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Abstract

Recent data on the cell deregulation that occurs during the progression to cancer un‐
derlines the cooperation between genetic and epigenetic alterations leading to a ma‐
lignant phenotype. Unlike genetic alterations, the epigenetic changes do not affect the
DNA sequence of the genes, but determine the regulation of gene expression acting
upon the genome. Moreover, unlike genetic changes, epigenetic ones are reversible,
making them therapeutic targets in various conditions in general and in cancer dis‐
ease in particular. The term epigenetics includes a series of covalent modifications that
regulate the methylation pattern of DNA and posttranslational modifications of histo‐
nes. Gene expression can also be regulated at the posttranscriptional level by micro‐
RNAs (miRNAs), a family of small noncoding RNAs that inhibit the translation of
mRNA to protein. miRNAs can act as ‘oncomiRs’, as tumor suppressors, or both. In
this chapter, we will (1) summarize the current literature on the key processes respon‐
sible for epigenetic regulation: DNA methylation, histone modifications and posttran‐
scriptional gene regulation by miRNAs; (2) evaluate aberrant epigenetic modifications
as essential players in cancer progression; (3) establish the roles of microenvironment-
mediated epigenetic perturbations in the development of gynecological neoplasia; (4)
evaluate epigenetic factors involved in drug resistance.
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1. Introduction

1.1. Key processes responsible for epigenetic regulation

Epigenetics could be broadly defined as the sum of cellular and physiological trait variations
that are not caused by changes in the DNA sequence. Epigenetic mechanisms are essential for
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the normal development and maintenance of tissue-specific gene expression patterns in
mammals. Disruption of epigenetic processes can lead to altered gene function resulting in
imprinting disorders, developmental abnormalities and cancer. The epigenetic mechanisms
that will be presented in this chapter are (1) DNA methylation, (2) chromatin and histone
modifications, and (3) regulatory noncoding RNAs.

1.1.1. DNA methylation

DNA methylation is a biochemical process characterized by the addition of a methyl group
especially at the C5 position of cytosine from CpG dinucleotides and is accomplished by two
classes of DNA methyltransferases involved in maintenance and de novo methylation [1]. CpG
dinucleotides are not randomly distributed across the human genome but are found in short
CpG-rich DNA sequences called ‘CpG islands.’ CpG islands are found in regions of large
repetitive sequences (e.g. centromeric repeats, retrotransposon elements, rDNA) [2, 3] and in
60% of human gene promoters [4]. Some CpG islands are methylated, whereas the majority of
them usually remain unmethylated during development and in differentiated tissues [5]. CpG
islands’ promoters become methylated during development (imprinted genes, chromosome
X inactivation) [2]. Another role of CpG island methylation is to silence noncoding DNA and
transposable DNA elements to prevent chromosomal instability by heavy methylation of
repetitive sequences [5]. DNA methylation leads to gene silencing by either preventing or
promoting the recruitment of regulatory proteins to DNA. Methylation of CpG islands can
block the access of transcription factors to the transcription sites [6, 7], or by recruiting methyl-
binding domain proteins (MBDs), which can mediate gene repression through interactions
with histone deacetylases (HDACs) [8, 9]. This epigenetic modification does not change the
DNA sequence, but enhances the stability and chromosome integrity and promotes genome
organization into transcriptionally active or silenced regions. DNA methylation at the whole
genome level provides a specific global methylation pattern [2, 10] that plays an important role
in regulating gene expression (e.g. development and cell-specific gene expression) in associa‐
tion with chromatin-associated proteins. The maintenance of a cell-specific methylation
pattern after every cellular DNA replication cycle provides a stable gene-silencing mechanism
that plays an important role in regulating gene expression. The maintenance methyltransferase
DNMT1 is responsible for copying DNA methylation patterns to the daughter strands during
DNA replication, whereas DNMT3a and DNMT3b are de novo methyltransferases that
establish the methylation patterns early in development [11]. DNMT3L, a homologous protein
to other DNMT3s, increases the ability of DNM3a and 3b to bind to DNA, stimulating their
activity. Some problems in the establishment of methylation biomarkers in gynecologic
cancers, especially in cervical cancer [12], come from the fact that: (1) the extent of methylation
across the various CpG sites in a promoter can be rather heterogeneous and consequently, the
assay outcome is likely to be influenced by the region of CpGs that is targeted; (2) the distinct
levels of background methylation due to differences in cell type composition between cervical
tissue samples that can contain substantial amounts of nonepithelial (stromal) cells and cervical
scrapings that are enriched in superficial epithelial cells. For this reason, the methylation
results obtained from tissue samples may not be directly extrapolated to cervical scrapings
[13]. In addition, while the methylation of tumor suppressor’ promoters is an early and

Gynecologic Cancers - Basic Sciences, Clinical and Therapeutic Perspectives16



frequent alteration in carcinogenesis [14] and, on the other hand, is widespread in the human
genome, only a subset of affected loci play critical roles in tumorigenesis [15]. CpG hyperme‐
thylation is gene- and cancer type–specific [16, 17, 18, 19], providing a useful signature for
tumor diagnosis and prognosis [18] that must be established accurately.

1.1.2. Covalent histone modifications

Mammalian genome represents a highly structured complex comprised of compacted DNA
and proteins that can adopt different three-dimensional conformations dependent of nuclear
context and biochemical changes present in the genome and at the histone level [20]. At first
glance, the chromatin is present in two forms: transcriptionally active euchromatin and more
condensed and transcriptionally inactive heterochromatin. In the genome, there are some
structural regions (such as centromeres) containing constitutive heterochromatin; others may
go through an open conformation to a compact one—optional heterochromatin. These
transitions, vital to the establishment of necessary transcriptional various models of embryonic
development, growth, and adult life, are under epigenetic control. Nucleosomes form the
repetitive fundamental units of the chromatin and are designed to pack the huge eukaryotic
genome in the nucleus (mammalian cells contain approximately 2 m of linear DNA wrapped
in a core size of 10 µm in diameter) [20]. The nucleosomes in turn are compacted and form the
chromosomes. The nucleosomal core consists of approximately 147 base pairs wrapped around
a histone octamer made up of two copies of the histones H2A, H2B, H3, and H4. Histone H1
(linker histone) and its isoforms are involved in chromatin compaction underlying nucleosome
condensation. Decondensed nucleosomes look like a bead wrapping a DNA molecule [21].
Histone covalent modifications (epigenetic changes) represent important regulatory elements
that influence chromatin interactions by structural changes either by electrostatic interactions
and recruitment of nonhistone proteins [22].

Histones can undergo a variety of posttranslational modifications at the N-terminus (like
acetylation, methylation, phosphorylation, sumoylation, ubiquitination, and ADP-ribosyla‐
tion) that can alter the DNA–histone interaction, with a major impact on chromatin structure
and key cellular processes such as transcription, replication, and repair [20]. The histone code
may be transient or stable. The mechanism of inheritance of this histone code is not fully
understood. The patterns of histone modifications are specific to each cell type and play a key
role in determining cellular identity [23, 24]. In contrast with stem cells, differentiated cells
acquire a more rigid chromatin structure, which is important for maintaining cell specialization
[23]. Epigenetic regulation mediated by histone modification is a dynamic process. Lysine
residue methylation using histone methyltransferase (HMT) is correlated either with tran‐
scriptional activation or repression, whereas lysine acetylation correlates with transcriptional
activation [25]. Histone methyltransferases (HMTs) and demethylases (HDMs) work in
tandem to determine the degree of methylation of the lysine residue [26]. Histone H3 lysine 4
trimethylation (H3K4me3) correlates with euchromatin and gene transcription activation.
Histone H3 lysine 27 trimethylation and/or lysine 9 (H3K27me3/H3K9me3) is correlated with
the transcriptional repression of heterochromatin and H3K27me3 modification is critical for
stem cells; demethylation at this level is correlated with differentiation [27, 28, 29, 30, 31]. These
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two modifications represent the main silencing mechanisms in mammalian cells, H3K9me3
working in concert with DNA methylation and H3K27me3 largely working exclusive of DNA
methylation [32]. Histone acetylation is one of the histone modifications that have been studied
extensively. The two homonymous enzymes that are involved in maintaining a specific profile
are histone acetyltransferases (HATs) and histone deacetylases (HDACs) [26]. Generally, the
level of histone acetylation correlated with transcriptional activation and deacetylation
correlates with transcriptional repression. H3 histone acetylations at lysine 9 (H3K9ac) and
lysine 4 to 16 are characteristic euchromatin changes located in regions where genes are
actively transcribed. Although histone modifications act mainly by altering the architecture of
some modifications (H3K4me3 and H3K9ac) mediates gene regulation by recruiting other
proteins involved in chromatin remodeling [33, 34]. Histone modifications and DNA methyl‐
ation interact with each other at multiple levels to determine gene expression status, chromatin
organization, and cellular identity [35]. Several HMTs, including G9a, SUV39H1, and PRMT5,
methylate DNA to specific genomic targets recruiting DNA methyltransferases (DNMTs) [36,
37, 38]. In addition, DNMTs may recruit HDACs and methyl-binding proteins to achieve gene
silencing and chromatin condensation [8, 9]. DNA methylation can also be established via
H3K9 methylation, such as MeCP2, thereby establishing a repressive chromatin state [39].
Recent studies showed that the main chromatin changes that occurs during tumorigenesis are
characterized by a global loss of acetylated H4 lysine 16 (H4K16ac) and H4 lysine 20 trime‐
thylation (H4K20me3) [40]. HDACs were found overexpressed in various types of cancer [41,
42] (becoming a major target for epigenetic therapy), along with HATs, whose expression can
also be altered in cancer. MOZ, MORF, CBP, and p300 (HATs) may be targets for chromosomal
translocations, especially in leukemia [43]. Changes in histone methylation patterns (deregu‐
lation of HMTs) are associated with aberrant gene silencing in cancer, and an effective cancer
treatment strategy targeting HDMs represents a promising treatment option.

1.2. Posttranscriptional gene regulation by noncoding RNAs

Noncoding RNAs are involved in fundamental processes, such as chromatin dynamics and
gene silencing, and their transcripts outnumber the group of protein transcripts. It is well
known that the initiation of X-chromosome inactivation is regulated by noncoding RNAs (Xist
function) and the noncoding RNAs molecules are also involved in imprinting, suggesting that
antisense RNA can induce transcriptional silencing [44, 45, 46]. The characterized noncoding
RNA family consists of a large group of small regulatory microRNAs (about 1400 microRNAs
in humans) [47].MicroRNAs (miRNAs) are short noncoding RNAs of 20–24 nucleotides that
play important roles in virtually all biological pathways in mammals like differentiation and
growth control. Based on computer predictions, it was proposed that miRNAs may regulate
many cell cycle control genes [48]. miRNAs influence numerous cancer-relevant processes
such as proliferation, cell cycle control, apoptosis, differentiation, migration, and metabolism.
The key processes of miRNA biogenesis pathways have been characterized. Primary miRNA
transcripts are transcribed from separate transcriptional units or embedded within the introns
of protein coding genes by RNA polymerase II. Primary miRNA transcripts are processed by
a complex formed by RNase III enzyme and Drosha, resulting in a pre-miRNA hairpin that is
subsequently exported from the nucleus to the cytoplasm by exportin 5 (XPO5). Further pre-
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miRNA molecules are processed by another protein complex, including DICER and TRBP, to
produce the single-stranded mature miRNA (ssmiRNA). ssmiRNA is subsequently incorpo‐
rated in RNA induced silencing complex (RISC), along with key proteins such as AGO2 and
GW182. The role of mature miRNA (as part of the RISC) is to induce posttranscriptional gene
silencing by complementary sequence motifs to the target mRNAs predominantly found
within the 3′ untranslated regions (UTRs) [47, 49, 50]. One specific miRNA may target up to
several hundred mRNAs; therefore, a miRNA may silence various genes while a specific
mRNA may be targeted by several miRNAs. Aberrant miRNA expression may interfere with
gene transcription and influence cancer-related signaling pathways [51, 52, 53].New data are
added to decipher the role of miRNAs in normal physiology and pathology. Several microar‐
ray expression studies performed on a wide spectrum of cancer types have proved that
deregulated miRNAs expression is the rule rather than the exception in cancer [54, 55, 56, 57].
Animal models featuring miRNA overexpression or knock-down have demonstrated the
relation between miRNAs and cancer development, thus proposing miRNAs as potential
biomarkers and putative therapeutic targets [58]. In addition, since miRNAs were discovered,
many researchers focused their interest on identifying miRNAs generated by viruses. Several
data support this hypothesis mainly based on miRNA size, which allows them to avoid the
immune system but also to be supported by the small size of viral genome. It is not unexpected
that many miRNAs encoded by viruses have been discovered, most of them transcribed from
double-stranded DNA viruses [59]. miRNAs can regulate the expression of viral genes that
are involved in controlling viral replication. It is supposed that these miRNAs might influence
viral gene expression in a differentiation-dependent manner by targeting viral transcripts. On
the other hand, different hrHPV types have different oncogenic potentials, viral miRNA being
considered one of the factors involved in oncogenic regulation; some conserved miRNAs are
involved in the switch from HPV productive to transforming infections.

2. Evaluation of aberrant epigenetic modifications as essential players in
cancer progression

Normally, evolution and morphological state of genital organs are in close interdependence
with hormonal status that is different in different periods: childhood, sexual maturity,
climacterium, and menopause. On the other hand, there is an increasing interest in the
identification of diagnostic biomarkers and biomarkers able to predict both response to
treatment and survival. For an optimal planning of therapeutic strategy in high-risk patients,
a close association between biological variables and (epi)genetic profiles associated with
aggressive clinical behavior could be useful. Therefore, many cellular changes should be
analysed in this context.

Benign tumors of the vulva can be developed from epithelial components (papillomas and warts)
mezenchimatos tissue (fibroma, leiomyoma, lipoma, hemangioma, and lymphangioma), and
local glands (Bartholin gland cysts or cysts of sweat glands). Vulvar cancer is a rare malignant
disease accounting for less than 5% of gynecological malignancies [60, 61, 62]. The most
common vulvar cancers are epidermoid carcinoma and rarely adenocarcinomas that are
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developed in the Bartholin glands or sweat glands. Approximately 20%–40% of vulvar
squamous carcinomas are often associated with papilloma virus infection [60 - 66] and are
more frequent in young people. Non-HPV vulvar cancers occur in the elderly and are associ‐
ated with somatic mutations, especially in TP53 [60 - 63, 65, 66]. Tumors harbouring a mutation
have a worse prognosis than vulvar squamous cancers without (epi)genetic changes [67 - 70].
However, allelic imbalances seem to occur in both groups and the cumulative number of
epigenetic changes increases from dysplasia to cancer [71]. The data with respect to epigenetic
changes in vulvar cancer progression is limited to a few articles on DNA hypermethylation
but not to chromatin remodeling or histone modifications. This data is presented in Table 1.
Hypermethylation seems to be more frequent in vulvar squamous cancers than in vulvar
intraepithelial neoplasia, but more studies are needed. Taking into account the existence of
two etiological categories of vulvar carcinomas (related or not to HPV), the miRNA signature
in these two types of vulvar carcinomas were evaluated [72]. Some miRNAs had lower
expression in HPV-positive tumors (miR-1291, miR-342-3p, miR-193a-5p, miR-29c#-,
miR-106b#, miR-22#, miR-365, miR-151-5P, miR-144#, miR-125b-1#, miR-519b-3p, miR-26b,
miR-19b-1, and miR-1254) and other microRNAs had higher expression in HPV-positive
tumors (miR-1274B, miR-142-3p, miR-21, miR-708, miR-16, miR-660, miR-29c, miR-1267,
miR-454, and miR-186) [72]. In HPV-negative samples, we observed an association between
lymph node metastases with decreased expression of miR-223-5p and miR-19b-1-5p, vascular
invasion with decreased expression of miR-100-3p and miR-19b-5p-1, and advanced tumor
staging (FIGO IIIA, IIIB, and IIIC) with expression of microRNAs miR-519b-1-5p and
miR-133a. In addition, de Melo Maia and collaborators (2013) built a network between miRNA
expression profiles and putative target mRNAs (TP53, RB, PTEN, and EGFR) based on
prediction algorithms, demonstrating that the evaluated miRNAs can be involved in vulvar
cancer progression, thereby providing biomarkers for the establishment of prognostic and
predictive values of response to novel targeting therapies in vulvar cancer [72].

The vagina is a fibromuscular tubular organ, which histologically consists of three layers of
tissue: (1) an outer layer consisting of fibro-elastic connective tissue; (2) vaginal muscles with
a longitudinal outer layer and an inner layer of fibers circularly arranged in a spiral; and (3)
Malpighian mucosa, covered by squamous epithelium. The vaginal epithelium undergoes
changes in relation to the period of the woman’s life and depending on hormonal stimulus.
Histological changes are reflected in vaginal cytology. Vaginal epithelium responds to ovarian
stimuli through proliferation, differentiation and desquamation. Thus, in adult women, under
the action of estrogen during the proliferative phase, vaginal mucosa proliferates and differ‐
entiates morphologically and functionally, and later, during the luteal phase, under the action
of progesterone, superficial cell layer desquamation occurs. The action of estrogen on the
vaginal mucosa is exercised on the epithelium as well as on the subjacent stroma.

Vaginal cancer is also a rare malignancy, accounting for about 2%–3% of all gynecologic cancers
[73, 74]. The squamous cell carcinomas (SCC) are more frequent (80%–90%) than adenocarci‐
nomas. If the risk factors linked to vaginal squamous cell carcinoma are smoking, immuno‐
suppression, high number of sexual partners, papillomavirus and history of cervical
precancerous and cancerous lesions [75, 76, 77], in the case of the vaginal adenocarcinomas,
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particularly clear cell adenocarcinomas, exposure to an antiabortive drug diethylstilbestrol
(DES) was incriminated [78, 79, 80]. On the other hand, if squamous vaginal cancer tends to
occur more commonly in the proximal third of the vagina, especially the posterior vaginal
wall, the adenocarcinomas are mostly seen in the anterior upper vaginal wall [74]. Human
papillomaviruses have been also linked to vaginal cancers, HPV prevalence in 2/3 lesions of
vaginal intraepithelial neoplasia and invasive vaginal cancer being over 90% and 70%,
respectively [81, 82]. The HPV oncogenic transformation has been associated with high levels
of E6 and E7 viral oncoproteins in the epithelia that can be achieved by two mechanisms: (1)
increased production of E6 and E7 after the loss of E2 (the normal regulator of E6 and E7
expression) during viral integration [83]; (2) methylation of the E2-binding sites (E2BS) in the
viral LCR in the region close to the early promoter that could inhibit E6 and E7 transcription
[84]. Therefore, HPV16-related integration, methylation in E2BS3 and 4, and viral load may
represent different viral characteristics driving vaginal and vulvar carcinogenesis [85].The
adverse health outcomes induced by DES exposure during fetal development include infer‐
tility, early menopause, and breast cancer, along with a rare form of vaginal adenocarcinoma
in adolescent girls [86, 87]. While animal models show an association of early exposure to
estrogens with the expression levels of several genes [88, 89, 90] and epigenetic changes,
including DNA methylation and histone modifications [91, 92, 93], the first study that evaluates
the possible effects of in utero DES exposure on genome wide DNA methylation in humans
cannot find evidence of large persistent effects of in utero DES exposure on blood DNA
methylation [94].

The uterus is a hollow organ, in which the product of conception is developed. It consists of
three parts: body, isthmus, and cervix. The corpus presents a mucosa (endometrium), muscular
wall (myometrium), and serous peritoneal surface. The endometrium is a specialized tissue,
particularly receptive to the influence of sex hormones that differs from a histological point of
view at prepubertal periods, sexual maturity, and menopause. Also, the uterine mucosa is in
constant transformation during menstrual cycles, sexual maturity, growth processes, func‐
tional maturation, and regression. Similar risk factors for endometrial cancers were incrimi‐
nated: adult obesity [95], first-degree family history of endometrial cancer, or colorectal cancer
[96]. Nulliparity and infertility appeared to independently contribute to endometrial cancer
risk [97]. The endometrium is extremely sensitive to hormones, the estrogen and progesterone
being two key regulators of proliferation and differentiation in reproductive tissues [98]. The
two isoforms of the progesterone receptor, PRA and PRB, required for endometrial differen‐
tiation [99], are generated by alternative transcription and translation from the same gene with
the addition of 164 amino acids in the N-terminus sequences of PRB [98] that makes them
functionally different [99]. A shift in the estrogen–progesterone balance is the major cause for
the development of endometrial cancer [100]. Progesterone is an important inducer of
endometrial differentiation and an inhibitor of tumorigenesis because the addition of progestin
(synthetic progesterone) can prevent endometrial cancer induced by an excess of estrogens
from endogenous sources (e.g., adipose tissue storage of estrogen and with polycystic ovarian
syndrome) or from exogenous sources in therapeutic administration [100]. While progestin
therapy achieves promising outcomes with early stage endometrial cancer, advanced and
recurrent disease has only minor effects. This is due to the fact that in advanced endometrial
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cancer, the progesterone receptor is lost but it has been demonstrated that reestablishing
progesterone signaling in these cells can inhibit endometrial cancer cell proliferation and
invasion and increase sensitivity to apoptotic stimuli [100]. The epigenetic restoration of
progesterone receptor expression could result in resensitization of endometrial tumors to
progestin therapy. The functional role of epigenetic factors in endometrial cancer development
began to be evaluated. A study by Jones and collaborators (2013) emphasizes the role of
HAND2 hypermethylation, which is a key step in endometrial carcinogenesis [101]. HAND2
is a basic helix-loop-helix transcription factor and developmental regulator [102], expressed in
the normal endometrial stroma. The physiological function of HAND2 is to suppress the
production of fibroblast growth factors that mediate the paracrine mitogenic effects of estrogen
on the endometrial epithelium [103]. HAND2 is under progesterone regulation [104, 105],
entering in the progesterone-mediated suppression of estrogen-induced pathways. Conse‐
quently, the methylation of HAND2 is able to predict the response to progesterone [101].
HAND2 methylation is the most common molecular alteration in endometrial cancer and, on
the other hand, is an early event in endometrial carcinogenesis that makes it a sensitive test to
correctly identify endometrial cancer patients amongst those women who present with
postmenopausal bleeding [101].

Histologically, the cervix shows mucosa, muscle wall, and the peritoneal serosa. The mucosa
of the cervix has an exocervical portion (covered by squamous epithelium, nonkeratinized)
and one endocervical (covered by a single-layered cylindrical epithelium, mucus secreting,
which contains a small number of ciliated cells, basal stem cells and racemic, tubular, or
branched type glands). Cancer of the uterine cervix is the major cause of death from gyneco‐
logical cancers and in over 90% of cases is associated with high-risk human papilloma virus
(hrHPV). Etiological factors include cigarette smoking, impairment of cell-mediated immun‐
ity, and long-term estrogen–progestin use [106, 107, 108]. But the main etiological factor of
squamous cell carcinoma (that accounts for about 80% of the cases) as well as adenocarcinoma
are human papilloma virus infections [109]. The role of other sexually transmitted infections
(Chlamydia trachomatis and herpes simplex virus) is still unclear [108, 110].In cervical cancer,
tumorigenesis of both squamous cell carcinoma and adenocarcinoma is HPV-related [109].
The transforming potential of E6 and E7 viral oncoproteins is based on their numerous actions
on cellular proteins, mainly on p53 and pRB tumor suppressors, which are degraded and
inactivated, respectively. In addition to the already reported genomic alterations in cervical
cancer development by hrHPV, many studies underline the involvement of epigenetic
alteration in host cell genes or at the levels of RNA. In order to find some diagnostic and
prognostic biomarkers, the methylation of host cell genes and methylation of viral genes were
evaluated [12]. The CpG hypermethylation of promoters of tumor suppressor genes, an early
and frequent alteration in carcinogenesis, affects all important pathways: cell adhesion (cell
adhesion molecule 1 (CADM1)) [13], E-cadherin [111, 112], apoptosis (DAPK, a proapoptotic
serine/threonine kinase [113, 114]), cell cycle (cyclin A1 methylation [114, 115]), fragile histidine
triad (FHIT) [116], cell signaling pathways (retinoic acid receptor [117], Ras association domain
family 1 isoform A (RASSF1) [118]), Wnt/β catenin pathway (adenomatous polyposis coli
(APC) [119] and PTEN [120]), p53 signaling pathway (p73 [121]), and DNA repair (O6
methylguanine DNA methyltransferase (MGMT) [113, 122]).For cervical scrapings, some
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methylation marker panels of host genes, with sensitivities of over 80% for CIN3+ were
evaluated: SOX1/PAX1, SOX1/LMX1A, SOX1/NKX6-1, PAX1/LMX1A; PAX1/NKX6-1,
LMX1A/NKX6-1 [123], JAM3/EPB41L3/TERT/C13ORF18 [124], and CADM1/MAL [13, 125],
etc. Host gene methylation analysis might be an alternative for hrHPV DNA detection because
aberrant methylation can be detected in cervical smears up to 7 years prior to the diagnosis of
cervical cancer [126]. On the other hand, for methylation analysis, cervical scrape samples as
well as self-collected cervico-vaginal lavage samples can be used [127].As accurate predictor
tests, the measurement of DNA methylation in HPV genomes, in certain early (E) and late (L)
open reading frames (ORF) as well as in parts of the upstream regulatory region (URR), may
have diagnostic value. The hypermethylation in the L1 region was a common feature of cervical
cancer but not of CIN induced by HPV16 [128], or HPV18 [129]. But the DNA methylation on
multiple CG sites in the L1, L2, E2, and E4 ORFs were significantly associated with CIN2+ after
accounting for multiple testing [130]. Some studies have contradictory results because most
were quite small and heterogeneous and did not always include (1) comparable sets of
specimens (cancer, high-grade CIN, cell lines), (2) exactly the same CG sites, or (3) the same
methodology [12]. Overall, as cervical cancer prevention moves to DNA testing methods,
DNA-based biomarkers, such as HPV methylation could serve as a reflex strategy to identify
women at high risk for cervical cancer [131], but the region with the best predictive value must
be established.In addition to the already reported genomic alterations in cervical cancer
development by hrHPV, many studies underline the involvement of viral or cellular miRNAs,
mainly based on the fact that some RNA micromolecules target transcriptional factors that
modulate both cellular and viral gene expression [132, 133].In HPV infection, E6 decreases
miR-34a [132, 134], which is a target of p53, thus the effect of E6 on miRNA-34a is mediated
by decreased p53 [132,134]. On the other hand, one of the targets of miR-34a is p18Ink4c [135],
an inhibitor of CDK4/6 that promotes the cell cycle. E7 decreases miR-203 during keratinocyte
differentiation, which is a tumor suppressor and thus increases carcinogenesis [136] through
an increase of cell survival targeting antiapoptotic protein bcl-w [137], induction of G1 cell
cycle arrest targeting survivin [138], inhibition of migration and invasion targeting LIM and
SH3 protein [139]. E7 upregulates miR-15a, miR-15b, and miR-15b through E2F1 and E2F3
[140, 141] and in turn, these miR decrease cyclin E1, leading to cell cycle arrest [142]. A lot of
other miRs are upregulated or decreased by virus oncogenes inducing changes in cellular
signaling pathways, some of these have not yet been elucidated [143].

Ovaries, paired organs, constitute the female sexual gland with endocrine lunette and also
produce ova. The ovary is covered by germinal epithelium (formed from cuboid or cylindrical
cells) and subjacent is a thin layer of dense connective tissue. The ovary presents a cortical area
(comprised of follicles, corpus luteum, and stroma) and a medulla. Starting from puberty till
menopause, there is a growth and maturation of one ovarian follicle during each menstrual
cycle and the formation of one corpus luteum after rupture of the follicle and oocyte removal.
If the egg is not fertilized, the corpus luteum regresses, undergoes progressive sclerosis
forming a hyaline. If the egg is fertilized, the corpus luteum becomes more voluminous and
luteal cells increase, constituting the corpus luteum of pregnancy. Ovarian stroma is formed
from fibroblastic and mesenchymal cells. Stromal cells present both characters of connective
cells and steroid activity (secreting androgens and estrogens). Ovarian medulla consists of lax
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connective tissue containing blood and lymph vessels, nerves, and embryonic elements. The
growth and development of the follicle during the ovarian cycle are driven by two gonado‐
trophic hormones, secreted by the anterior pituitary: follicle-stimulating hormone (FSH) and
luteinising hormone (LH). Both FSH and LH are under the control of gonadotrophin-releasing
hormone (GnRH) secreted by the hypothalamus through negative feedback carried out by
estrogens that are secreted by thecal cells of the follicle.

Ovarian cancer ranks second after cervical cancer worldwide. On the other hand, ovarian
cancer is in seventh place in terms of incidence among malignant tumors in women and eighth
with respect to death due to malignant tumors in women worldwide [144]. If approximately
90% of ovarian cancers arise from epithelial cells, 3% are from germ cells and 7% from
granulosa-theca cells. Ovarian cancer comprises different types of tumors with widely
differing clinicopathologic features and behaviors. Based on clinicopathologic and molecular
genetic studies, two histologic types of epithelial ovarian serous carcinomas were established:
low-grade serous carcinomas (LGSCs) and high-grade serous carcinomas (HGSCs) [145].
Although they are developed independently along different molecular pathways, both types
develop from fallopian tube epithelium and involve the ovary secondarily. Type I tumors
(LGSCs) are comprised of low-grade serous, low-grade endometrioid, mucinous, and clear cell
carcinomas; typically present as large cystic masses confined to one ovary; have a relatively
indolent course; and are relatively genetically stable being associated with mutations in KRAS,
BRAF, PTEN, PIK3CA, CTNNB1, ARID1A, and PPP2R1A [146, 147] that perturb signaling
pathways. Type II tumors (HGSCs) are composed of high-grade serous, high-grade endome‐
trioid, undifferentiated carcinomas and malignant-mixed mesodermal tumors; clinically
aggressive and typically present at an advanced stage, which contributes to their high fatality
[148]; at the time of diagnosis, they demonstrate marked chromosomal aberrations but over
the course of the disease these changes remain relatively stable [149]; approximately 60% of
HGSC have the fallopian tube as the origin of serous tumors [150], because the expression
profiles of ovarian HGSCs more closely resemble fallopian tube epithelium than the ovarian
surface epithelium [151]; they harbor TP53 mutations in over 95% of cases [152, 153], but rarely
harbor the mutations detected in the low-grade serous tumors; another possible origin of
HGSC is from inclusion cysts through a process of implantation of tubal (müllerian-type) tissue
rather than by a process of metaplasia from ovarian surface epithelium (mesothelial). Hyper‐
methylation has been found to be associated with the inactivation of almost every pathway
involved in ovarian cancer development, including DNA repair, cell cycle regulation, apop‐
tosis, cell adherence, and detoxification pathways [154]. Complete or partial inactivation of the
BRCA1 gene through hypermethylation of its promoter has been reported in 15% of sporadic
ovarian tumors [155, 156], 31% of carcinomas but not in the benign or borderline tumors [157],
or in the hereditary type of the disease, nor in samples from women with a germ line BRCA1
mutation [158, 159]. On the other hand, hypermethylation of BRCA1 was detected at a
significantly higher frequency in serous carcinomas than in tumors of the other histological
types [160]. The homeobox genes (HOX), a family of transcription factors that function during
embryonic development and control pattern formation, differentiation, and proliferation [161]
was associated with ovarian cancers [162]. In addition, based on the high percentage of
methylation of the HOXA9 gene observed in 95% of patients with high-grade serous ovarian
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carcinoma [163, 164], it has been suggested that the methylation status of HOXA9 and
HOXAD11 genes may serve as potential diagnostic and prognostic biomarkers [163,164]. Some
other genes found hypomethylated were associated with progression towards cancer: LINE-1
elements [165], SNGG (synucelin-γ), encoding an activator of the MAPK and Elk-1 signaling
cascades [166, 167], etc. Overall, DNA hypomethylation may promote tumorigenesis by
transcriptional activation of proto-oncogenes and on the other hand loss of imprinting or
genomic instability. DNA hypermethylation predisposes to gene mutation because the
methylated cytosines are often deaminated and converted to thymine leading to inactivation
of tumor suppressor genes. However, these phenomena deregulate the main functions of
gynecological cancer cells (Figure 1 and Table 1).

Figure 1. Biological functions influenced by alterations of DNA methylation in gynecological cancers.

Genes Functions Expression change Epigenetic regulation References

O
va

ria
n 

ca
nc

er BRCA2 Cell proliferation and differentiation Overexpression Hypomethylation 168, 169

CLDN3;CLDN4 Migration and invasion Overexpression

DNA
hypomethylation, H3
acetylation; Loss of
repressive histone
modifications

170, 171, 172
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Genes Functions Expression change Epigenetic regulation References

HOXA10
HOXA11

Fertility, embryo viability,
regulation of hematopoietic lineage
commitment; regulation of uterine
development and is required for
female fertility

Overexpression
DNA
hypomethylation/
hypermethylation

164, 173, 174,
175

MAL
Formation, stabilization and
maintenance of glycosphingolipid-
enriched membrane microdomains

Overexpression Hypomethylation 176

NFKB1

Cell proliferation; Inflammation,
immunity, differentiation, cell
growth, tumorigenesis, and
apoptosis

Overexpression miR-9 downregulation177

SNCG Cell proliferation Overexpression
DNA
hypomethylation

167

BMI1 Cell proliferation Overexpression
miR-15a and miR-16
down regulation

178

TUBB3 Taxane drug resistance Overexpression
DNA
hypomethylation,
chromatin acetylation

179

ARID3B

Epithelial-to-mesenchymal
transition; Embryonic patterning,
cell lineage gene regulation, cell
cycle control, transcriptional
regulation and possibly in chromatin
structure modification

Overexpression
miR-125a
downregulation via
EGFR signaling

180

BCL3 Cell proliferation, tumorigenesis Overexpression
miR-125b
downregulation

181

BRCA1
DNA repair, cell cycle checkpoint
control, and maintenance of
genomic stability

Overexpression Hypermethylation 182

PTEN, p14ARF Cell cycle regulation Overexpression Hypermethylation 182

DAPK Regulator of programmed cell death Overexpression Hypermethylation 182

RASSF1A
Negative regulator of cell
proliferation through inhibition of
G1/S-phase progression

Overexpression Hypermethylation 159,182, 183

p16INK4A Cell cycle regulation Overexpression Hypermethylation 183

APC
Tumor suppression by antagonizing
the WNT.

Overexpression Hypermethylation 159, 183
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Genes Functions Expression change Epigenetic regulation References

CTGF
Cell adhesion, migration,
proliferation, angiogenesis

Overexpression Hypermethylation 184

CCBE1
Extracellular matrix remodeling and
migration

Overexpression Hypermethylation 185

HIC1 Transcription factor Overexpression Hypermethylation 159

RARb Cell differentiation Overexpression Hypermethylation 183

E-cadherin Cell adhesion Hypermethylation 183

H-cadherin
Regulation of cell growth, survival
and proliferation

Overexpression Hypermethylation 183

hMLH1
Regulation of cell growth, survival
and proliferation
DNA mismatch repair

Overexpression Hypermethylation 186, 187, 188

GSTP1 Detoxification Overexpression Hypermethylation 189

MGMT Potential prognostic cancer Overexpression Hypermethylation 187,188

CYP39A1 Potential prognostic cancer Overexpression Hypermethylation 190

GTF2A1,
FOXD4L4, EBP

Potential prognostic cancer Overexpression Hypermethylation 190

HAAO Potential prognostic cancer Overexpression Hypermethylation 190

En
do

m
et

ria
l c

an
ce

r BMP2,3,4,7 Cell growth and EMT Overexpression Hypomethylation 191

SOX4 Prognosis Overexpression

miR-129-2
downregulation by
DNA
hypermethylation

192

hMLH1
Regulation of cell growth, survival
and proliferation; DNA mismatch
repair

Hypermethylation 193, 194

RASSF1A
Negative regulator of cell
proliferation through inhibition of
G1/S-phase progression

Hypermethylation 195, 196, 197

CHFR
Regulates progression of the cell
cycle

Hypermethylation 198, 199

APC Signaling and intracellular adhesion Hypermethylation 200

THBS2
Inhibitor of tumor growth and
angiogenesis

Hypermethylation 201

p16INK4A Cell cycle regulation Hypermethylation 202

PTEN Cell cycle regulation Hypermethylation 203
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Genes Functions Expression change Epigenetic regulation References

PER1
Cells circadian rhythms
maintenance; cancer development

Hypermethylation 204

HOPX Tumorigenesis Hypermethylation 205

CDH13
Regulation of cell growth, survival
and proliferation

Hypermethylation 206

HSPA2, MLH1 Regulation of cell growth Hypermethylation 206

SOCS2
Cytokine-inducible negative
regulators of cytokine signaling

Hypermethylation 206

PAX2 Transcriptional factor Hypomethylation 207

V
ul

va
r c

an
ce

r CDKN2A Cell cycle regulation Hypermethylation 208, 209

MGMT Potential prognostic cancer Hypermethylation 210

RASSF2A Tumor suppressor gene Hypermethylation 210

RASSF1A
Negative regulator of cell
proliferation through inhibition of
G1/S-phase progression

Hypermethylation 210

TERT Cellular senescence Hypermethylation 209

TSP1
Platelet aggregation, angiogenesis,
and tumorigenesis

Hypermethylation 210

TFPI2 Tumor suppressor gene Hypermethylation 209

TP73, FHIT Cell cycle regulation; apoptosis Hypermethylation 211

TSLC-1 Hypermethylation 212

C
er

vi
ca

l c
an

ce
r CAGE RNA processing Overexpression Hypomethylation 213

MAP2K3 Cell proliferation Overexpression
miR-214
downregulation

177

MAPK8 Cell proliferation Overexpression
miR-214
downregulation

177

PTGS2
Cell proliferation, migration,
invasion

Overexpression
miR-101
downregulation

214

SERPINH1 Metastasis Overexpression
miR-29a
downregulation

215

VEGFA Tumor growth, angiogenesis Overexpression

miR-203
downregulation by
DNA
hypermethylation

216

Table 1. Altered DNA methylation in gynecological cancer
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miRNA as key players in cell fate decisions are strongly linked to gynecological cancer. But,
although the methods to discover miRNA were improved, research is still in progress. Some
of these miRNA that have been associated with gynecologic cancers are shown in Figure 2 and
Table 2.
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Figure 2. Venn diagram showing dysregulated miRNAs in gynecological cancers. (A) miRNAs downregulated, (B)
miRNAs upregulated. Common miRNAs dysregulated signature between ovarian and other cancers are shown in red.
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Specific miRNAs have effects on various molecular pathways, and specific miRNA expression
signatures in gynecological cancers can be associated with diagnosis, prognosis, and therapy
response. miRNAs can regulate a large number of target genes and Table 2 lists the estimated
targets.

miRNA(s)

Expression
(Up/

downregulat
ed)

Estimated target(s) References

O
va

ria
n 

ca
nc

er

Let-7a,b, c, d, e, f, g Down c-Myc, KRAS, HMGA2, IL-6, LIN28B, HIC2 217, 218

Let-7i Down HMGA2, LIN28Bm TRIM71,IGF2BP1 219

1 Down FOXP1, HDAC4 c-Met, Pim1, HAND2 220

9 Down NF-kB, Bcl2, Bcl6, FGF, b-Raf 220, 221

15a, 16 Down BMI1 178

21 Down PTEN 222

30b,d Down Unknown 223, 224

34a,b,c Down SIRT1, MYC, NOTCH, BCL2, CCND1,WNT3 222, 223, 225

95 Down AIB1, GNAI2 226

98 Down HMGA2, LIN28B, HIC2 223

125a, b Down
ARID3B, LIN28b, Akt3, ETS1ARID3B, RBB2, ERBB3,
TNFa, BMPR1B

223, 227, 228

126 Down SPRED1, PIK3R2, RGS4, RGS5, PI3K 229

137 Down CDK6, MITF, KLF12, PDLIM3 2

140 Down c-SRK, MMP13, FGF2 220,230

145 Down MAP3K3, MAP4K4, SOX2, OCT4, KLF4, c-myc 220, 230, 231

150 Down c-Myb, MAK9, Akt3, MAP2K4 230

184 Down TTK69, K10, Sax(A) 230

200a,b,c Down
ZEB1, ZEB2, FN1, PPM1E, EXOC5, GATA4, GATA6,
TUBB3, TNC, TGF-b

219 ; 232, 233

210 Down E2F3, EFNA3, HoxA1, HoxA9
226, 234, 235,
236

335 Down
P18SRP, HLF, CALU, MAX, HOXD8, SOX4, JAG1,
TNC, c-Met, TNC

223, 228

377 Down REST, SOD1 230, 237

517a, b Down CREAP-1, MAPKAPK5, NFKBIE, PTK2B 238

519a, d,e Down
FLJ31818, TGFBR2, HuR, EIF2C1, ARID4B,
GATA2BD, SUV39H1

223,238, 239
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miRNA(s)

Expression
(Up/

downregulat
ed)

Estimated target(s) References

551a Down LPHN1, ERBB4, ZFP36 223

662 Down NEGR1, MKX, CSF3 223

10a,b Up
USF2, HOXA1, HOXD10, HOXB1, HOXB3, RB1CC1
and ribosomal proteins (enhances translation)

223,237,238,
240

21 Up PDCD4, RPS7, NCAPG, TPM1, PTEN
222, 224, 228,
229, 238, 240

26a,b Up PTEN, IL6, KPNA6, CTDSPL, ITGA5, EZH2 230,237,238

27a Up ZBTB10, Myt-1, HMGB2, HOXA2, CYP1B1 226, 242

30a-5p, 30e-5p Up Unknown 223

99a,b Up SLC6A7, AIFM2, DNPEP, HS3ST2, DOHH 223, 229

130a Up MCSF, GAX, HOXA5 243, 244

141 Up ZEB1, ZEB2 245

146a Up BRCA1, BRCA2 246

181a,b Up HOXA11, GATA6, NLK, CDX2, TBL1X, DPP6,KLF2 238, 247, 248

182 Up FoxO3, FoxO1 238, 244, 249

200a Up ZEB1, ZEB2 245

200c Up TUBB3, ZEB1, ZEB2 245, 250

203 Up p63, SOCS-3, ABL1, MCEF, ADAMTS6 220, 238

205 Up ZEB1, ZEB2, E2F1, ERBB3, PKCe, SHIP2 220, 238,251

213 Up APP, SATB2 252

214 Up
SLC2AB, KSR1, JMJD2B, EZH1, PLXNB3, NARG1,
PTEN

226, 244

221 Up CDKN1B (p27), CDKN1C (p57) 223, 235

222 Up CDKN1B (p27), CDKN1C (p57) 253

223 Up SEPT6, MMP9, USF2, KRAS, EGF 224,237, 254

296 Up LYPLA2, IQSEC2, RNF44, HGS 223, 255

340 Up PAM, RTN3, PPL, RNF34, ZNF513 252

451 Up ZBTB10, Myt-1, HMGB2, HOXA2, CYP1B1 226, 242

494, 594 Up Unknown 223

520f Up ZNF443, AK2, NFYA,TCERG1 247

605 Up VGLL3, PHACTR2, SCAMP1, SEC24D 223, 256

Interplay of Epigenetics with Gynecological Cancer
http://dx.doi.org/10.5772/61032

31



miRNA(s)

Expression
(Up/

downregulat
ed)

Estimated target(s) References

En
do

m
et

ria
l c

an
ce

r

1 Down c-Met, TIMP-3, TRIM2, ITGB3, ZNF264 257, 258

Let-7 Down KRAS, c-Myc, HMG2A, IL-6, HIC2 229

26 Down SMAD1, SOX2, Bcl6, SMAD4, BCL2,KLF4 229

29b Down IGF1, Mcl-1 257

30c Down MYH11, GPRASP2, DDR2, CKS2,C5 250

34b,c Down NOTCH, BCL2, CCND1, WNT3, MYC, SIRT1 257, 259

101 Down COX2, EZH2 257

125 Down LIN28, ERBB2, ERBB3, Akt3 and ETS1 229

129-2 Down SOX4 192

133a,b Down PKM2, Mcl-1,Bcl2l2 257

136 Down Rtl1 257

152 Down ENPP2, SNCAIP, LTBP4, MLH1,Bcl2l11 259, 260

193a,b Down KIT, RAMP1, TSPYL5, ERBB4, ROBO4, UPA 250, 261

204 Down Ezrin, ESR1, CHD5, CAMTA1 261

221 Down LMOD, p27Kip1, p57Kip2, c-Kit 260

376a,c Down PRPS1, BMPR2, KLF15,GRIK2 257, 262

377 Down ETS1, XIAP, RNF38 257

379 Down FOXP2, MTMR2, HLCS,CCNB1 257

411 Down MAP3K1, SP2, CDH2, FOXO1, SMAD4,SET 257

424 Down CCNE1, CCND1,NFI-A 257

455-5p Down PP1R12A, KDR, SUZ12, FOXN3,PTPRJ 257, 263

518c Down ID-1, HOXA3,HOXC8,RAP1B,ABCG2,HLA-G 245,257

542-3p,5p Down COX-2, HSPG2, ZNF618, CREB5 257, 264

654-3p Down KLF12, SORBS1, WDR26, RNF145, AP1S3 229, 265

765 Down KLK4, POU2F2, TIMP3, ADAM19, BCL6B 257

873 Down FOXK2, TBL1X, TMOD2, BMPR2, SFRS1 257

1226 Down MARCH9, PPFIBP1 257

10a Up
USF2, HOXA1, HOXD10, HOXB1, HOXB3, RB1CC1
and ribosomal proteins

250

31 Up FOXCP2, FOXP3 261

96 Up CHES1, FOXO1, FOXO3A 261, 266
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miRNA(s)

Expression
(Up/

downregulat
ed)

Estimated target(s) References

103 Up GPD1, cdc5A, cdk6, cyclin D2, ENPP2, TIMP3 260, 268

106a Up
TGFB1I1, CNN1, OLFML2A, Rbp1-like, FOXA1,
KIF1A, ZIC1

257, 260

107 Up ENPP2, CDK2, HIF1a 267

142-5p Up E2F7, EGR3, IGF1, SOX11, SOX5, TGFBR2 257

155 Up UBE2J1, DCAF7, RAB34, SH3BP4 261

181a Up
GPRASP1, TBL1X, DPP6, KLF2, HOXA11, GATA6,
NLK, CDX2

260, 268

182, 183 Up FOXO1, FOXO3, CASP3, CASP2, Fas
257, 260, 261,
266, 268

196a Up ANXA1, HOXB8, HOXA7, HOXC8, HOXD8 269

200c Up TUBB3 250

203 Up JPH4, ZIC1, CDK6, ABCE1, SMYD3, p63 257, 268

205 Up E2F1, ERBB3, JPH4, S100A2, ZEB1, ZEB2 257, 268

210 Up
DCHS1, ENPP2, MYH11, KCNMB1, MNT, BDNF,
PTPN1

257,260, 261,
268

363 Up CUL3, CXCL5, AGGF1, CIT, DUSP6, EPS8 261, 270

449 Up WISP2, MUC5B, EFNB1, VAMP2 261

513a-5p Up CCRL1, MCHR2, CD274, RGS5, EPS8 257

629 Up LRP6, TCF4, SEPT1, ZNF436, SLC1A7 257

C
er

vi
ca

l c
an

ce
r

Let -7b, c Down Unknown 271

29a Down Neurotrophin/TRK signaling 272, 273

26a Down Unknown 274

34a,b Down
p18Ink4c, CDK4, CDK6, Cyclin E2, 2F1, E2F3, BCL2,
BIRC3

199, 275

99a Down IGF-1, BCL2L2, VEGFA CDK6 274

124 Down IGFBP7, CDK6 276

138 Down hTERT 277

145 Down IGF-1 274

149,196b Down Unknown 271, 278

205 Down ZEB1, ZEB2, SIP1 279

214 Down MEK3, JNK1 175
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miRNA(s)

Expression
(Up/

downregulat
ed)

Estimated target(s) References

218 Down LAMB3 280

372 Down CDK2, Cyclin A1 281

513 Down IGF-1, BCL2L2, VEGFA CDK6 274

519a Down HuR 282

9 Up Unknown 283

10a Up (HOX) genes 274

21 Up PTEN,TPM1, PDCD4 271, 284

27a Up Unknown 285

100 Up PLK1 286

126, 127 Up Unknown 278, 287

132 Up (HOX) genes 274

133a Up Unknown 278

133b Up MST2,CDC42, RHOA,MAPK1,AKT1 288

146a Up Unknown 285

148a Up PTEN, P53INP1 and TP53INP2 274

155 Up Unknown 272, 278

182, 199b Up Unknown 278, 280

200a Up
MYH10, ZEB1, DCP2, YWHAG, KIDINS220, ZEB2,
TGFB2, RANBP5, EXOC5

283

203 Up p63 136

205, 221 Up Unknown 272, 285

302b, 522 Up Unknown 274

886-5p Up BAX 289

V
ul

va
r c

an
ce

r

19b-1-5p; 22-5p; 26b-3p;
29c-5p; 106b-3p; 142-3p;
144-5p; 151a-5p; 193a-5p;
342-3p; 365a-3p; 519b-3p;
1291

Down Unknown 72

16-5p; 21-5p; 29c-5p; 142-3p;
186-5p; 454-3p; 708-5p; 1267

Up Unknown 72

Table 2. Dysregulated miRNAs in gynecological cancer.
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Specific biological functions affected by histone modifications in gynecological cancers are
presented in Table 3.

Genes Functions
Expression Up/
downregulate

References

O
va

ria
n 

ca
nc

er

EZH2
Lysine methyltransferase; Transcription regulator that acts
in gene silencing and embryonic development;

Up 290

SMYD2
(KMT3C)

Lysine methyltransferases; methylates both histones and
nonhistone proteins, including p53/TP53 and RB1.

Up 291

KDM4A
A demethylase that binds to androgen receptor and
represses transcription; may play a role in regulation of cell
cycle

Up 292

EP300
Histone acetyltransferase that regulates transcription via
chromatin remodeling

Down 293

hMOF (KAT8)
Histone acetyltransferase which may be involved in
transcriptional activation.

Down 294, 295

CREBBP
(KAT3A)

Plays critical roles in embryonic development, growth
control, and homeostasis by coupling chromatin remodeling
to transcription factor recognition.

Down 296

En
do

m
et

ria
l c

an
ce

r HDAC1
Histone deacetylase 1, a transcriptional regulator that
mediates histone deacetylation, antiapoptosis, synapse
maturation, and hippocampus development

Up 297

KDM4A
A demethylase that binds to androgen receptor and
represses transcription; may play a role in regulation of cell
cycle

Up 298

EZH2
Transcription regulator that acts in gene silencing and
embryonic development;

Up 299

C
er

vi
ca

l c
an

ce
r

KDM5BHistone demethylase and transcription repressor that acts in
regulation of Notch signaling, stem cell maintenance, and cell differentiation

Up 300

EZH2
Transcription regulator that acts in gene silencing and
embryonic development

Up 301

KDM5C
A putative transcription regulator that may act in chromatin
remodeling and brain development

Down 302

KDM6A
Demethylates histone H3 lysine 27; induced expression by
papillomavirus E7 oncoprotein results in epigenetic
reprogramming

Up 303

KDM6B
A transcription repressor that plays a role in gonad and
lung development and defense response to Gram-positive

Up 303
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Genes Functions
Expression Up/
downregulate

References

bacteria, regulates histone methylation, macrophage
differentiation, and protein localization

EP300
Histone acetyltransferase and regulates transcription via
chromatin remodeling

Up 304

pCAF (KAT2B)
Histone acetyltransferase (HAT) to promote transcriptional
activation

Up 305

HDAC1
Histone deacetylase 1; a transcriptional regulator that
mediates histone deacetylation, antiapoptosis, synapse
maturation, and hippocampus development

Up 306, 307

HDAC2

Histone deacetylase 2; a histone deacetylase and a
transcriptional corepressor that acts in chromatin
remodeling, inflammatory response, and regulation of
translation

Up 307

Table 3. Histone modifications in gynecological cancer.

3. The roles of microenvironment-mediated epigenetic perturbations in the
development of gynecological neoplasia

The complexity that governs the tumor phenotype cannot be explained only at the genetic level,
as genetic abnormalities occur with low frequency. Therefore, major attention was focused on
the study of the role of tumor microenvironment (TME) not only in tumor initiation but also in
progression and metastasis. The hypothesis of cancer cell development and proliferation only
in a conducive environment has been made by Paget since 1889 [308]. While Paget suggested
that  the  microenvironment  facilitates  or  inhibits  metastasis  through  growth-promoting/
inhibiting factors, recent research sustains that the tumor is directed into one or several possible
molecular evolution pathways by signals originating in native and/or modified microenviron‐
mental  factors  [309].  The  tumor  microenvironment  consists  of  epithelial  cells,  vascular
endothelial cells, fibroblasts and myofibroblasts, macrophages, leukocytes, and the extracellu‐
lar matrix (ECM). Together with the ECM, these nonmalignant cell types constitute the stromal
tissue of the tumor that secretes ECM components, cytokines, and growth factors involved in
tumor growth and invasion. All these components are dynamically interconnected around the
tumor. In the tumorigenesis process, studies have shown the critical role of chronic inflamma‐
tion  by  hyperexpression  of  the  inflammatory  mediators  in  the  microenvironment.  The
inflammatory microenvironment is both the result of genetic alterations in cancer cells and of
the tumor-infiltrating cells that produce inflammatory mediators [310].

While normal fibroblasts prevent tumor progression, cancer-associated fibroblasts (CAFs) that
display a different secretory pattern generate an environment that favors tumor growth and
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invasiveness. Tumor formation is characterized by changes in cell behavior, like accelerated
growth with loss of tissue architecture and epithelial dysfunction, angiogenesis, stromal
activation, and migratory and invasive features. Therefore, dysfunction in the tumor micro‐
environment, in addition to epithelial dysfunction, is crucial for carcinogenesis as altering its
components leads to impaired immune response. TME promotes tumorigenesis through new
blood vessel formation. Although studies have suggested that some cells in TME contained
mutations, recent data pointed, first, to the presence of mutations only in tumorigenic cells
and second, to the contribution of these mutations to epigenetic changes in both nontumori‐
genic cells and TME. In turn, the cells in the microenvironment produce epigenetic changes in
tumor cells reflected in their pattern of differentiation [311] and animal models demonstrate
that the tumor microenvironment can induce epigenetic alterations and changes in gene
expression in tumors [312].

It was suggested that the epigenome serves as the interface between the genome and the
environment [313, 314]. The epigenetic role of TME in growth induction seems to be linked
with transforming growth factor (TGF)-β and its receptor, whose expressions are regulated
through chromatin remodeling [315], although no research on stromal fibroblasts was
performed. TGFβ pathways are involved in the oncogenesis process, acting either as tumor
suppressor or as tumor promotor, depending on TME crosstalk in the tumor microenviron‐
ment [316]. In malignant progression, epigenetic changes in the expression of 12 genes
responsive to the TME stress suggest that coordinated transcriptional response of eukaryotic
cells to microenvironment might be correlated with chemotherapy resistance of solid tumors
[317]. Since tumor development is lead by physiological responses to an aberrant stromal
environment, the interaction between the tumor and stromal cells determines tumoral
progression [318]. In the chemokine network, epigenetic silencing of CXCR4 in SDF-1α/CXCR4
signaling of tumor microenvironment of cervical cancer cell lines and primary biopsy samples
limited the cell response to the paracrine source of SDF-1α, which lead to loss of cell adhesion
and disease progression [319]. Other authors reported miRNA’s contribution to cancer
progression and metastasis. While extracellular miRNAs are involved in cell–cell communi‐
cation and stromal remodeling [320], specific intracellular ones lead to cell proliferation
through cancer-associated fibroblast activation [321].

The acquisition of invasive properties in tumor cells seems to be partially linked to epithelial-
mesenchymal transition by abrogation of homotypic cell–cell adhesion due to the absence of
E-cadherin expression. Starting from the important role of transient E-cadherin expression in
neoplasia, DesRoches and collaborators investigated its regulation by the microenvironment.
Using 3D human tissue constructs, the authors suggested the role of epigenetic changes (DNA
methylation, chromatin remodeling, and specific miRNA regulation) in the plasticity of E-
cadherin-mediated adhesion in different tissue microenvironments during tumor cell invasion
and metastasis [322]. The entry of the epithelial cells into the stroma is promoted through the
E-cadherin intercellular junction disruption by MMP-3 and break down of the ECM collagen
fibers by MMP-2 and MMP-9 [323]. MicroRNA suppression also influences the changes
involved in epithelial–mesenchymal transition [324]. Reexpression of E-cadherin might
reestablish cell–cell adhesion and may result in a mesenchymal–epithelial transition that might
lead to proliferative growth of metastases.
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Metastasis, as a multistage process (tumor cell migration from primary tumor, invasion of the
surrounding tissues, intravasation into the circulation or the lymphatic system metastasis)
involves communication with surrounding nonneoplastic cells [325] that can be epigenetically
modulated to lead to ECM remodeling. Also, the epigenetic changes in the microenvironment
have a significant impact on distant metastasis. In order to create a favorable local environment
for cell proliferation in the metastatic sites, carcinoma cells induce epigenetic changes in both
the stromal cells and bone marrow–derived cells [326]. The bone marrow cells are mobilized
by the primary tumors to the metastatic sites before the actual metastasis creating a suitable
microenvironment for metastasis [315, 327].

Due to their reversal character, epigenetic changes of TME might be targeted for controlling
diseases and for therapeutic approach as drug resistance seems to also depend on TME. But,
chemotherapeutic drug resistance depends at least partly on the TME rather than the tumor
itself [328] and the combined treatment of both the tumor and the TME may be more efficient
in the fight with cancer [315].

4. Molecular and epigenetic factors involved in drug resistance

Chemotherapy success is challenged by a multitude of intrinsic or acquired, molecular, genetic
and epigenetic factors involved in drug transport, detoxification, signal transduction, gene
expression, DNA repair, and programmed cell death. Drug resistance is a major challenge that
chemotherapy should overcome. Even if the drug itself is efficient in destroying cancer cells,
it is much more complicated to avoid triggering resistance than might appear at different levels
of interaction between the drug and its cellular components.

The efflux mechanism is considered to be mainly responsible for the multiple drug resistance
phenotypes in gynecologic cancers as well as in all types of cancers [329]. The process may be
managed by cancer cells at the genetic and/or epigenetic level. While the genetic modifications
of MDR1 and related multidrug resistance proteins were intensely explored over the past few
decades, the contribution of epigenetic modification to the expression of MDR1 remains
insufficiently explored in human gynecological cancers. It was observed that MDR1 was
hypermethylated in 100% of ovarian cancer cell lines, and in 5 out of 13 (38%) primary ovarian
cancers associated with loss of MDR1 mRNA expression in ovarian cancer cell lines, sustaining
the importance role of epigenetic regulation in the expression of MDR1 and clinical treatment
outcomes in human ovarian cancer [330]. However, in six ovarian cancer cell lines—W1MR,
W1CR, W1DR, W1VR, W1TR, and W1PR that are respectively resistant to methotrexate,
cisplatin, doxorubicin, vincristine, topotecan, and paclitaxel, P-gp is responsible for chemore‐
sistance and, in the case of methotrexate, was found to have a relation between the MRP2
transcript level and drug resistance [331]. Among inhibitors of Pgp MDR, valspodar, an analog
of cyclosporine A, showed no clinical benefit in a phase III trial with paclitaxel and carboplatin
[332], because while these agents can block drug efflux at the cellular level, the effects are not
tumor specific, requiring a reduction in dosage for minimizing the side effects but also the
therapeutic advantage. On the other hand, miRNA was involved in resistance through the
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regulation of MDR proteins at a posttranscriptional level. The interaction of miRNAs with the
targeted mRNA can downmodulate MDR proteins improving the response to anticancer
drugs. It was described [329] that miR-223 can downregulate ABCB1 and mRNA levels.
miR-124a and miR-506 significantly decreased the protein level of MRP4 (ABCC4), which is
another efflux membrane transporter; however, these miRNAs did not change the gene
transcription levels [333]. In addition, although there are many modalities acting on efflux
proteins in order to circumvent drug resistance, their effective action can be compromised due
to the diversity of signal transduction pathways involved in transporter-mediated MDR, such
as MAPK, JNK, PI3K, among others; as well as some transcription factors, like NF-κB, TNF-
α, and PTEN that could influence the levels of carrier proteins in different conditions [334].

Also, the signal transduction pathways can be involved in drug resistance. The Wnt signaling
pathway, which is regulated by a multiprotein complex consisting of, among others, members
of β-catenin, adenomatous polyposis coli APC, Axin, and GSK-3β [335], are involved in
calcium-dependent cell adhesion due to the interaction between β-catenin and cadherin [336].
Different mutations in APC, promotes β-catenin proteolysis and reduces its transcriptional
activity. PTEN, a lipid and protein phosphatase that is a negative regulator of phosphatidyli‐
nositol 3 (PI-3) kinase-dependent signaling interacts with the WNT pathway by impeding
activation of integrin-linked kinase (ILK), which inhibits GSK-3β and thus causes accumula‐
tion of β-catenin [337]. The WNT signaling pathway is the most frequently altered pathway in
the majority of cancers; therefore, individual components of the pathway are interesting targets
for epigenetic inactivation. PI3K/Akt is another signaling pathway that is involved in acquired
resistance of many cancers including gynecological ones. All of its isoforms (Akt1, Akt2, and
Akt3) are activated (phosphorylated) by phosphatidylinositol 3-kinase (PI3-K) in response to
growth factors and promote cell survival. It was demonstrated that the Akt pathway is directly
related to the resistance of cancers against different drugs like sorafenib, trastuzumab, and
erlotinib [329]. The epigenetic control of Akt and NF-κB is important for the establishment of
drug resistance. RUNX3 suppresses Akt1 transcription by directly binding to the Akt1
promoter, and methylation of RUNX3 induces activation of the Akt signaling pathway [329].

Acquired resistance may develop additionally as blockage of apoptotic pathways or defective
apoptotic signaling, often associated with loss of tumor suppressor protein p53, but also
independent of p53, alteration of the control points of the cell cycle, increased ability to repair
DNA, increased DNA damage tolerance, oncogene induction, and downmodulation of tumor
suppressor genes. Eluding the normal process of programmed cell death is already known as
a crucial strategy for cancer development and progression, but even more importantly, its
participation in the intrinsic or acquired resistance of cancer cells to chemotherapy and
radiation. Identification of the points of therapeutic intervention could potentially open up
more efficient treatment opportunities. Epigenetic strategies might also be a feasible strategy
to reactivate apoptosis or on the contrary to inactivate apoptosis-related genes that inhibit the
process. However, it has now been demonstrated that inhibitors of DNA methylation and
histone deacetylases can reactivate expression of tumor suppressor genes and induce histone
hyperacetylation in the tumors of patients with cervical cancer after treatment with these
agents. Preclinical studies have suggested a multitude of strategies to prevent or overcome
resistance, but these approaches have not successfully translated to clinical practice yet [338].
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5. Conclusions

This chapter underlined the importance of epigenetic events in gynecological cancer. Deci‐
phering the relevant epigenetic changes associated with each step of tumor development might
improve molecular diagnostic and cancer risk assessment. Advances in elucidating epigenetic
regulation in cancer disease, as well as in the development of technology, lead to the identifi‐
cation of potential biomarkers for diagnostic screening. As epigenetic changes occur early in
neoplastic process, epigenetic biomarkers seem to be more sensitive and specific in cancer
detection and some have already been tested for several types of cancer, alone or in combina‐
tion with traditional biomarkers. Unlike genetic changes, epigenetic alterations are essentially
reversible and allow plasticity. These features are exploited and new therapeutic agents
targeting epigenetic processes have been developed. The epigenetic changes of the trans‐
formed cells or TME can be modified by chemotherapeutic drugs and this epigenetic reversal
therapy has potential in the future. In addition, miRNAs should be heavily explored as they
might represent future alternatives for combined therapy of cancer. Many epigenetic targets
are druggable and in order to overcome drug resistance, epigenetic therapy might also be a
feasible strategy for induced cell death. Moreover, epigenetic patterns might be useful tools
for therapy response prediction.
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