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Abstract

A major challenge to emerging cell-based medicine including gene therapy is the host
immune rejection of transplanted donor cells or engineered tissue. One way to address
this problem is to use drugs to achieve immunosuppression. However, suppressing
the patient’s immune system may put the patient at risk for many other diseases. An
alternative is to encapsulate living cells in macro/microcapsules to achieve immunoi‐
solation of the cells, thereby increasing cell viability in the patient’s body following
transplantation. The capsule’s membrane protects the encapsulated cells from being
damaged by both the host’s immune system and mechanical stress while allowing
free diffusion of nutrients and metabolic waste for the cells to survive. Moreover, the
membrane could be designed to achieve controlled and/or sustained release of
therapeutic products produced by the encapsulated transgenic cells to treat a variety
of diseases such as cardiovascular disorders, anemia, wounds, bone fractures, and
cancer.

Keywords: Cell microencapsulation, Encapsulation, Microcapsules, Gene therapy,
Cell-based medicine

1. Introduction

Cell encapsulation is the process of entrapping cells into a matrix. In general, the matrix is
spherical in shape and in the form of a polymeric hydrogel. Cell encapsulation technology has
shown great promise for immunoisolation and controlled release of therapeutic products
towards gene therapy. Figure 1 demonstrates the mechanism of encapsulated transgenic cells
for gene therapy.

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



1.1. Encapsulation materials

Both natural and synthetic polymers have been utilized for cell encapsulation. Natural
polymers that have been used include alginate, agarose, collagen, and hyaluronic acid, while
synthetic polymers, including poly(vinyl alcohol), poly(lactic-co-glycolic acid), polyacrylates,
HEMA-MMA-MAA, polyphosphazines, and polyepoxides, have been studied.[1] Natural
polymers are more commonly used because of their biocompatibility and are easily accepted
by the public. However, their product quality and characteristics can vary greatly between
companies and batches compared to synthetic polymers. Alginate, agarose, and polylactide-
co-glycolide (PLGA), the most commonly used encapsulation materials, are introduced here.

1.1.1. Alginate

Alginates, polysaccharides, are linear block polymers consisting of α-l-guluronic acid (G) and
β-d-manuronic acid (M) blocks (Figure 2). Divalent cations, such as Ca2+, Ba2+, and Sr2+, can link
alginate molecules together (i.e. through ionic cross-linking) forming alginate hydrogel
capsules while encapsulating cells inside. The G and M contents of the alginate molecules can
affect the gel properties including mechanical strength, biocompatibility, and permeability.[2–
6] Recently, it has also been shown that oligochitosan could be used as a cross-linker for
polysaccharide-based gel formations.[7]

Figure 1. A conceptual schematic demonstrating cell encapsulation for gene therapy.
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Figure 2. Chemical structure of alginate (A) and alginate-based hydrogel formation mechanism (B).

1.1.2. Agarose

Agarose, a thermal-responsive polymer, consists of β-d-galactopyranose and 3,6-anhydro-α-
l-galactopyranose units which can undergo a sol–gel transition upon cooling (i.e. through
thermal cross-linking) (Figure 3). Some agarose products have a transition temperature close
to body temperature, making it a good candidate for cell encapsulation.[8]

1.1.3. Polylactide-co-Glycolide (PLGA)

PLGA polymers belong to aliphatic polyesters and are biodegradable (Figure 4). To prepare
the capsules, PLGA is dissolved in methylene chloride, and then a second component is added
to precipitate the polymer molecules (interfacial precipitation).[1,9]

1.2. Encapsulation technologies

Different technologies have been used for preparing macro/microcapsules, which include air-
jet encapsulation, electrostatic spray, laminar jet breakup, and microfluidic channel/nozzle.
Among them, electrostatic spray and microfluidic channel/nozzle are two of the most fre‐
quently used encapsulation approaches.[10]

1.2.1. Electrostatic spray method

The electrostatic spray method has a significant appeal due to its ease of operation, scale-up
capabilities, negligible damage to cells, and allowance for sterile operation conditions.[10] The
mechanism of cell encapsulation by using the electrostatic pray method is shown in Figure

Encapsulation of Transgenic Cells for Gene Therapy
http://dx.doi.org/10.5772/61050

193



5A. In general, a cell polymer mixture is extruded through a nozzle by using a pump or
compressed air. The droplets are broken down into smaller ones under electrostatic force and/
or other introduced forces (e.g. vibration). Once the droplets reach the gelling bath containing
the cross-linkers, the cell-loaded hydrogel capsules form immediately through various forces,
such as ionotropic reaction between divalent ions and alginate molecules. Moreover, the
system could be modified to prepare the core-shell structure hydrogel capsules, as depicted
in Figure 5B.[11]

1.2.2. Microfluidics channel/nozzle method

Microfluidics devices can be used to generate micrometer-scale droplets with a narrow size
distribution and controlled morphology.[12–14] This method shows great promise for cell

Figure 3. Chemical structure of agarose (A) and agarose-based hydrogel formation mechanism (B).

Figure 4. Chemical structure of PLGA.
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encapsulation, especially for single cell encapsulation.[15] In general, capsules are formed by
allowing a core fluid to be surrounded by a flowing sheath stream.[16] Recently, these devices
have also been successfully applied for the generation of cell-loaded core-shell capsules (Figure
6).[14] Besides the relatively low encapsulation efficiency, a significant drawback of the current
microfluidic technologies is that the oil used for shearing may leave a residual adhesive oil
layer on the capsule which affects subsequent coating processes.[10,17]
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Figure 5. A sketch of the electrostatic spray device used for generating polymeric hydrogel capsules (A).[10] Repro‐
duced by permission of The American Society of Mechanical Engineering (ASME); A modified electrostatic spray setup for
fabricating the core-shell structure hydrogel capsules (B).[11] Reproduced by permission of The Royal Society of Chemistry.

Figure 6. A sketch of the microfluidics device for generating core-shell hydrogel capsules. The core channel height
(H1) is the lowest. H: height and W: width.[14] Reproduced by permission of The Royal Society of Chemistry.
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2. Recent progress on transgenic cell encapsulation for gene therapy

Encapsulation of genetically modified cells has been conducted for the treatment of central
nervous system diseases, cardiovascular disorders, mucopolysaccharidosis type VII (MPSVII)
disease, wounds, bone fractures, and cancer.[18–30] Considering most genetically engineered
cells are from allogeneic or xenogeneic sources, immunoisolation is a critical factor when using
these cells.[5]

2.1. Bone-related diseases

Bone  morphogenic  protein-2  (BMP-2)  is  a  member  of  the  transforming  growth  factor-β
(TGF-β) superfamily and has been widely reported to have osteoinductive activity. Ding et
al. [31] studied the behaviour of BMP-2 gene-transfected bone marrow-derived mesenchy‐
mal stem cells in alginate-poly-l-lysine-alginate (APA) microcapsules. The results showed
that encapsulated transfected cells could secrete BMP-2 proteins for at least 30 days and
the APA microcapsules could be used for immunoisolation. Olabisi et al. [28] investigated
microencapsulation  of  AdBMP-2-transduced  MRC-5  cells  (human  diploid  fetal  lung
fibroblasts)  in  poly(ethylene  glycol)  diacrylate  (PEGDA)  hydrogels.  After  injecting  the
encapsulated cells intramuscularly, the volume of the bone formed was about twice that of
the control group (unencapsulated cells). Recently, rapid heterotrophic ossification by using
cryopreserved PEGDA encapsulated BMP-2 expressing mesenchymal stem cells (MSCs) was
also  observed  (as  shown  in  Figure  7).[32]  Additionally,  human  calcitonin  delivered  by
microencapsulated recombinant myoblasts showed potential for allergenic gene therapy for
postmenopausal osteoporosis. [33] Furthermore, transplantation of fibrin glue-compound‐
ing hepatocyte growth factor-transgenic MSCs is a promising novel method for avascular
necrosis of the femoral head (ANFH) therapy.[34]

2.2. Cancer

Both mouse myoblasts (C2C12 cells) and human embryonic kidney 293 (HEK293) cells were
engineered to continuously secrete angiostatin, and were encapsulated into alginate-based
microcapsules for cancer treatment. The in vivo experimental results demonstrated the
potential for angiostatin-mediated cancer therapy by using an encapsulated transgenic cell-
based approach.[35,36] Considering immunotherapies have been proven to be alternative
strategies for malignancy treatment[37], combined immunotherapy (an interleukin 2 fusion
protein, sFvIL-2) and antiangiogenic therapy (angiostatin) were tested. It was shown that
transplantation of angiostatin expression and sFvIL-2-expressing C2C12 cells encapsulated in
APA microcapsules improved the survival rate of experimental animals.[38] Recently,
microencapsulation of therapeutic antibodies producing cells in APA microcapsules was
tested for cancer treatment. [39] Additionally, with the advancement of stem cell research,
there is an increased potential for cancer therapy by using encapsulated stem cells.[40]
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Figure 7. Microencapsulated BMP2-transduced MSCs in a mouse model for heterotopic ossification. X-ray and Mi‐
croCT images of the resulting heterotopic ossification for freshly prepared BMP2 microencapsulated MSCs (a and b)
and for cryopreserved BMP2 microencapsulated MSCs (d and e).[32]

2.3. Neural diseases

Parkinson’s disease (PD) belongs to a group of conditions called motor system disorders,
resulting from the loss of dopamine-producing brain cells.[41] This disease could be amenable
to gene product replacement strategies including implantation of encapsulated transgenic
cells.[42] There are several publications regarding encapsulated cell biodelivery of glial cell
line-derived neurotrophic factor (GDNF) for PD treatment; GDNF has been proven to have
neuroprotective and neurotrophic properties on dopaminergic neurons.[26,43,44] Further‐
more, encapsulated transgenic cells could be utilized in brain tumour treatment.[45,46]

Small capsules (<200 µm) have been developed for the delivery of gene products, secreted by
encapsulated transgenic cells, to the brain, bypassing the blood–brain barrier (BBB). To date,
several alginate-based microcapsule systems, Ca-alginate, APA, and alginate-chitosan-
alginate (ACA), have been reported.[10,47,48] Encapsulation of transgenic cells has also been
used for other disease treatments, such as mucopolysaccharidosis VII and myocardial
infarction. Table 1 summarizes the recent gene therapy studies based on encapsulated
transgenic cells, with the exception of bone-related and neural diseases and cancer treatment.
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Disease Therapeutic Product(s) Cell Type Encapsulation
System

Ref.

Fabry disease α-Galactosidase A Chinese hamster
ovary cells

Semipermeable
Polymer Fiber

[49]

Mucopolysaccharidosis
VII

β-Glucuronidase Mouse 2A-50
fibroblasts

Alginate-poly-l-lysine [50]

Human amniotic
epithelial cells

Polymer (polysulfon)
Hollow fibers

[23]

Myocardial infarction
and wound

Glucagon-like peptide-1 Human mesenchymal
stem cells

CellBeadsTM [51]

Vascular endothelial
growth factor

Chinese hamster
ovary cells

Alginate-Poly-l-
Lysine-Alginate
Microcapsules

[27]

Adipose stem cells AP-PLL-brPEG
microcapsules

[52]

NIH3T3 cells Alginate-barium
microcapsules

[21]

Human umbilical
cord mesenchymal
stromal cells

Alginate-barium
microcapsules

[53]

Human umbilical
cord mesenchymal
stem cells

Alginate-barium
microcapsules

[54]

Polycythemic diseases Erythropoietin Mouse C2C12
myoblasts

Semipermeable
polyethersulf hollow
fibers

[55]

Hypertension and/or
congestive heart failure

Atrial natriuretic peptideChinese hamster
ovary cells

Polycaprolactone
tubes

[56]

Acute skin flap ischemia Basic fibroblast growth
factor (FGF-2)

Mouse C2C12
myoblasts

Microporous
polyethersulfone
hollow fibers

[57]

Hemophilia B Factor IX Mouse C2C12
myoblasts mouse
C2C12 myoblasts

Alginate-poly-l-
lysine-alginate
microcapsules

[58]

Alginate-poly-l-
lysine-alginate and
alginate-poly-l-
arginine-alginate
microcapsules

[59]

Laron syndrome Recombinant human
IGF-1

Pig Sertoli cells Alginate
microcapsules

[60]

Table 1. Recent gene therapy studies by using encapsulated transgenic cells
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3. Challenges and future direction

Recent clinical trials regarding gene therapy by using encapsulated transgenic cells are
summarized in Table 2. For eventual clinical applications of encapsulated transgenic cells for
gene therapy, however, there are still some issues that need to be addressed.[62,63]

1. Protrusion of encapsulated cells

Cell growth leads to protrusion of cells over time, which may cause the failure of immunoi‐
solation following in vivo transplantation. Bhujbal et al. reported a novel multilayer immunoi‐
solating encapsulation system aiming to prevent cell protrusion without compromising cell
survival (Figure 8).[64]

2. Scaling-up cell microencapsulation

Cell encapsulation processes are usually performed at the lab scale. For successful clinical
applications,  massive  production  of  encapsulated  cells  following  good  manufacturing
practices  (GMP)  standardized  procedures  [65]  for  transplantation  is  critical.  Different
designs have been reported for scaling-up cell encapsulation. One design based on a 3D
microfluidic approach, which contains a 3D air supply and multinozzle outlet,  has been
reported recently.[17]

3. Monitor and control the encapsulated transgenic cells

Once the therapy has reached its goal or when undesirable deleterious effects occur, nonin‐
vasive monitoring and deactivation/elimination of the encapsulated cells are critical for clinical
practice.[63] Recently, Shen et al. [66] reported the encapsulation of recombinant cells by using
a magnetized ferrofluid alginate for in vivo monitoring by magnetic resonance imaging (MRI).
Moreover, magnetic field-controlled gene expression in encapsulated cells, coencapsulated
with magnetic nanoparticles, has been reported. The cells were modified to produce thera‐
peutic products under the control of a heat-inducible promoter. Heat induction could be
achieved by elevating the temperatures of the capsules through coencapsulated magnetic
nanoparticles subjected to a magnetic field (Figure 9).[67] Catena et al. reported an interesting
and smart system which shows potential for monitoring encapsulated cells and selectively
eliminating them at a specific moment by using the SFGNESTGL triple reporter system.[68]

Project Therapeutic Product(s) Target Disease(s) Phase Status

A study of encapsulated cell
technology (ECT) implant for
patients with late stage retinitis
pigmentosa

Ciliary neurotrophic factor
(CNTF)

Late-stage retinitis
pigmentosa

II and III Completed

A study of encapsulated cell
technology (ECT) implant for

Ciliary neurotrophic factor
(CNTF)

Early stage retinitis
pigmentosa

II and III Completed
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Project Therapeutic Product(s) Target Disease(s) Phase Status

participants with early stage
retinitis pigmentosa

A Study of an Encapsulated Cell
Technology (ECT) Implant for
Patients With Atrophic Macular
Degeneration

Ciliary neurotrophic factor
(CNTF)

Macular degeneration II Completed

Pilot immunotherapy trial for
recurrent malignant gliomas

Insulin-like growth factor
receptor-1

Malignant glioma of
brain

I Completed

GLP-1 CellBeads® for the treatment
of stroke patients with space-
occupying intracerebral
hemorrhage

Glucagon-like peptide-1 Intracerebral
hemorrhage (ICH)

I and II Terminated

CNTF implants for CNGB3
achromatopsia

Ciliary neurotrophic factor
(CNTF)

Eye disease
achromatopsia

I and II Active

Retinal imaging of subjects
implanted with ciliary
neurotrophic factor (CNTF)-
releasing encapsulated cell implant
for early-stage retinitis pigmentosa

Ciliary neurotrophic factor
(CNTF)

Early stage retinitis
pigmentosa or Usher
syndrome (type 2 or 3)

II Recruiting

A phase 2 multicenter randomized
clinical trial of CNTF FOR MacTel

Recombinant human ciliary
neurotrophic factor

Macular telangiectasia
type 2

II Recruiting

MVX-ONCO-1 in patients with
solid tumours

Irradiated autologous
tumour cells

Solid tumour cancer I Recruiting

Study of the intravitreal
implantation of NT-503-3
encapsulated cell technology (ECT)
for the treatment of recurrent
choroidal neovascularization
(CNV) secondary to age-related
macular degeneration (AMD)

Anti-VEGF therapy Macular degeneration I and II Not yet recruiting

Encapsulated cell biodelivery of
nerve growth factor to Alzheimer´s
disease patients

Nerve growth factor (NGF) Alzheimer’s disease I Unknown

Table 2. Clinical trials of gene therapy involving encapsulated transgenic cells [61]
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Figure 8. Cell growth within common APA capsules and multilayer capsules. Live cells were stained green while dead
cells were stained red.[51]
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Figure 9. Schematic representation of the magnetic field-controlled gene expression in encapsulated cells.[67]
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