its important biological role Probably most importantly, GSH is responsible for protection
against ROS and RNS, and detoxification of endogenous and exogenous toxins of an electro‐
philic nature. Depletion of GSH results in DNA damage and increased H2O2 concentrations;
as such, GSH is an essential antioxidant. During the reduction of H2O2 to H2O and O2, GSH is
oxidized to GSSG by glutathione peroxidase (GPx). Glutathione reductase participates in the
reverse reaction, and utilizes the transfer of a donor proton from NADPH to GSSG, thus,
recycling GSH [42]. Vitamin E (α-tocopherol) protects GPx4-deficient cells from cell death. In
addition, glutathione is (1) a storage form of cysteine in the cells and for interorgan transfer;
(2) a storage form and transporter of nitric oxide (as GSNO); (3) involved in the metabolism
of estrogens, leukotrienes, and prostaglandins, reduction of ribonucleotides to deoxyribonu‐
cleotides, and maturation of iron–sulfur clusters of proteins; (4) involved in the regulation of
certain transcription factors from the environment to cellular transcription machinery; (5)
involved in the detoxification of many endogenous compounds and xenobiotics (the mercap‐
turate pathway); and (6) copper and iron transfer. Glutathione also can be used even for the
detoxification of ions of transition metals such as chromium [43, 44].

Five isoforms of glutathione peroxidase exist in the body: GPx1, GPx2, GPx3, GPx4, and GPx5.
GPx1 is the cytosolic isoform that is widely distributed in tissues, while GPx2 encodes a
gastrointestinal form with no specific function; GPx3 is present in plasma and epididymal
fluid. GPx 4 specifically detoxifies phospholipid hydroperoxide within biological membranes.
Free glutathione exists in vivo mostly as two forms, reduced (GSH) and oxidized (glutathione
disulfide; GSSG). GPx5 is found in the epididymis [39].

Superoxide dismutase (SOD): Other enzymes directly detoxify ROS. SOD reacts with super‐
oxide anion radicals to form oxygen and H2O2. The enzyme SOD exists as three isoenzymes:
SOD 1, SOD 2, and SOD 3. SOD 1 contains Cu and zinc (Zn) (Cu, Zn-SOD) as metal co-factors
and is located in the cytosol. SOD 2 (Mn-SOD) is a mitochondrial isoform containing manga‐
nese (Mn), and SOD 3 encodes the extracellular form (ECSOD). SOD 3 is structurally similar
to Cu, Zn-SOD, as it contains Cu and Zn as cofactors [45, 46].

Catalase (CAT) is a heme-containing homotetrameric protein. CAT can decompose hydrogen
peroxide (H2O2) in reactions catalyzed by two different modes of enzymatic activity: the
catalatic mode of activity (2H2O2 →  O2 + 2H2O) and the peroxidatic mode of activity (H2O2 +
AH2 →  A + 2H2O). Although several substrates such as methanol and ethanol can be oxidized
by the peroxidation reaction, the physiological significance of this catalase function is not
understood. Decomposition of H2O2 by the catalatic activity of catalase follows the fashion of
a first-order reaction, and its rate is dependent on the concentration of H2O2. In fact, catalase
belongs to the group of enzymes that catalyze reactions at a rate near kinetic perfection; the
reaction rate is only limited by the rate at which the enzyme collides with the substrate.
Catalase is ubiquitously present in all prokaryotes and eukaryotes. With the exception of
erythrocytes, it is predominantly located in peroxisomes of all types of mammalian cells where
H2O2 is generated by various oxidases. However, a certain amount of catalase has also been
found in mitochondria of rat heart. Since H2O2 serves as a substrate for Fenton reaction to
generate the highly reactive hydroxyl radical, catalase is believed to play a role in cellular
antioxidant defense mechanisms by limiting the accumulation of H2O2 [47-49].
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The non-enzymatic antioxidants consist of dietary supplements and synthetic antioxidants
such as vitamin C, GSH, taurine, hypotaurine, vitamin E, Zn, selenium (Se), betacarotene, and
carotene [41]. Vitamin C (ascorbic acid) is a known redox catalyst that can reduce and neu‐
tralize ROS. Its reduced form is maintained through reactions with GSH and can be catalyzed
by protein disulfide isomerase and glutaredoxins. Glutathione is a peptide found in most forms
of aerobic life as it is made in the cytosol from cysteine, glutamate, and glycine [42]; it is also
the major nonenzymatic antioxidant found in oocytes and embryos. Its antioxidant properties
stem from the thiol group of its cysteine component, which is a reducing agent that allows it
to be reversibly oxidized and reduced to its stable form [42]. Levels of GSH are regulated by
its formation de-novo, which is catalyzed by the enzymes gamma-GCS and glutathione
synthetase [4, 11]. Glutathione participates in reactions, including the formation of glutathione
disulfide, which is transformed back to GSH by glutathione reductase at the expense of
NADPH [17].

Cysteine and cysteamine (CSH) increase the GSH content of the oocyte. Cysteamine also acts
as a scavenger and is an antioxidant essential for the maintenance ofhigh GSH levels. Fur‐
thermore, CSH can be converted to another antioxidant, hypotaurine [43, 44].

The concentrations of many amino acids, including taurine, fluctuate considerably during
folliculogenesis. Taurine and hypotaurine are scavengers that help maintain redox homeosta‐
sis in gametes. Both neutralize lipid peroxidation products, and hypotaurine further neutral‐
izes hydroxyl radicals [44].

Like GSH, the Thioredoxin (Trx) system regulates gene functions and coordinates various
enzyme activities. It detoxifies H2O2 and converts it to its reduced state via Trx reductase [45].
Normally, Trx is bound to apoptosis-regulating signal kinase (ASK) 1, rendering it inactive.
However, when the thiol group of Trx is oxidized by the SO anion, ASK1 detaches from Trx
and becomes active leading to enhanced apoptosis. ASK1 can also be activated by exposure to
H2O2 or hypoxiareoxygenation, and inhibited by vitamins C and E. The Trx system also plays
a role in female reproduction and fetal development by being involved in cell growth,
differentiation, and death. Incorrect protein folding and formation of disulfide bonds can occur
through H+ ion release from the thiol group of cysteine, leading to disordered protein function,
aggregation, and apoptosis [2].

Vitamin E (α-tocopherol) is a lipid soluble vitamin with antioxidant activity. It consists of eight
tocopherols and tocotrienols. It plays a major role in antioxidant activities because it reacts
with lipid radicals produced during lipid peroxidation [42]. This reaction produces oxidized
α-tocopheroxyl radicals that can be transformed back to the active reduced form by reacting
with other antioxidants like ascorbate, retinol, or ubiquinol.

The hormone melatonin is an antioxidant that, unlike vitamins C and E and GSH, is produced
by the human body. In contrast to other antioxidants, however, melatonin cannot undergo
redox cycling; once it is oxidized, melatonin is unable to return to its reduced state because it
forms stable end-products after the reaction occurs (see below for functions).
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5. Commonly used markers of ROS-induced modification of cellular
components

It seems that despite their high chemical reactivity most generated ROS do not lead to serious
negative physiological consequences for organisms. That is mainly due to the action of highly
efficient systems of ROS neutralization operating in concert with reparation and elimination
of ROS-modified molecules always exists, that may be called the basal steady-state (stationary)
level [37, 50]. Reactive oxygen species can modify most types of biomolecules including
proteins, lipids, carbohydrates, nucleic acids, metabolic intermediates, etc. It is widely
accepted that the use of only one type of modification to assess oxidative damage during
oxidative stress is not sufficient. That is due to the different sensitivity, dynamics, and nature
of ROS-promoted modifications. Instead, in order to evaluate the intensity of ROS-involving
processes, several approaches for the evaluation of particular oxidatively modified molecules
have been selected. They reflect the level of products of interaction between ROS and cellular
components of different natures. “Classically”, several essential markers are used. They are:
(i) for lipids – the formation of malonic dialdehyde (MDA), isopsoralens, and lipid peroxides;
(ii) for proteins – protein carbonyl groups; and (iii) for DNA – 8-oxoguanine. Malonic dialde‐
hyde is commonly measured via its reaction with thiobarbituric acid (TBA). However, this
reaction is not specific and many other compounds react with TBA under the assay conditions.
The array of products formed is collectively called thiobarbituric acid reactive substances
(TBARS) to reflect this low specificity. Certain amino acids, carbohydrates, aldehydes and
other compounds interfere with the reaction measurement and, therefore, this method should
be used with precaution and discussed taking into account the highlighted issues [50]. In the
last decade, an HPLC technique was applied to evaluate MDA levels and this method, along
with immunochemical identification [51] can now be recommended as more reliable than the
TBARS assay. There are also many other approaches to evaluate the intensity of ROS induced
lipid peroxidation and the measurement of lipid peroxides [51], 4-hydroxynonenal [52] are
just some of them. Selection of methods depends on many things, particularly tools available
[33]. Probably the most popular method for detection of ROS-modified proteins is the one
based on the formation of additional carbonyl groups with their visualization due to their
interaction with 2, 4-dinitrophenylhydrazine [53]. The hydrazones formed are measured
spectrophotometrically. Specific antibodies that interact with carbonyl groups on proteins [54]
have also been developed. In some cases, there is also the possibility to evaluate the amount
of dityrosines and other products of free radical induced oxidation of proteins. Oxidation of
nucleic acids also forms an array of products, but in this case there are some favorites that are
relatively easy to quantify. These are mainly oxidatively modified guanine derivatives, of
which 8-hydroxyguanine (8-OHG) is the most commonly used, but 8-oxo-7, 8- dihydro-2′-
deoxyguanosine (8-oxodG) and 8-oxo-7, 8-dihydroguanine (8-oxoGua) can also be measured.
Certainly, there are many more different markers of ROS-induced modification of cellular
constituents, but those listed here are the most widely used and applied approaches.
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6. Influence of ROS on reproductive functions

ROS affect multiple physiological processes in reproduction and fertility, from oocyte matu‐
ration to fertilization, embryo development and pregnancy. Several studies indicate that
follicular atresia in mammalian species due to the accumulation of toxic metabolites often
results from oxidative stress. It has been suggested that ROS under moderate concentrations
play a role in signal transduction processes involved in growth and protection from apoptosis.
Conversely, increase of ROS levels is primarily responsible for the alteration of macromole‐
cules, such as lipids, proteins and nucleic acids, that lead to significant damage of cell structures
and thereby cause oxidative stress. To prevent damage due to ROS, cells possess a number of
nonenzymatic and enzymatic antioxidants. Nonenzymatic antioxidant include Vitamin C,
glutathione, cysteamine, vitamin E. Enzymatic antioxidants consist of superoxide dismutases
(MnSOD and Cu/ZnSOD, which are in the mitochondria and cytosol, respectively), that
convert superoxide into hydrogen peroxide; glutathione peroxidase (GPX) and catalase (CAT)
which neutralize hydrogen peroxide. Intracellular homeostasis is ensured by the complex
interactions between pro-oxidants and antioxidants.

This chapter describes gathering evidence that oxidative stress is involved in ovarian physio-
pathology caused by diverse stimuli. There is strong evidence that ROS are involved in
initiation of apoptosis in antral follicles caused by several chemical and physical agents, in the
fluid follicular environment, influencing the folliculogenesis and the steroidogenesis. Al‐
though less attention has been focused on the roles of ROS in primordial and primary follicle
death, several studies have shown protective effects of antioxidants and/or evidence of
oxidative damage, suggesting that ROS may play a role in these smaller follicles as well.
Oxidative damage to lipids in the oocyte has been implicated as a cause of persistently poor
oocyte quality. Developing germ cells in the fetal ovary have also been shown to be sensitive
to toxicants and ionizing radiation, which induce oxidative stress. Recent studies have begun
to elucidate the mechanisms by which ROS mediate ovarian toxicity. It has been investigated
the role of antioxidant enzymes, such as catalase, glutathione peroxidase and the SOD isoforms
in maintaining low levels of oxidative stress.

The literature provides some evidence of oxidative stress influencing the entire reproductive
cycle. OS plays a role in multiple physiological processes from oocyte maturation to fertiliza‐
tion and embryo development. An increasing number of published studies have pointed
towards increased importance of the role of OS in female reproduction. Of course, there is
much to learn about this topic, whereby it cannot be underestimated.

7. Role of ROS in folliculogenesis, ovulation, and corpus luteum function

The ROS should not always be coupled with negative effects [56]. Accumulating data have
recently shown that reactive oxygen species can regulate cell function by controlling produc‐
tion or the activation of substances that have biological activities.
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Numerous genes related to inflammation are induced in preovulatory follicles by the LH surge.
The analogy of ovulation with an acute inflammation may suggest a role for ROS along this
process. Because ROS are massively generated during the inflammatory process hypothesized
that ROS could be involved in the signaling cascade leading to ovulation. The findings were
that H2O2 mimicked the effect of LH, bringing about an extensive mucification/expansion of
the follicle-enclosed cumulus–oocyte complexes; impaired progesterone production was
observed in isolated follicles incubated with LH in the presence of antioxidant agents;
furthermore, LH-stimulated up-regulation of genes, the expression of which is crucial for
ovulation, was substantially attenuated upon ROS ablation. Together, these results provide
evidence that ovarian production of ROS is an essential for preovulatory signaling events, most
probably transiently triggered by LH [56].

The increase in steroid production in the growing follicle causes an increase in P450, resulting
in ROS formation. Reactive oxygen species produced by the pre-ovulatory follicle are consid‐
ered important inducers for ovulation. Oxygen deprivation stimulates follicular angiogenesis,
which is important for adequate growth and development of the ovarian follicle. Follicular
ROS promotes apoptosis, whereas GSH and follicular stimulating hormone (FSH) counter‐
balance this action in the growing follicle. Estrogen increases in response to FSH, triggering
the generation of catalase in the dominant follicle, and thus avoiding apoptosis [26].

In ovaries, the corpus luteum is formed after ovulation and produces progesterone, which is
necessary for the establishment and maintenance of pregnancy. When pregnancy occurs, the
rescue of the corpus luteum and subsequent progesterone production are important for the
maintenance of pregnancy. In contrast, when pregnancy does not occur after ovulation, the
decline of progesterone production is important for the follicle development of the next
reproductive cycle. The chance of conception occurring as soon as possible and as often as
possible depends on how rapidly progesterone production declines. Therefore, the strategy
for reproduction in the ovary is the rapid rescue of the corpus luteum when pregnancy occurs,
and the rapid termination of the corpus luteum function when pregnancy does not occur after
ovulation. Corpus luteum regression is defined as that the corpus luteum declines in function,
decreases in volume, and thereafter disappears from the ovary. Corpus luteum regression
consists of two stages of regression, functional luteolysis and structural luteolysis. Structural
luteolysis is defined as structural involution of the corpus luteum, and is clearly distinguished
from functional luteolysis which is characterized by depletion of progesterone production
without structural changes such as loss of luteal cells and blood vessels. Rapid decline in
progesterone production is important for follicle growth in the next reproductive cycle. It is
therefore of interest to study the mechanism of functional luteolysis. ROS and SOD are
involved in functional luteolysis. ROS are produced in the corpus luteum [26]. There are
several potential sources of ROS in the corpus luteum. Macrophages and neutrophils, that are
clear sources of reactive oxygen species, are well documented as residing in the corpus luteum
[57-61] The increase in ROS in the corpus luteum is involved in functional luteolysis. The
decrease in Cu, Zn-SOD expression could be one of the causes for the increase in reactive
oxygen species in the regressing corpus luteum. It seems there is another possible mechanism
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able to increase ROS. PGF2α has been well recognized as a luteolysin since it increases in the
corpus luteum during the regression phase [62] and inhibits the production of progesterone
by luteal cells. A number of reports have shown so far that the inhibitory effect of PGF2α on
progesterone production by the corpus luteum is, in part, mediated through the increase of
ROS [63, 64]. ROS can activate phospholipase A2 activity and cyclooxygenase-2 expression in
the corpus luteum which are key enzymes for PGF2α synthesis. Thus, there seems to be a close
interrelation between PGF2α and ROS [65, 66].

Steroidogenic cells are also potential sources of reactive oxygen species because reactive
oxygen species are generated as byproducts of normal metabolism. Intracellular sources of
ROS include mitochondrial electron transport, endoplasmic reticulum, nuclear membrane
electron transport systems and plasma membranes [67]. There is a significant co-relationship
between Cu, Zn-SOD activities and serum progesterone concentrations. In contrast, lipid
peroxide levels increase in the corpus luteum during the regression phase in the both rat
models and show an opposite change from serum progesterone concentrations [68, 69].
Reactive oxygen species generated normally during steroidogenesis restrict the capacity of the
corpus luteum to produce progesterone [70]. In pregnancy, the decrease in Cu, Zn-SOD
expression causes the inhibition of progesterone production via the increase in ROS. Therefore,
the increase in ability to scavenge ROS may be associated with the maintenance of luteal cell
integrity and prolonged life span of the corpus luteum [71]. In other animals, such bovines,
SOD and CAT have been reported to be correlated with progesterone production by the corpus
luteum [72] It is plausible that the luteotropic substances, usually synthesized by placenta
during pregnancy, stimulate the expression of molecules that protect luteal cells from ROS.
Finally, the increase in Cu, Zn-SOD by placental luteotropins is an important mechanism to
rescue the corpus luteum and maintain progesterone production [73].

Aerobic metabolism utilizing oxygen is essential for energy requirements of the gametes, and
the free radicals play a significant role in physiological processes within the ovary. Many
studies have demonstrated involvement of ROS in the follicular-fluid environment, folliculo‐
genesis, and steroidogenesis [74]. The immunohistochemical distribution of the copper-zinc
superoxide dismutase (Cu, Zn-SOD) in the human ovary was given by [74]. They found, for
the first time, that the gestational corpus luteum, theca and granulosa lutein cells showed
intensive and moderate staining activity, respectively, to Cu, Zn-SOD. Furthermore, they
suggested that, as SOD catalyses the dismutation reaction of superoxide anion radicals, the
theca interna cells play an important role in the protection of the developing oocyte from
oxygen radicals by acting as a blood-follicular barrier during follicle maturation, [76] under‐
lined the presence of manganese superoxide dismutase (Mn-SOD) and Cu, Zn-SOD in human
ovaries and fallopian tubes, with different localizations and actions. The superoxide radical-
SOD system might play an important role in ovulation and in the luteal function of the human
ovary in the human ovary and fallopian tube, and to examine the role of superoxide radicals
and SODs in the human ovulatory process. These enzymes can be considered as markers of
cytoplasmic maturation [77].
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Culture of small and large (preovulatory) antral rat follicles without gonadotropin support
leads to apoptotic death within 24 h, while FSH suppresses apoptosis [78].To investigate if
oxidative stress plays a role in granulosa cell apoptosis during follicular atresia in the immature
rat ovary, healthy antral follicles obtained from rats were in the absence or presence of FSH,
SOD, ascorbic acid (a free radical scavenger), N-acetyl-L-cysteine (a free radical scavenger and
stimulator of endogenous glutathione peroxidase activity), or CAT. The results showed that
each antioxidant was able to protect against apoptosis in rat large antral follicles cultured
without gonadotropin support [79].

Markers of peroxidation were measured in follicular fluids and sera of women attending an
in vitro fertilization (IVF), to assess the pro or anti oxidative status and the effects of the
administration of antioxidants. The substances in follicular fluid were all significantly lower
than those in serum, both in the presence or absence of antioxidants. In conclusion, the intensity
of peroxidation in the Graafian follicle is much lower than that in serum. This gradient is the
result of the lower rate of initiation of peroxidation in the follicular fluid due to, probably, the
presence of efficient antioxidant defense systems in the direct milieu of the oocyte before
ovulation [80].

The role of ROS and antioxidant enzymes was provided using immunohistochemical locali‐
zation, mRNA expression, and thiobarbituric acid methods that suggested a complex role in
ovulation and luteal function in the human ovary [80]. Oxidative stress has been shown to
affect the midluteal corpus luteum and steroidogenic capacity both in vitro and in vivo. In a
very interesting study, using corpora lutea collected from pregnant and nonpregnant patients,
it was observed that during normal situations, Zn-SOD expression parallels the levels of
progesterone, with a rise from early luteal to midluteal phase and decrease during regression
of the corpus luteum. The mRNA expression, however, of Cu, Zn-SOD in the corpus luteum
during pregnancy was much higher than those of midcycle corpora lutea. This factor enhanced
SOD expression during pregnancy, possibly caused by increased human chorionic gonado‐
tropin (HCG) levels, and may be the cause of apoptosis of the corpora lutea. Similarly, the
antioxidant enzymes glutathione peroxidase and MnSOD are considered the markers for
cytoplasmic maturation, as these are expressed only in metaphase II oocytes [6]. Decreased
developmental potential of oocytes from poorly vascularized follicles has also been attributed
to low intrafollicular oxygenation [8]. Studies demonstrate intensified lipid peroxidation in
the preovulatory Graafian follicle and that glutathione peroxidase may help in maintaining
low levels of hydroperoxides inside follicle, suggesting an important role of oxidative stress
in ovarian function. Oxidative stress and inflammatory process have roles in the pathophysi‐
ology of polycystic ovarian disease and drugs such as Rosiglitazone maybe effective by
decreasing the levels of oxidative stress [81].

Two groups have developed Cu, Zn-SOD null mice, and both groups reported that the female
mice were subfertile; however, the mechanistic basis for the reduced fertility of female Cu, Zn-
SOD null mice remains unclear. [82] reported that ovaries of adult female Cu, Zn-SOD null
mice had reduced numbers of preovulatory follicles and corpora lutea. They concluded that
these mice were subfertile because of a defect in late follicular development or ovulation. In
contrast, [83] reported that Mn-ZnSOD null female mice had normal ovarian histology and
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ovulated similar numbers of ova during a natural estrous cycle but displayed increased
postimplantation embryonic lethality. Perhaps the different genetic backgrounds of these two
Cu, Zn-SOD knockout models accounts for these different findings. A study by [84] on copper
chaperone for superoxide dismutase null mice, which have decreased ability to incorporate
copper into Mn-ZnSOD, found a similar phenotype as [85], with abnormal development of
antral follicles and no corpora lutea. Taken together, the evidence seems to support a role for
Cu-ZnSOD in antral follicle development. Cu, Zn-SOD knockout is lethal prior to puberty.
However, transplantation of ovaries from Mn-SOD knockout juvenile mice to the ovarian
bursa of wild-type mice, in which the ipsilateral ovaries had been removed and the contrala‐
teral oviducts had been cut, resulted in all stages of follicular development, ovulation, and
fertility, suggesting that this enzyme is not critical for ovarian function.

Superoxide, hydrogen peroxide and lipid peroxides are generated in luteal tissue during
natural and prostaglandin-induced regression in the rat, and this response is associated with
reversible depletion of ascorbic acid. ROS immediately uncouple the luteinizing hormone
receptor from adenylate cyclase and inhibit steroidogenesis by interrupting transmitochon‐
drial cholesterol transport. The cellular origin of oxygen radicals in regressing corpora lutea
is predominantly from resident and infiltrated leukocytes, especially neutrophils. ROS are also
produced within the follicle at ovulation and, as the corpus luteum, leukocytes are the major
source of these products. Antioxidants block the resumption of meiosis, whereas the genera‐
tion of reactive oxygen induces oocyte maturation in the follicle. Although oxygen radicals
may serve important physiologic roles within the ovary, the cyclic production of these
damaging agents over years may lead to an increased cumulative risk of ovarian pathology
that would probably be exacerbated under conditions of reduced antioxidant status [87].

Melatonin appears to have some kinds of functions at different stages of follicle development,
oocyte maturation, and luteal stage. Melatonin concentration in the growing follicle may be
an important factor in avoiding atresia, because melatonin in the follicular fluid reduces
apoptosis of critical cells. Melatonin also has protective actions during oocyte maturation
reducing intrafollicular oxidative damage. An association between melatonin concentrations
in follicular fluid and oocyte quality has been reported In the ovarian follicle, melatonin
impacts the function of numerous cells, especially granulosa cells and the ovum (oocyte). The
actions of melatonin in these cells are mediated via membrane receptors and also possibly via
binding sites in the nucleus and in the cytosol. In addition to its receptor-mediated actions,
melatonin also functions as a direct free radical scavenger to reduce oxidative stress at the level
of the ovary; this beneficial action is carried out without an interaction with a receptor.
Additional antioxidant functions of melatonin are achieved when the indole stimulates
enzymes which metabolize free radicals to less toxic products. The antioxidative enzymes
include superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) in
thecal cells, granulosa cells and in the follicular fluid. Via these actions, melatonin reduces free
radical damage, which would be especially bad for the ovum, and maintains these elements
in an optimally functional state. The origin of melatonin in the follicular fluid is the blood and
from its local synthesis in granulosa cells [87-89].
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8. Assisted Reproductive Techniques (ART) and ROS

Assisted reproductive techniques (ART) are advanced technological procedures, which are the
treatments of choice in many cases of female and male infertility or assisted fertilization,
included the use of medical techniques, such as drug therapy, artificial insemination, or in
vitro fertilization, to enhance fertility. Expanded ART include any directed action taken by
humans to enhance reproduction in animals, both through 1) Assisted reproduction with a
technical component (mostly mammals), 2) assisted reproduction using various forms of
population management. The two are not mutually exclusive.

ART include:

1. Artificial Insemination

2. Embryo transfer

3. In vitro fertilization

4. Semen/embryo sexing

5. Intra cytoplasm sperm injection (ICSI)

6. Gamete/embryo micromanipulation

7. Somatic cell nuclear transfer (SCNT)

8. Genome resource banking.

They function, in humans, as an alternative to overcome causative factors of infertility, such
as endometriosis, tubal factor infertility, male factor infertility. They can be used in the
veterinary field also [90]. ART, in fact, were recently accepted into the programs for the
safeguard of endangered species from extinction [90-93]. In a feasible program it is necessary
proceed in the following five steps: 1) Technique development in a domestic animal counter‐
part, if available; 2) characterization of species-specific reproductive biology in a targeted non-
domestic animal; 3) assessment of technique feasibility for producing offspring; 4)
demonstration of adequate efficiency for applied usage; 5) application of new tool for popu‐
lation management [90] Figs 4, 5, and 6 show cumulus oocyte complexes (COCs) from mare
explanted ovaries: these tools are employed in ART to have genetic improvement in horses,

Oxidative stress is involved in ovarian physio-pathology caused by diverse stimuli caused by
several chemical and physical agents: ROS are involved in initiation of apoptosis in antral
follicles in the fluid follicular environment, influencing the folliculogenesis and the steroido‐
genesis. ROS may play a role in these smaller follicles as well. Oxidative damage to lipids in
the oocyte has been implicated as a cause of persistently poor oocyte quality. Developing germ
cells in the fetal ovary have also been shown to be sensitive to toxicants and ionizing radiation,
which induce oxidative stress. Recent studies have begun to elucidate the mechanisms by
which ROS mediate ovarian toxicity. It has been investigated the role of antioxidant enzymes,
such as catalase, glutathione peroxidase and the SOD isoforms in maintaining low levels of
oxidative stress [46]. It was demonstrated for the first time by [94] that high oxygen concen‐
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tration compromises nuclear maturation rates and worsens the oxidative stress during in vitro
maturation (IVM) of canine oocytes.

Incubated oocytes showed severely high quantities of superoxide dismutase (SOD), gluta‐
thione reductase (GSR), glutathione peroxidase (GPX1) and catalase (CAT) mRNA and this
effect results in a protective mechanism against oxidative stress [95].

[45] studied the effect of ovary transport media supplementation with SOD on ovarian cell
viability and apoptosis and in vitro embryo production (IVEP). They proposed, as mechanism
of action, the intervention of SOD in inactivating the atmospheric O2, potential deleterious
precursor of free radicals.

With IVF, sperm-oocyte interaction occurs in culture media, leading to fertilization [32].
Reactive oxygen species may develop as a consequence of increased oocyte number per dish,
spermatozoa, and cumulus cell mass. Cumulus cells demonstrate higher antioxidant activity
at the beginning of culture than denuded oocytes do [96]. In ICSI, a single sperm is injected
into an oocyte’s cytoplasm [142]. It bypasses natural selection, thus allowing for the injection
of damaged spermatozoon into the oocyte. Alternatively, the IVF process prevents fertilization
by DNA-damaged spermatozoa [97].

Recently, OS has been identified as an important factor in ART success. Oocyte metabolism
and a lack of antioxidants combined with the follicular and oviductal fluid of the embryo
causes an increase in ROS levels [384]. Follicular fluid is the net result of both the transfer of
plasma constituents to follicles and the secretory activity of granulose and theca cells [385].
The oocyte develops within the FF environment and this intimately affects the quality of
oocytes and their interaction with sperm, thus affecting implantation and embryonic devel‐
opment [98]. Oxidative stress contributes to oocyte quality, and its degree can be assessed by
biomarkers of lipid peroxidation [99]. The effects of OS may be may be further altered by
environmental factors. A hyperoxic environment augments SO radical levels by promoting
enzyme activity. Particularly in IVF, increased incubation time heightens exposure to O2
concentration [100]. As in biological systems, metallic cations act as exogenous sources of OS
by stimulating ROS formation in ART culture media, and metal chelators such as EDTA and
transferrin can ameliorate the production of ROS [43]. Furthermore, visible light can cause ROS
formation, thereby damaging DNA [101]. Fertilization success in ART is determined by the
quality of spermatozoa involved [32]. Although ROS contribute to normal sperm functions
such as oocyte fusion, capacitation, and acrosome reaction, OS produced by spermatozoa may
provoke oxidative damage to the oocyte, decreasing the likelihood for fertilization [81].

The in vitro environment exposes gametes and embryos to an excess of ROS with the absence
of enzymatic antioxidant protection normally present during in vivo fertilization and preg‐
nancy. Free radicals are thought to act as determinants in reproductive outcomes

due to their effects on oocytes, sperm, and embryos [95]. Oxidative stress disturbs human
oocyte intracellular Ca2+ homeostasis as well as oocyte maturation and fertilization. During
ovulation, ROS are produced within the follicles, however, the excessive production of ROS
may increase the risk for poor oocyte quality since oxidative stimulation promotes oocyte
maturation and wall rupture within the follicle [390]. A physiologic amount of ROS in follicular
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fluid is indicative of a healthy developing oocyte [102]. In vitro fertilization can disturb the
oxidant-antioxidant balance, rendering the culture media less protected against oxidation. The
adverse effects of sustained OS and resulting loss of oocyte antioxidant content were shown
to be improved by adding lipophilic and hydrosoluble antioxidants to the culture media to
lessen OS [103]. Oral vitamin and mineral supplementation have been shown to increase serum
concentrations of GSH and vitamins C and E; these antioxidants have been suggested to play
a significant role in IVF outcomes [104].

Much research on IVEP has focused on the damaging effects of an oxidative environment and
the inherent creation of reactive oxygen species that may impair embryo development. There
are evidences that endoplasmic reticulum (RE) is significantly less reducing, consequently,
excessive supplementation of reducing agents in media to offset oxidative damage has resulted
in controversial outcomes as slight redox imbalances are detrimental for embryo development
[73]. Conversely, an excess of ROS produced without sufficient antioxidant protection may
lead to disequilibrium of the redox balance versus oxidative stress characterized by damaging
DNA, RNA, protein and lipids [74]. Studies have been performed under high and low oxygen
tension conditions and have resulted in controversial findings. Studies using antioxidants on
swine model, indicated that the effect of the combination of GSH, β-ME and cysteine on embryo
development. Treatment groups had a greater number of developing embryos than the control
and the favorable result depended on the high O2 culture conditions were used [105].

In contrast, guaiazulene (a component of various chamomile species with antioxidant prop‐
erties) had no positive effect on embryo development under low oxygen tension (5 % O2) [106].
Furthermore, [94] found that low oxygen gas composition improves nuclear maturation rates
and alleviates the oxidative stress for canine oocytes during in vitro maturation.

Figure 4. Cumulus Oocyte Complexes (COCs) of Pre Antral Follicle from explanted mare ovaries. Ooplama bipolarisa‐
tion with a dark and a clear portion (ptical microscope, 100x)
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Figure 5. Cumulus Oocyte Complexes (COCs) of Pre Antral Follicle from explanted mare ovaries. COC stained with 5-
carboxyfluorescein diacetate (cFDA) and trypan blue (with unviable cumulus cells and viable oocyte) (optical micro‐
scope 200x).

Figure 6. Cumulus Oocyte Complexes (COCs) of Pre Antral Follicle from explanted mare ovaries. Viable COC stained
with 5-carboxyfluorescein diacetate (cFDA) and trypan blue (optical microscope 200x)

9. Conclusions

Oxidative stress has been extensively studied for about four decades. Substantial progress has
been achieved to date – from descriptive characterization of this process to delineation of
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molecular mechanisms underlining adaptive responses and targeted manipulations of
expected responses. In recent years, the importance of ROS synthesis in ovarian functions has
been established also. Several data have recently shown that reactive oxygen species can
regulate cell function by controlling production or the activation of substances that have
biological activities. It has been suggested that ROS under moderate concentrations play a role
in signal transduction processes involved in growth and protection from apoptosis. Converse‐
ly, increase of ROS levels is primarily responsible for the alteration of macromolecules, such
as lipids, proteins and nucleic acids, that lead to significant damage of cell structures and
thereby cause oxidative stress. Oxidative damage to lipids in the oocyte has been implicated
as a cause of persistently poor oocyte quality after early life exposure to several toxicants.
Developing germ cells in the fetal ovary have also been shown to be sensitive to toxicants and
ionizing radiation, which induce oxidative stress. Recent studies have begun to elucidate the
mechanisms by which ROS mediate ovarian toxicity. To prevent damage due to ROS, cells
possess a number of nonenzymatic and enzymatic antioxidants. that include Vitamin C,
glutathione, cysteamine, vitamin E, superoxide dismutases (SOD1, SOD2, and SOD3),
glutathione peroxidase, and catalase. Intracellular homeostasis is ensured by the complex
interactions between pro-oxidants and antioxidants. The bulk of evidence in support of
therapeutic effects of antioxidants to date, has been observed through experimental studies on
animals and humans ART, whose aim is depth knowledge of human reproductive functions,
conservation of species in danger of extinction, and acceleration of life cycles using reproduc‐
tion for purposes of genetic and productive.

In the future, the hope is to clarify the efficacy of antioxidants as potential therapies for
infertility and in ART the use of specific antioxidants to improve multiple physiological
processes from oocyte maturation to fertilization, embryo development and pregnancy.
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