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1. Introduction

The highly active antiretroviral therapy (HAART) is the most efficient and safe alternative
against HIV-1 infection, to allow the restoration of the immune system, with consequent
reduction in mortality rate, increased survival and quality of life of infected patients. Apart
from the great benefits of the use of different HAART regimens, laboratory and clinical
experience has shown that HAART can induce severe and considerable adverse effects on
metabolic complications of lipid metabolism, characterized by signs of dyslipidemia, increased
risk of cardiovascular disease and even an increased risk of atherosclerosis. In this context, the
class of protease inhibitors has been associated with a higher level of changes of lipid metab‐
olism and an increased risk for cardiovascular disease. In turn, the search for different
therapeutic strategies to reverse HAART-associated lipid disorders has led to the use of less
metabolically active antiretroviral drugs without compromising antiretroviral efficacy. Thus,
the different interactions of antiretroviral drugs are recommended based on their degree of
impact on lipid metabolism. Recently, fusion inhibitors, integrase strand transfer inhibitors,
entry inhibitors, have been included in the therapeutic arsenal against HIV-1 infection, and
are not associated with metabolic disorders, since their mechanisms of action are different from
other classes of antiretrovirals. Instead, the use of hypolipidemic drug therapy (statins, fibrates,
inhibitors of intestinal cholesterol) becomes necessary when HAART-associated dyslipidemia
occurs or persists for a long period and when alterations in diet, exercise and other HAART
strategies are ineffective. Several alternatives are available, which, when adequately moni‐
tored, may be beneficial in reducing HAART-associated dyslipidemia. Changes in diet and
lifestyle, and the adequacy of a hypocaloric diet, are recommendations that seek to reduce the
concentrations of total cholesterol and its fractions. These changes bring benefits over short
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periods of time and reduce the risk for cardiovascular and atherosclerotic diseases in HIV-1
patients. In addition to known HAART regimens, new drugs and formulations have been
developed to prevent infection by HIV-1. This new approach based on pre-exposure prophy‐
laxis (PrEP) has shown promising results when administering drugs orally and in vaginal and
rectal microbicides. PrEP using intravaginal rings with antiretroviral drugs is emerging as a
promising strategy for the prevention of sexual HIV-1 transmission. The use of vaginal rings
as controlled release strategy of antiretroviral drugs may improve adherence to PrEP, and
provide sustained mucosal levels independent of coitus and daily dosing. Finally, the search
for new drugs and methods that allow a greater survival, quality of life or prevention of HIV-1
transmission are constant challenges.

2. HAART as a new perspective of life for HIV+ subjects

For HIV-1-infected patients, the 1990s were marked by the introduction of HAART, which
represented a new perspective of life for these patients [1]. The use of HAART was shown
to  effectively  suppress  the  replication  of  HIV-1  and  dramatically  reduce  mortality  and
morbidity rates, which has led to a better and longer quality of life for HIV-1 patients [2].
The HAART regimens, composed of at least three different antiretroviral drugs, are effective
in reducing viral load (HIV-1-RNA) to undetectable levels when adhered to recommend‐
ed prescription [3].  HAART regimens,  with their  different combination of  drugs,  inhibit
viral replication by acting at different stages of infection [4]. This allows them to reach the
viral  cycle  and/or  viral  enzymes  and thus  are  classified  in  different  therapeutic  groups
according to their mechanism of action: nucleoside reverse transcriptase inhibitors (NRTIs),
non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), fusion
inhibitors,  entry inhibitors  (CC chemokine receptor-5 [CCR5] antagonists),  and integrase
strand transfer  inhibitors  (InSTIs)  [5-10]  (Table  1).  NRTIs  are  nucleoside  and nucleotide
analogues which inhibit reverse transcription during HIV-1 infection. HIV-1 is a virus that
has RNA as the genetic material, and is unable to integrate its DNA into host cell. For its
integration into the chromosomal DNA of the human cell it  must be reverse transcribed
into DNA by a reverse transcriptase. The conversion of RNA to DNA therefore, is made
by  the  viral  protein  reverse  transcriptase  (RT).  NRTIs  prevent  reverse  transcriptase's
enzymatic activity and block completion of synthesis of the double-stranded viral DNA,
this prevents HIV-1 multiplication. They are analogues of naturally occurring deoxynucleo‐
tides and competitively incorporates itself into the growing chain of viral DNA. NRTIs lack
a 3′-hydroxyl (3 'OH) group on the deoxyribose moiety thus act as a chain terminator which
prevents the next deoxynucleotide from forming another 5′–3′ phosphodiester bond needed
to extend the DNA chain [5].  NNRTIs inhibit  RT by binding to an allosteric  site  of  the
enzyme, and act as non-competitive inhibitors of RT. NNRTIs as a class of drug affect the
handling of substrate (nucleotides) by RT by binding near the active site [6].  PIs on the
other  hand block  the  viral  protease  enzyme necessary  to  produce  mature  virions  upon
budding from the host membrane; ultimately these drugs prevent the cleavage of gag and
gag/pol  precursor  proteins.  In  the  presence  of  protease  inhibitors,  virus  particles  pro‐
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duced are defective and mostly non-infectious [7].  Fusion inhibitors and entry inhibitors
interfere with binding, fusion and entry of HIV-1 to the host cell by blocking one of several
targets. The drugs selzentry and enfuvirtide are the two currently available agents in this
class. Selzentry works by targeting CCR5, a co-receptor located on human helper T-cells.
Enfuvirtide is  a  peptide drug that  must  be injected and acts  by interacting with the N-
terminal heptad repeat of gp41 of HIV-1 to form an inactive hetero six-helix bundle, which
prevents infection of host cells [8, 9]. InSTIs, also known as integrase inhibitors, inhibit the
viral enzyme integrase, which is responsible for integration of viral DNA into the DNA of
the infected cell.  There  are  several  integrase inhibitors  currently  under  clinical  trial;  the
drug raltegravir became the first to receive United States (US) Food and Drug Administra‐
tion (FDA) approval in 2007. Raltegravir has two metal binding groups that compete for
substrate with two Mg2+  ions at the metal binding site of integrase.  Two other clinically
approved integrase inhibitors are elvitegravir and dolutegravir [10]. Apart from the great
benefits  of  the use of different HAART regimens,  laboratory and clinical  experience has
shown  that  HAART  can  induce  severe  and  considerable  adverse  effects  on  metabolic
complications  of  lipid  metabolism,  characterized  by  signs  of  lipodystrophy,  insulin
resistance, central adiposity, dyslipidemia, increased risk of cardiovascular disease and even
an  increased  risk  of  atherosclerosis  [11-14].  However,  other  factors,  such  as  virological,
genetic, and individual immunological features, may be involved in the metabolic and lipid
alterations  observed  because  not  all  of  the  patients  exposed  to  the  same  HAART regi‐
mens are affected [15-17].

3. Lipid changes in HIV infection

The observed changes in lipid metabolism during HIV-1 infection, as shown by changes in
high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, very
low-density lipoprotein (VLDL), triglycerides (TG), lipid peroxidation, and their relationship
with atherosclerosis in HIV-1 patients, results from the critical role of cholesterol in the
mechanism of HIV-1 replication [11, 12, 18, 19]. The HDL is widely known as "good choles‐
terol", in which many studies have demonstrated that increasing serum levels are considered
normal and are associated with a lower risk of cardiovascular disease because it can transport
fat molecules out of artery walls, reduce macrophage fat accumulation and therefore regress
atherosclerosis [18-20]. HDL has several potential for antiatherogenic properties, for instance,
cholesterol is transported from peripheral tissues such as the cells in the arterial walls to the
liver by HDL components, where it is used for a composition of lipoproteins and in synthesis
of bile acids, steroid hormones, or fat-soluble vitamins [20]. Unlike the HDL, LDL is an
important risk factor for the development of atherosclerosis and cardiovascular disease, and,
this is the main lipoprotein cholesterol transports to peripheral tissues where they are inter‐
nalized through the LDL receptor, a key mediator of plasma LDL concentrations [21]. Elevated
plasma TG is emerging as an independent risk factor for the metabolic syndrome, type 2
diabetes, and cardiovascular disease, particularly if the levels of HDL are low and the levels
of LDL increased [20, 21]. HIV-1 decreases plasma HDL by impairing the cholesterol-depend‐
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ent efflux transporter ATP-binding cassette protein A1 (ABCA1) in human macrophages,

which is a condition that has a high atherogenic risk [22, 23]. The use of PI-based HAART

currently constitutes a more potent option against HIV-1 infection, preventing the maturation

of viral particles and effectively controlling the infection of new cells by HIV-1. However,

observed changes in lipid metabolism in HIV-1 patients have been associated with this class

of antiretroviral drugs [13, 14, 24, 25].

Drug class Generic name drug Trade name/manufacturer/approval (year)

Nucleoside reverse transcriptase inhibitors
(NRTIs)

Abacavir (ABC)
Didanozine (ddl)
Emtricitabine (FTC)
Lamivudine (3TC)
Stavudine (d4T)
Tenofovir (TDF)
Zidovudine (AZT)
Zalcitabine (ddC)

Ziagen® ViiV Healthcare (1998)
Videx® Bristol-Myers Squibb Co. (1991)
Emtriva® Gilead Sci. (2003)
Epivir® GlaxoSmithKline (1995)
Zerit® Bristol-Myers Squibb Co. (1994)
Viread® Gilead Sci. (2001)
Retrovir® ViiV Healthcare (1987)
Hivid® Roche (1992)

Non-nucleoside reverse transcriptase
inhibitors (NNRTIs)

Delavirdine (DLV)
Efavirenz (EFV)
Nevirapine (NVP)
Etravirine (ETR)
Rilpivirine (RPV)

Rescriptor® Pfizer (1997)
Sustiva® Bristol-Myers Squibb Co. (1998)
Stocrin® Merck Sharp, Dohme (1998)
Viramune® Boehringer Ingelheim (1996)
Intelence® Janssen-Cilag (2008)
Edurant® Janssen-Cilag (2011)

Protease inhibitors (PIs) Amprenavir
Atazanavir
Darunavir
Fosamprenavir
Indinavir
Lopinavir
Nelfinavir
Ritonavir
Saquinavir
Tipranavir

Agenerase® GlaxoSmithKline (1999)
Reyataz® Bristol-Myers Squibb Co. (2003)
Prezista® Janssen-Cilag (2006)
Lexiva® ViiV Healthcare (2003)
Crixivan® Merck & Co. (1996)
Kaletra® Abbott (2000)
Viracept® ViiV Healthcare (1997)
Norvir® AbbVie Inc. (1996)
Invirase® Roche (1995)
Aptivus® Boehringer Ingelheim (2005)

Fusion inhibitors Enfuvirtide/T-20 Fuzeon® Hoffmann La Roche (2003)

Integrase strand transfer inhibitors
(InSTIs)

Dolutegravir (DTG)
Elvitegravir (EVG)
Raltegravir (RAL)

Tivicay® GlaxoSmithKline (2013)
Stribild® Gilead Sci. (2012)
Isentress® Merck & Co. (2007)

Entry inhibitors
(CC chemokine receptor 5 [CCR5] antagonists)

Selzentry Maraviroc® Pfizer (2007)

Table 1. Antiretroviral drugs.
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There  is  significant  support  in  the  literature  showing  that  the  PIs  are  associated  with
increased hepatic TG-synthesis, VLDL, and to a lesser extent, total cholesterol (TC) [11-14].
Moreover, it was observed that these drugs impair the hydrolysis of TG-rich lipoproteins
by lipase, which reduces the storage of free fatty acids (FFA) and interferes with the normal
postprandial metabolism of FFA [25, 26]. The PIs are analogous substrates of the aspartyl
protease enzyme of the HIV-1 that are involved in the cleavage process of viral proteins
and form smaller and functional viral particles with infective capacity. After the cleavage
process, the newly formed viral and infectious particles are released from infected cells in
mature form [7, 27, 28]. Once the PIs bind to the active site of the protease enzyme, they
block the cleavage process, which interferes with the normal process of viral maturation
and  formation  of  infectious  viral  particles  in  HIV-1  infection  [27,  28].  The  different
mechanisms by which PIs promote these changes remain unknown. However,  the main
effect of PIs seems to be suppressing the breakdown of the nuclear form of sterol-regulato‐
ry element binding protein-1 (nSREBP1) in the liver and adipose tissue. This regulator is a
key element in the proteolytic pathway responsible for regulating cellular and plasma levels
of fat and cholesterol [29]. Some other classes of antiretroviral drugs are available, including
those with excellent activity on suppression of viral replication without adverse effects on
lipid metabolism [12, 25, 30]. However, it is clear that the use and recommendation of PIs
occurs in situations where other drugs and/or regimens have not achieved the desired effect,
either by non-adherence to treatment, viral resistance or lack of immune response [31, 32].
Once the therapy with PIs is initiated, a change to a more conservative therapy without
their  use  is  not  recommended nor  used in  clinical  practice  [33,  34].  Thus,  a  continuous
monitoring  of  the  patient’s  characteristics  for  each  PI  available  is  required,  in  order  to
achieve alternative HAART regimens that could maintain a suppressive response of viremia,
with minor effects on lipid metabolism of HIV-1 patients [34, 35].

4. Mechanism of HIV-associated lipid disorders

Lipid disorders during the course of HIV-1 infection and acquired immunodeficiency syn‐
drome (AIDS) had been observed long before the advent of antiretroviral regimens [36, 37]. In
the early phase of acute HIV-1 infection, the patient has several clinical signs of immunosup‐
pression, variably characterized by fever, intestinal infections, weight loss and depletion of
protein reserves [37, 38]. The possibility of the HIV-1 infection causing changes in lipid
metabolism was already postulated because it is evident that plasma viremia may promote a
decrease in plasma concentrations of TC, HDL and LDL, and, in later stages of infection, an
elevation in the concentration of TG [37, 38]. Specifically, the reduction of HDL likely occurs
as a result of an activation of the immune system in early HIV-1 infection, which promotes an
increase in lipid peroxidation, alterations in the reverse cholesterol transport, and inflamma‐
tory cytokine production. Cytokines are small proteins which function to mediate communi‐
cation between immune and non-immune cells, and they are produced by various cells of the
immune system such as lymphocytes, natural killer (NK) cells, macrophages, dendritic cells,
as well as endothelial cells, among others. These molecules orchestrate a variety of processes
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ranging from the regulation of local and systemic inflammation to cellular proliferation,
metabolism, chemotaxis, and tissue repair. Different cytokines produced by these cells mediate
the transition from innate to adaptive immunity response [39]. This process promotes an
imbalance in the antioxidant system, a decrease in the production of anti-inflammatory
cytokines and an elevation of pro-inflammatory cytokines, which increases the chances of
developing atherosclerotic diseases [33-40]. The inflammatory process initiated by viral
infection, a stimulus of endothelial lipase and phospholipase A2 occurs, which in turn can
reduce HDL concentration [41-43]. The inflammatory process may also be characterized by an
elevation of interferon-γ levels (IFNγ) originating from lymphocytes and macrophages.
IFNγ levels are elevated at early stages of infection and are also correlated with the presence
of hypertriglyceridemia [44, 45]. Tumor necrosis factor-α (TNFα) is another potent pro-
inflammatory mediator whose concentrations increase in HIV-1 infected ART-naïve patients.
TNFα promotes lipid peroxidation and disturbances in the metabolism of free fatty acids and
also acts on the suppression of lipolysis mediated by hormones [46].

5. Mechanism of HAART-associated lipid disorders

HAART-associated dyslipidemia is complex and involves immunological, hormonal, genetic
predisposition aspects and the effects induced by different antiretroviral drugs [13, 47]. The
observed dyslipidemia is characterized by hypertriglyceridemia, hypercholesterolemia, and
decreased serum levels of HDL, either accompanied or unaccompanied by increased levels of
LDL (Table 2) [47, 48]. Other metabolic and/or clinical common disorders include insulin
resistance with hyperinsulinemia, increased C-peptide levels, diabetes mellitus and lipodys‐
trophy syndrome [44-48]. Diabetes mellitus is a group of metabolic disorders in which the
blood glucose is higher than normal levels due to insufficiency of insulin release or improper
response of cells to insulin. The resultant hyperglycemia produces sever complications [49].
The production and secretion of insulin is realized by pancreatic β-cells, and occurs in response
to concentrations of amino acids, fatty acid and glucose. However, glucose is considered the
first stimulus to the beta cells which secrete insulin. Regulated insulin release requires tight
coupling in the β-cell between glucose metabolism and insulin secretory response [50].
HAART also affects the hydrolysis of TG-rich lipoproteins and tissue lipase, disrupts normal
postprandial FFA and lipoprotein catabolism and interferes with peripheral fatty acid
trapping. These effects could be due to the interaction of fatty acids with the master transcrip‐
tional regulator sterol regulatory element binding protein 1 (SREBP1) [51-56]. Nevertheless,
the presence of dyslipidemia in individuals who use HAART is not necessarily accompanied
by lipodystrophy and/or an evident insulin resistance, which suggests that the mechanism(s)
involved in these disorders maybe independent [47, 51, 56, 57]. The NNRTI-based HAART,
zidovudine, stavudine or lamivudine, has eventually become associated with the occurrence
of dyslipidemia; however, lipid metabolism disorders are mainly evident in individuals who
make use of the PI-based therapy [47, 48, 57, 58]. In as much as the mechanisms involved in
PI-associated dyslipidemia are not fully understood, the prevailing hypothesis is based on the
structural similarity between the catalytic region of the HIV-1 protease and two homologous
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human proteins involved in the metabolism of lipids, called cytoplasmic retinoic acid-binding
protein type 1 (CRABP-1) and low-density lipoprotein-receptor-related protein type 1 (LRP1).

5.1. CRABP-1

CRABP-1 exhibits 58% homology in its amino acid sequence of the C-terminal region in the
catalytic area of the HIV-1 protease. CRABP-1 usually binds intracellular retinoic acid and
presents it to Cytochrome P450 3A4 (CYP3A4) (EC 1.14.13.97) enzymes, which convert retinoic
acid to cis-9-retinoic acid, bind to retinoid X receptor-peroxisome proliferator-activated
receptor γ (RXR-PPARγ) heterodimer, stimulating adipocyte differentiation and inhibiting
apoptosis [22, 48, 59]. Hepatic CYP enzymes are responsible for the metabolism of xenobiotic
and many pharmaceuticals, but they also utilize endogenous compounds as substrates, such
as cholesterol and fatty acids [60]. CRABP-1 shows homology with the viral protease, therefore,
it is suggested that PIs bind to CRABP-1 and thereby inhibit the formation of 9-cis retinoic acid,
leading to a reduction RXR-PPARy activity, increased apoptosis, and decreased proliferation
of peripheral of adipocytes. Such events would cause peripheral lipoatrophy syndrome and
hyperlipidemia because of adipocyte loss, decreased lipid storage and lipid release into the
bloodstream. The inhibition of CYP3A by ritonavir is another possible mechanism involved
in lipid abnormalities in HIV-1 patients and associated PI-based therapy and would promote
a reduction in the formation of cis-9-retinoic acid and reduced enzymatic activity of RXR-
PPARy. The decrease in RXR-PPARγ activity results in apoptosis of peripheral adipose stores,
decreased adiponectin, and insulin resistance. However, central and visceral adipose stores
are spared and expand with weight gain, contributing to insulin resistance [22, 48, 60].

5.2. LRP

LRP share 63% homology with the catalytic region of HIV-1 protease. LRP binds to LPL on the
capillary endothelium, and the formation of this LRP-LPL complex promotes cleavage of fatty
acids from TG, thereby promoting FFA accumulation in peripheral adipocytes. A possible
hypothesis is that the binding of PIs to LRP may inhibit the complex normal function of LRP-
LPL and interfere with fatty acid storage, leading to hyperlipidemia. Hyperlipidemia is
characterized by elevations in cholesterol levels, principally in the LDL and VLDL cholesterol
fractions, because fatty acids released into the bloodstream subsequently reach the liver and
promote a secondary hepatic synthesis of TG and VLDL [48, 59, 61].

5.3. Mitochondrial alterations

Another proposed mechanism for HAART-associated dyslipidemia is the mitochondrial
alterations induced by HAART, especially with PI-based therapy. The hypothesis is that the
HAART regimens will cause mitochondrial disturbances by inhibiting the mitochondrial DNA
(mtDNA)-polymerase γ, leading to mitochondrial DNA depletion, respiratory chain dysfunc‐
tion and reduced energy production by cells [62, 63]. This disturbance in the mitochondrial
respiratory chain may promote metabolic disorders in adipocytes, promote lipodystrophy
syndrome and increase plasma lipid levels. Moreover, interference between PIs and cellular
protease could also trigger the development of metabolic alterations because some proteases
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are essential for mitochondrial biogenesis and metabolic function. Furthermore, functional
changes of mitochondria in skeletal tissue promote insulin resistance and consequent dysli‐
pidemia [62-64].

5.4. Genetic factors

HAART-associated lipodystrophy and dyslipidemia may be related to genetic predisposition.
Studies on HIV-1 patients with hypertriglyceridemia and low HDL were shown to be associ‐
ated with different polymorphisms in the APOCIII gene. Promoter polymorphisms -455T>C
and -482C>T in the APOCIII gene are both associated with increased levels of TG containing
lipoproteins (VLDL) and low HDL values. Carriers of the -455T>C genetic variant had 30%
lower levels of HDL compared to those without this polymorphism and plasma lipid concen‐
trations increase according to the number of these variant alleles. Another variant nucleoside,
the -1131T>C promoter polymorphism in the APOA5 gene, was associated with hypertrigly‐
ceridemia in PI-based patients [65-68].

5.5. Paraoxonases

Changes in antioxidant enzymes, such as the family of paraoxonases (PONs), may partially
explain some of the mechanisms involved in HAART-associated dyslipidemia and conse‐
quently characterize a higher risk for cardiovascular diseases and atherosclerosis [63]. The
hypothesis that the PIs can promote reductions in the activity of PONs and an increased risk
for atherosclerotic disease in HIV-1 patients has been shown through previous evidence. PON1
is an antioxidant enzyme present in serum is strongly associated with apolipoprotein-A1
(apoAl) from HDL and protects LDL against oxidative modifications [69, 70]. The action of
serum PON1 most likely occurs through the involvement of the enzyme in reverse cholesterol
transport, a well-established anti-atherogenic propriety of HDL [71]. PON1 has the ability to
inhibit LDL oxidation (oxLDL) and significantly reduce the lipid peroxidase enzyme, which
decreases the accumulation of cholesterol in peripheral tissues [72]. The oxidative modification
of LDL in the arterial wall plays a central role in the pathogenesis of atherosclerosis, which is
characterized by the deposition of lipids and the formation of atherosclerotic plaques that
cause narrowing of the blood vessels [73]. The inhibition of oxLDL by HDL is attributed to the
high antioxidant content of the lipoprotein possibly due to the antioxidant properties of apoA1
and by the presence of other different antioxidant enzymes, such as glutathione peroxidase
and PON, which prevent the formation of or degrade bioactive products of oxLDL [68]. Some
studies have shown that the activity of PON1 may be affected and/or inactivated by oxidative
stress, which could explain its reduced activity during HIV-1 infection [69-71]. In HIV-1
patients and those who undergo HAART, there is a significant increase in oxidative stress. In
asymptomatic HIV-1 patients, there is an increased oxidative stress characterized by elevated
lipid peroxidation products and/or a quantitative decrease in antioxidants compared to
seronegative controls that are considered to be in a healthy condition. Therefore, possible
reductions in the activity of PON1 and HDL concentrations may characterize an increased
cardiovascular risk in individuals infected with HIV-1 [70, 71, 75]. The PON1 activity that was
reduced in ART-naïve patients, and restored in patients treated with HAART suggested that
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the activity of PON1 is associated with the immune status in HIV-1 patients. However, in
individuals treated with lopinavir/ritonavir, even with low plasma viremia, PON1 activity was
reduced and a higher atherogenic risk was shown by the high TC:HDL ratio, suggesting that
a PI-based regimen affects the mechanisms involved in the oxidation of LDL, which promotes
greater atherogenic risk [69-74].

5.6. LDL oxidation

Oxidative modifications to LDL, which are considered the initial event in the pathogenesis of
atherosclerosis, are attributed to oxidative stress mechanisms initiated by agents such as
superoxide, nitric oxide and hydrogen peroxide (H2O2) that transform LDL into oxLDL [77,
77]. The deposition of oxLDL in the arterial intimal layer promotes a cytotoxic effect on the
vascular endothelium, followed by inflammation and modification of monocytes into macro‐
phages that phagocytose oxLDL particles to form the foam cells which accumulate in the intima
and lead to the development of atheromatous plaques [78]. The oxLDL particles are immuno‐
genic, and serum levels of anti-oxLDL antibodies (Abs) can be used as indicators of oxidative
stress [76-78]. The immunoglobulin G (IgG) anti-oxLDL Abs are pro-atherogenic and can
predict the progression of coronary and carotid atherosclerosis, whereas IgM anti-oxLDL Abs
appear to be associated with a possible protective role against the development of atheroma‐
tous plaques [79]. During the process of infection by HIV-1, the increase in atherogenic risk
results from changes in lipid metabolism associated with the severity, duration and stages of
infection. Different degrees of lipodystrophy occur in patients along with a decrease in LDL
receptor expression, which could lead to increased oxidation of LDL particles and the conse‐
quent development of atherosclerosis [80]. HIV-1 patients treated with lopinavir/ritonavir
have shown higher levels of IgG anti-oxLDL Abs compared to patients treated with efavirenz
or nevirapine regimens, and these levels were associated with an increase in the atherogenic
indices [78-80].

6. HAART-associated lipodystrophy

Lipodystrophy is a syndrome that includes peripheral fat wasting and central obesity and is
a well-documented side effect of HAART (Table 3) [16, 53, 81]. In addition to the decrease in
the expression of LDL receptors, and a consequent increase in serum concentrations of LDL,
the most obvious mechanism of HAART-associated lipodystrophy and dyslipidemia are the
mitochondrial changes induced by HAART [13, 62-64]. The inhibition of mtDNA-polymerase
γ, which leads to mitochondrial DNA depletion in respiratory chain dysfunction and a reduced
energy production in cells, may promote metabolic disorders in adipocytes and promote
increased lipodystrophy syndrome and plasma lipid levels [62-64, 82, 83]. Both therapies, PIs-
and NRTIs-based, are associated with the inhibition of mtDNA-polymerase γ [82-84]. The
abnormalities observed in lipodystrophy syndrome include lipoatrophy, lipohypertrophy,
and metabolic disturbances. Lipoatrophy is associated with the loss of subcutaneous fat,
usually in the lower limbs, face and buttocks. The observation of lipoatrophy in HIV-1 patients
has been demonstrated in therapy with both PIs- and NRTIs-based therapies. Several studies
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initially suggested that lipoatrophy in HIV-1 patients is primarily associated with the use of
PI-based therapies; however, more recent reports show that the incidence of lipoatrophy was
significantly higher in the efavirenz plus two NRTIs group than in the lopinavir or efavirenz
plus two NRTIs plus lopinavir groups [85-87]. The association of lipoatrophy with efavirenz
use was mainly in combination with either stavudine or zidovudine but not with tenofovir/
lamivudine. Lipohypertrophy consists of the accumulation of adipose tissue. The PI-based
therapy has been associated with the development of lipohypertrophy, but several longitudi‐
nal studies have failed to demonstrate that this therapy is the main cause of lipohypertrophy
in HIV-1 patients [86-89].

Drug class Drug Effects on lipids Effects on glucose

NRTIs Abacavir (ABC)
Didanozine (ddl)
Emtricitabine (FTC)
Lamivudine (3TC)
Stavudine (d4T)
Tenofovir (TDF)
Zidovudine (AZT)

↑  Dyslipidemia
↑  ↑  Dyslipidemia
↑  Dyslipidemia
↑  Dyslipidemia
↑  ↑  Dyslipidemia
↑  Dyslipidemia
↑  ↑  Dyslipidemia

No effect
Insulin resistance
No effect
No effect
Insulin resistance
No effect
Insulin resistance

NNRTIs Efavirenz (EFV)
Etravirine (ETR)
Nevirapine (NVP)
Rilpivirine (RPV)

↑ ↑  HDL, ↑  Dyslipidemia
Neutral effects
↑  ↑  HDL, ↑  LDL
Neutral effect

No effect
No effect

PIs Amprenavir/ritonavir
Atazanavir/ritonavir
Darunavir/ritonavir
Fosamprenavir/ritonavir
Indinavir
Lopinavir/ritonavir
Nelfinavir
Saquinavir
Tipranavir/ritonavir

↑ ↑ ↑  Dyslipidemia
↑  Dyslipidemia
↑  Dyslipidemia
↑  ↑  ↑  Dyslipidemia
↑  ↑  Dyslipidemia
↑  ↑  ↑  Dyslipidemia
↑  ↑  Dyslipidemia
↑  Dyslipidemia
↑  ↑  ↑  Dyslipidemia

Insulin resistance
Insulin resistance
Insulin resistance
Insulin resistance
Insulin resistance
Insulin resistance
Insulin resistance
Insulin resistance
Insulin resistance

Fusion inhibitors Enfuvirtide, T-20 Neutral effect No effect

InSTIs Dolutegravir (DTG)
Elvitegravir (EVG)
Raltegravir (RAL)

Neutral effect
Neutral effect
Neutral effect

No effect
No effect
No effect

Entry inhibitors Selzentry Neutral effect No effect

Table 2. Antiretroviral drugs: impact on lipid and glucose metabolism.
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Clinical diagnosis Treatment options

Lipoatrophy

Sunken eyes, sunken cheeks, prominent zygomatic arch,
prominent veins, skinny or muscular appearance, loose
skin folds loss of contour

Switching antiviral therapies: Stavudine or zidovudine
to abacavir or tenofovir, other switch, and/or
reconstructive procedures

Lipohypertrophy

Increased abdominal girth with visceral fat accumulation,
dorsocervical or supraclavicular fat pad

Diet, exercise, liposuction

Related findings

Hypertriglyceridemia, usually with depressed HDL,
hypercholesterolemia, insulin resistance, glucose intolerance

Statins, fibrates, inhibits intestinal cholesterol
absorption, fish oils, diet, exercise, drugs (metformin,
acarbose, sulfonylureas, glinides or leptin)

Table 3. Clinical diagnosis and treatment of to HIV-associated lipodystrophy syndrome.

7. Switching antiviral therapies

The search for different therapeutic strategies to reverse HAART-associated dyslipidemia has
led to the use of less metabolically active antiretroviral drugs without compromising antire‐
troviral efficacy. Ritonavir is the most representative drug in HAART-associated dyslipidemia
and in combination with lopinavir confers higher risks for cardiovascular disease in HIV-1
patients. Amprenavir and nelfinavir promote lower impacts compared to the therapy with
lopinavir/ritonavir [31, 70, 80, 90, 91]. Similarly, the use of indinavir and saquinavir shows
even less adverse effect on lipid metabolism in HIV-1 patients receiving HAART. Currently,
atazanavir has the least impact on lipid metabolism [92, 93]. In contrast, nelfinavir promotes
the elevation of TC, TG and LDL levels, and its replacement by atazanavir permits the
reduction of the concentrations of these parameters without affecting antiretroviral activity
[94]. A more recent alternative is tipranavir, a non-peptide PI prescribed for patients with
multidrug resistance (MDR). However, this drug has shown deleterious effects that promote
atherogenic risk by increasing the levels of TC and TG [95]. Another strategy to control
dyslipidemia has been the discontinuation of the PI-based regimens and a switch to a NRTI-
or NNRTI-based protocol. For ART-naïve patients, HAART regimens that include at least one
NNRTI, or abacavir and two NRTIs, might be as efficient as PI-based therapy, although they
may not be the standard choice. This exchange of HAART in patients with viral suppression
did not reduce antiretroviral efficacy during long-term use [95-96]. A strategy that must be
better evaluated is the long-term use of the NRTI/NNRTI class of drugs before the use of PI-
based therapy. The use of NRTI-associated nevirapine reduces levels of TC and TG, promotes
an increase in HDL and a decrease in atherogenic risk. The use of NNRTIs may also alter the
lipid profile due mostly to the use of efavirenz. Using this medication, TG levels were higher
when compared with nevirapine usage. However, in studies with a large number of HIV-1
patients, accompanied at intervals of ninety days and with undetectable HIV-1-RNA, the levels
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of TC, LDL and TG were kept within the desirable limit in the groups treated with nevirapine
and efavirenz, including HDL levels within the reference values [95-98]. Only the HIV-1
patients treated with a PI-based regimen showed lipid abnormalities and increased risks for
cardiovascular disease [13, 24, 96]. In addition, possible alterations in lipid metabolism
resulting from the use of NNRTI-based therapy are easier and faster to reverse with the use of
statins, fibrates, diet and lifestyle. Although the individual effects of NRTIs remain unclear,
stavudine was associated with TC and TG elevations greater than zidovudine and tenofovir.
The addition of fusion inhibitors to the existing therapies, such as enfuvirtide/T-20, had little
effect on plasma lipids. The possibility of different HAART strategies eliminating or reducing
the dyslipidemia in HIV-1 patients must be evaluated, and the risk of development of variants
of the virus with MDR must be taken into account [99]. In HIV-1 patients with favorable
historical responses to HAART and accompanied by a physician experienced in HIV-1
infection, the transition from a PI-based to a therapy with nevirapine, abacavir, or even
atazanavir may be preferable to the use of a hypolipidemic agent. In practice, many patients
will show pre-existing resistance to the drugs, limiting options for the exchange of the
treatment [83, 92-94]. Experts must assess the risks of toxicity of the new treatment and the
possibility of virologic relapse when switching HAART regimens.

8. Other therapies for HAART-associated dyslipidemia

The use of hypolipidemic drug therapy becomes necessary when HAART-associated dyslipi‐
demia occurs or persists for a long period and when alterations in diet, exercise and other
HAART strategies are ineffective. Difficulties in the treatment of dyslipidemia in HIV-1
patients involve potential interaction between drugs, toxicity, intolerance, and low patient
adherence to multiple drug regimens. Several alternatives are available, which, when ade‐
quately monitored, may be beneficial in reducing HAART-associated dyslipidemia.

8.1. Statins

Statins is the name given to the group of drugs that help lower cholesterol. These will normally
be prescribed to people who have harmful cholesterol levels present in their blood, especially
if other control methods have failed or if the individual is at risk of developing health com‐
plications. Statins benefit users to prevent and treat atherosclerosis, which is the hardening of
the arteries as a result of accumulation of cholesterol (atherosclerotic plaques) [100, 101]. They
are drugs that inhibit the enzyme HMG-CoA reductase (3-hydroxy-3-methylglutaryl coen‐
zyme A reductase) and are considered the primary drugs for the treatment of primary
hypercholesterolemia [100]. In clinical practice, the use of statins has achieved excellent results
in reducing TC and LDL, leading to a decreased risk of coronary artery events and in the
primary and secondary prevention of heart diseases [100-102]. Statins inhibit the key rate-
controlling enzyme in the de novo synthesis of cholesterol, which is responsible for production
of >50% of total body cholesterol. Inhibition of HMG-CoA reductase also promotes an increase
in the synthesis of hepatic LDL receptors and reduced VLDL production [101-103]. The most
important drugs of this class are simvastatin, fluvastatin, atorvastatin, lovastatin, pravastatin
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and rosuvastatin. All of these drugs reduce LDL concentrations, although the use of simvas‐
tatin and atorvastatin has shown superior effects in HIV-1 seronegative patients [101-103]. In
HIV-1 patients affected with dyslipidemia, the use of simvastatin, pravastatin, fluvastatin and
rosuvastatin promotes reduction of dyslipidemia, but not in complete remission once other
factors and elements are associated with the dyslipidemia in these patients [101-104]. The
different drugs that compose HAART have metabolizing effects similar to statin (Table 4). In
general, statins are metabolized by CYP3A4, and may cause clinically relevant interactions
with other agents that are changed by this enzymatic complex, such as oral anticoagulants,
ketoconazole, cyclosporine, erythromycin, itraconazole, PIs and NNRTIs [104-106]. Addition‐
ally, statins serve as substrates for G-glycoprotein, a known carrier of drugs in the small
intestine, which may influence their oral bioavailability [105-107]. The presence of elevated
statin levels in plasma increases the risk of liver toxicity, promoting elevations of serum
transaminases and possible toxic hepatitis as well as skeletal muscle toxicity and myalgia with
elevations of serum creatine kinase (CK) levels, especially in the case of simvastatin and
atorvastatin [105-109]. Fluvastatin is metabolized by CYP2C9 enzyme; pravastatin and
rosuvastatin are not significantly metabolized by the CYP450 system and have a very low risk
of drug interactions. Reductions in the levels of TC and TG were observed in patients with
dyslipidemia associated HIV-1 infection undergoing treatment with a PI and the use of
rosuvastatin therapy. Simvastatin, lovastatin and atorvastatin should be avoided because they
present a high risk of pharmacological interactions with PIs. Moreover, in a recent study,
pravastatin had the lowest binding to plasma proteins of the statin agents and dietary advice
associated with the statin compound significantly reduced TC levels in HIV-1 patients treated
with HAART, without significant adverse events [104-108]. It is reasonable to recommend the
use of pravastatin and/or rosuvastatin as a first-line treatment for hypercholesterolemia in PI-
treated patients and the use of fluvastatin, characterized by a slightly lower efficacy, as a
second-line regimen. Additional benefits are obtained in patients treated with indinavir or
pravastatin and fluvastatin, which significantly reduces the levels of TC and LDL, while
maintaining good tolerability. Different associations between statins and antiretrovirals
present considerable tolerability but always require monitoring of serum transaminases and
CK. Different clinical studies and the routine use of fluvastatin, pravastatin, or rosuvastatin
have shown that they are most suitable and safe to reduce LDL levels in HIV-1 patients
[104-110].

8.2. Fibrates

Fibrates or fibric acid derivatives are the drugs of choice for the treatment of hypertriglyceri‐
demia and play an important role in the control of mixed dyslipidemia. Clinical studies have
shown that fibrates may reduce the risk of coronary atherosclerosis in patients with hyper‐
cholesterolemia and also in individuals in post myocardial infarction with higher LDL, lower
HDL, and TG with discrete increases. Fibrates may be used in combination with statins for
hyperlipidemia or when HDL levels are decreased, besides acting in the hepatic synthesis of
TG, TC, lipoprotein lipase (LPL) and acetyl-CoA carboxylase, it inhibits peripheral lipolysis
and controls blood glucose [111-113]. Fibrates are also metabolized by CYP450 system, but
they appear to affect only CYP4A enzymes and do not show clinically relevant interactions
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with PIs. However, concomitant use of both fibrates and statins can increase the risk of skeletal
muscle toxicity and should be avoided [112-114]. In HIV-1 seronegative individuals, the use
of a fibrate and a statin in a monotherapy regimen exhibits moderate lipid-lowering effects
and good tolerability [114-116]. In HIV-1 patients, fibrates do not have the same efficacy of
statins in preventing cardiovascular disease. Studies with HIV-1 patients treated with PI-based
therapy and fibrates, including gemfibrozil, bezafibrateor fenofibrate, showed a significant
reduction in the concentration of TC, TG and hypertriglyceridemia [113, 115, 116]. Fibrates
appear as a suitable alternative for the treatment of dyslipidemia associated with HIV-1,
especially in the presence of hypertriglyceridemia. Periodic monitoring of serum creatinine,
CK, and transaminases should be performed when using fibrates [115-117]. The association
between fibrates and statins has been used with relative safety and demonstrated in different
studies with large numbers of HIV-1 patients volunteers, except for the use of the combination
of statins and gemfibrozil, which is not recommended [116-118]. The use of statins, fibrates, or
associated therapeutic agent has shown positive results in HIV-associated dyslipidemia. and
the pravastatin/fenofibrate combination has accelerated the an improvement of lipid param‐
eters and is safe and efficacious [119-120].

8.3. Inhibitors of intestinal cholesterol absorption

Inhibitors of intestinal cholesterol absorption are a class of drugs that prevent the absorption
of cholesterol from the small intestine into the circulatory system. Ezetimibe is effective at
lowering lipid levels because it has the ability to inhibit the intestinal absorption of cholesterol,

Drug Metabolism and Interactions

Simvastatin

Considerable CYP3A4 metabolism. ↑  simvastatin levels with PIs and ↓  ↓  levels with efavirenz.
Not recommended with atazanavir, atazanavir/ritonavir, fosamprenavir/ritonavir, saquinavir/
ritonavir, tipranavir/ritonavir, lopinavir/ritonavir, indinavir/ritonavir, darunavir/ritonavir and
nelfinavir. Doses of 80 mg/day with NNRTIs, raltegravir and selzentry.

Lovastatin
Not recommended with atazanavir, atazanavir/ritonavir, fosamprenavir/ritonavir, saquinavir/
ritonavir, tipranavir/ritonavir, lopinavir/ritonavir, indinavir/ritonavir, darunavir/ritonavir and
nelfinavir. Doses of 80 mg/day with NNRTIs, raltegravir and selzentry.

Atorvastatin
Somewhat CYP3A4 metabolism, ↑  levels with PIs darunavir, lopinavir, saquinavir/ritonavir,
fosamprenavir. ↓  levels with efavirenz. Doses of 20 mg/day with PIs, 80 mg/day with NNRTIs,
raltegravir and selzentry.

Pravastatin
Reduced interaction with CYP450 metabolism, primarily renal excretion but 50% ↓  with
lopinavir/ritonavir, 45% ↓  with nelfinavir, 80% ↑  with darunavir/ritonavir, and 40% ↓  with
efavirenz. Doses of 80 mg/day with PIs, NNRTIs, raltegravir and selzentry.

Fluvastatin
Metabolized by CYP2C9, and occasional interactions with nelfinavir and efavirenz. Doses of 80
mg/day with PIs, NNRTIs, raltegravir and selzentry.

Rosuvastatin
Not CYP3A4 metabolized but 5x ↑  levels with lopinavir/ritonavir and darunavir/ritonavir
(uncertain). Low starting doses (5-10 mg) recommended with PIs. Doses of 20 mg/day with PIs,
40 mg/day with NNRTIs, raltegravir and selzentry.

Table 4. Statins to HAART-associated dyslipidemia.
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and it shows good tolerability because it does not interact with the metabolism of CYPA4
enzymes [121, 122]. In HIV-1 seronegative patients who have dyslipidemia, the monotherapy
with ezetimibe or when combined with statins or fenofibrate has shown considerable efficacy
and safety [123, 124]. In HIV-1 patients with high serum levels of LDL, the use of ezetimibe
has also been considered an effective alternative [122]. Monotherapy using 10 mg/day of
ezetimibe has accelerated reductions of more than 20% of serum LDL and, in addition, reduces
the concentrations of TC and TG while increasing HDL concentrations [121-124]. Studies have
shown that in individuals with HIV-1 that are beyond effective treatments, ezetimibe has no
interaction with HAART, and those receiving a PI-based association of fenofibrate/ezetimibe
showed greater efficacy compared with pravastatin in monotherapy resolution of dyslipide‐
mia [125-127].

8.4. Fish oil

The ability of fish oil, commonly known as omega-3 fatty acids (namely, eicosapentaenoic
acid (EPA) and docosahexaenoic  acid (DHA),  to  reduce elevated TG concentrations  has
been observed in different studies [128, 129]. HIV-1 patients using both HAART and fish
oil showed an effective reduction in the concentration of TG [130]. This ability to reduce
TG levels promotes a direct benefit in risk reduction of atherogenic cardiovascular disease
through a combination of anti-inflammatory and anti-platelet actions [130-132]. For HIV-1
patients,  the use of fish oil  associated with fenofibrate showed additive effects in reduc‐
ing TG. Given these considerable results, the American Heart Association’s (AHA) dietary
guidelines, recommends that healthy adults have a minimum of two portions of fish per
week, and those who have elevated TG should consume 2-4 g of EPA and DHA daily as
a dietary supplement [130-133].

8.5. Niacin

Niacin (water-soluble vitamin B3), or nicotinic acid, is a powerful reducing agent of serum
lipids  when  administered  at  pharmacological  doses.  Its  ability  to  reduce  the  levels  of
lipoproteins and apolipoprotein-B-containing lipoproteins and to raise HDL levels has been
shown, characterizing it as an atheroprotective drug [134, 135]. Niacin has beneficial effects
on cardiovascular risk factors, including lipoprotein (a), C-reactive protein (CRP), platelet-
activating  factor  (PAF)  acetylhydrolase,  plasminogen  activator  inhibitor  (PAI)-  1  and
fibrinogen [136, 137]. The molecular mechanisms involving the action of niacin are not fully
understood, but its effect on hypertriglyceridemia in uninfected individuals is recognized
[135-137]. In HIV-1 patients, the use of niacin in an extended release formulation significant‐
ly reduced the levels of TC, TG and HDL. However, the use of niacin in HIV-1 patients
with dyslipidemia need to be carefully monitored because the presence of adverse events
have been commonly shown, including headache, flushing, pruritus, rash, hyperuricemia,
and exacerbation of insulin resistance [138, 139].

8.6. Other contributory agents to HIV dyslipidemia

Other agents may contribute to HIV-associated dyslipidemia. The use of recombinant me‐
thionyl human leptin was associated with reduced insulin resistance and increased HDL levels
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[140]. Tetradecylthioacetic acid (TTA), an agent whose mechanism is still unknown, promotes
a reduction in levels of plasma lipoproteins [141]. Additionally, Acipimox, a drug with
sustained action and a structure similar to niacin, has been associated with decreased insulin
resistance and significantly reduced levels of TG in HIV-1 adults [142]. In a double-blind study,
the use of cholestin was able to reduce the levels of TC and LDL without modifying HDL and
TG, and without showing adverse effects [143]. The use of L-carnitine (3 g/day) resulted in a
significant reduction in serum TG in patients with HIV-associated dyslipidemia [144]. These
and other drugs studied aimed to revert the HIV-associated dyslipidemia but require more
control to be considered appropriate for the treatment of dyslipidemia.

9. Current antiretroviral drugs and dyslipidemia

Since the introduction of zidovudine (1987) for the treatment of HIV-1 infection, followed by
the emergence of the fusion inhibitors, such as enfuvirtide/T-20 (2003), and more recently the
introduction of raltegravir (2007) and dolutegravir (2013) (Table 1), both InSTIs drugs,
treatment for HIV-1 infection has been adapting to new challenges. Once the inability to
eradicate viremia by the different HAART regimens was recognized, new drugs, strategies
and therapeutic regimens were developed for greater efficiency associated with safety and
reduced adverse effects. The common adverse effects observed by the use of the first class of
drugs such as zidovudine, and the dyslipidemia caused by the use of PIs, are obstacles that
are being minimized in newer drugs that are in the experimental phase. Currently, more than
30 drugs are approved and available in various forms (the different classes of antiretroviral
drugs), and many others are in experimental stages.

9.1. NRTIs

9.1.1. Festinavir

Festinavir (BMS986001) is a thymidine analogue drug, derived from stavudine but with less
potential toxicity [145]. It has been used in cases where there is resistance of HIV-1 to abacavir
and tenofovir and is an oral drug recommended for HIV-1 patients with MDR. The compound
has a 50% effective concentration (EC50) in the inhibition of mtDNA-polymerase γ and is 100
times less toxic to the mtDNA-polymeraseγ in renal proximal tubular cells, muscle cells, and
adipocytes and on the cellular levels of adenosine triphosphate and/or lactate production
(ATP) than stavudine. The mitochondrial toxic effects of stavudine are the main cause of the
adverse effects associated with lipodystrophy and peripheral neuropathy, which has led to
the decline in its use and indicated that festinavir, has a minor impact on lipid metabolism
[145-147].

9.1.2. Apricitabine

Apricitabine (AVX754, formerly SPD754) is a drug for oral administration and is in the
experimental phase (Phase IIB clinical trial). It is structurally related to lamivudine and
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emtricitabine and, as such, is an analog of cytidine [148]. This drug is well tolerated, and its
most common side effects include headache, nausea, muscle aches and diarrhea. The use of
apricitabine in HIV-1 patients had no effect on bone marrow, liver or kidney toxicity, and
lipase. However, its use causes changes in lipid metabolism, most noticeable by elevated serum
TG, indicating that its use should be evaluated in patients who initiated therapy with aprici‐
tabine or who already have a dyslipidemic profile [148-150].

9.1.3. GS-7340

GS-7340  is  a  prodrug  of  tenofovir  called  tenofovir  disoproxil  fumarate  (TDF).  Unlike
tenofovir, GS-7340 is stable in plasma and then converted to tenofovir inside the cell by the
cellular enzyme cathepsin, which is highly expressed in lymphoid tissue [151]. Within the
cell,  the drug is transformed into the active metabolite tenofovir diphosphate,  an inhibi‐
tor of RT. Phase III studies are underway to better define the safety profile and efficacy,
and initially, the drug does not show effects on lipid metabolism. However, formulations
with 300 mg promoted adverse effects on the kidneys and bone marrow toxicity [151-153].

Other drugs of the NRTIs class are in the experimental phase, such as racivir (an enantiomer
of emtricitabine), elvucitabine (Phase II clinical trial), and amdoxovir (AMDX or DAPD). For
these drugs, current data about the adverse effects are insufficient to characterize the impact
on lipid metabolism [154-156].

9.2. NNRTIs

9.2.1. Etravirine

Etravirine (ETR, Intelence®) is a drug that has shown efficacy, safety and good tolerability in
HIV-1 patients [157]. One of the great advantages of etravirine is as a replacement for other
NNRTIs to which the HIV-1 virus is resistant, mainly due to the presence of the K103N and
Y181C mutation in the case of efavirenz and nevirapine, respectively. The FDA approved the
drug in 2008 for use in patients with multiple drug resistance. However, the drug is a substrate
and an inhibitor of different CYP3A4 enzymes, which in turn are contraindicated with
antimicrobial and anticonvulsant drugs metabolized by the CYP450 system. In patients
receiving HAART and who have alterations in lipid metabolism, the switch to a therapy
containing etravirine has shown satisfactory results and the reversal of dyslipidemia [157-160].

9.2.2. Rilpivirine

Rilpivirine (RPV, Edurant®) a NNRTIs class drug is more potent than diarylpyrimidine
(DAPY), its adverse effects are considerably reduced compared to older NNRTIs such as
efavirenz. After clinical trials, rilpivirine was approved by the FDA in 2011, and its use is
combined with emtricitabine and tenofovir. Rilpivirine produces few changes in serum TC,
LDL, HDL and TG in HIV-1 patients. In comparison to the treatment with efavirenz, this drug
promotes an increase in lipids and in the TC:HDL ratio, which is characterized by an increased
risk of cardiovascular diseases in these patients [161, 162].
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9.2.3. MK-1439

MK-1439 is a new and effective drug against a variety of HIV-1 mutants that are resistant to
NNRTIs [157]. Preclinical studies (Phase l clinical trial) that are currently in progress show that
this drug has a good pharmacokinetic profile, with the possibility of a daily dose in low
concentrations to obtain an optimal effect. Additionally, it has good absorption, low potential
for toxicity and the ability to be used with other antiretroviral agents. MK-1439 showed good
results in cases where the K103N mutation of HIV-1 leads to resistance to treatment with
nevirapine and efavirenz, as well as in the occurrence of the Y1818C mutation, which leads to
a lower susceptibility in treatment with nevirapine, rilpivirine and etravirine. In vitro data
suggest that MK-1439 has beneficial properties for additional development as a new antiviral
drug; however, no data are available about its potential impact on lipid metabolism [163-164].

New NNRTIs class drugs are in various experimental stages such as BILR 355 BS (Phase Ila),
(+)-Calanolide A (Phase I), GSK 2248761 (Phase Ilb), MK-4965 (Phase I), MK-6186 (Phase I),
RDEA806 (Phase Ila), and UK-453061 (Phase Ilb). These new drugs have not been approved
by the FDA and still require different clinical trials to be launched as drugs available for the
treatment of HIV-1 infection. Currently, no scientific information regarding their possible
effects on lipid metabolism is available.

9.3. Fusion/entry inhibitors

The HIV-1 envelope (Env) glycoprotein complex, which is composed of three receptor-binding
gp120 subunits and three fusion protein gp41 subunits, mediates virus entry by fusing viral
and cellular membranes and offers an attractive target for developing antiviral agents [165,
166]. In succession to enfuvirtide/T-20, a number of design strategies have been applied to
develop new peptide-based fusion inhibitors with improved stability, bioavailability and
potency [166, 167]. There are several drug classes that are in two experimental phases.
Albuvirtide (FB006M), T649, T2634, T2544, T1249, SC34EK, and SC29EK are in the class of
fusion inhibitors. BMS 663068, BMS 626529, vicriviroc (SCH 417690), and cenicriviroc
(TAK-652, TBR-652) are in the class of entry inhibitors. These and other drugs are in experi‐
mental stages and/or have been suspended, and there are no initial and/or conclusive data
about their potential toxic effects and the impact on lipid metabolism.

9.4. InSTIs

Cobicistat (GS-9350) is a new InSTIs drug recently approved by the FDA (2012). This drug, like
ritonavir, has the ability to inhibit hepatic enzymes that metabolize other drugs used to treat
HIV-1 infection, such as raltegravir [168]. Cobicistat has become increasingly important, and
its use has been associated with elvitegravir, permitting it to have higher blood concentrations
with use of smaller doses, which theoretically allows for greater suppression of viral replication
with elvitegravir, having fewer adverse effects. Cobicistat has been employed in combination
with elvitegravir/emtricitabine/tenofovir (Stribild®) [168, 169]. Cobicistat is a potent inhibitor
of CYP3A enzymes, which will concurrently affect administered medications metabolized by
this pathway. It also inhibits intestinal transport proteins, increasing the overall absorption of
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several drugs including atazanavir, darunavir, and tenofovir alafenamide fumarate (TAF).
Phase III trials of the cobicistat-containing combination antiretroviral therapy regimens in
ART-naïve patients have shown a small elevation of serum fasting lipid, with a relative increase
in the levels of TC and TG, in addition to bilirubin elevations, jaundice, nausea and diarrhea
[168-170]. Other drugs of the InSTI class are experimental, such as MK2048. It is a drug that
acts by inhibiting integrase enzyme four times longer and shows superior efficacy to raltegra‐
vir. Additionally, it is being investigated for use as part of PrEP [171]. In turn, BI224436 is the
first non-catalytic site integrase inhibitor (NCINI) with capacity to inhibit HIV-1 replication.
This inhibition of HIV-1 replication occurs via its attachment to a conserved allosteric pocket
of the HIV integrase enzyme. This makes the drug distinct in its mechanism of action compared
to raltegravir and elvitegravir, which bind at the catalytic site [172, 173]. Another experimental
drug is GSK744 (S/GSK1265744, Cabotegravir®), which has a structure similar to that of
carbamoyl and omizanddolutegravir. In investigational studies, the agent has been packaged
into nanoparticles (GSK744LAP), which confer an exceptionally long half-life of 21–50 days
following a single dose. In theory, this would make suppression of HIV-1 possible when dosing
as infrequently as once every three months. These drugs do not have sufficient data on their
toxicity profile and/or on lipid metabolism; however, they have been previously considered
to have low metabolic toxicity [174, 175].

10. Pre-Exposure Prophylaxis (PrEP)

In addition to known HAART regimens demonstrated in HIV-1 patients, new drugs and
formulations have been developed to prevent infection by HIV-1. This new approach based
on PrEP has shown promising results when administered as oral drugs, vaginal microbicides
(VM), and rectal microbicides (RM). PrEP is an important tool for the prevention of HIV-1
infection, and can be combined with condom provision, counseling, and the diagnosis and
treatment of sexually transmitted infection (STI), thus providing even greater protection than
when used alone [176, 177]. Different clinical trials based on PrEP, have shown reductions in
HIV-1 infection rates among men who have sex with men (MSM), and heterosexual HIV-
serodiscordant couples, who were prescribed daily oral antiretroviral PrEP with a fixed-dose
combination of TDF and emtricitabine (FTC) (Truvada®). The isolated use of TDF also
demonstrated safety and efficacy in clinical trials among injecting drug users (IDU) and among
men and women in heterosexual HIV-discordant couples [177-180] (Table 5).

10.1. Tenofovir Disoproxil Fumarate (TDF)/Emtricitabine (FTC)

The combination TDF/FTC (Truvada®, TVD), both NRTIs, widely used as part of first-line
regimens for the treatment of HIV-1 infection, was approved in July 2012 by the FDA for PrEP
in combination with safer sex practices to reduce the risk of sexually acquired HIV-1 in high-
risk adults [181]. Currently, prescribing daily oral PrEP with TDF 300mg/FTC 200 is recom‐
mended as one prevention option for MSM, heterosexual patners, and IDU at substantial risk
of HIV acquisition [181-183]. TDF/FTC has had few serious side effects, which facilitates
adherence to its use, however, it can’t be administered to subjects with renal failure and

The Impact of Modern Antiretroviral Therapy on Lipid Metabolism of HIV-1 Infected Patients
http://dx.doi.org/10.5772/61061

147



Fanconi syndrome [177-179, 184]. Additionally, its use in PrEP is well tolerated, and the
occurrence of headache, nausea, vomiting, abdominal pain, and weight loss may occur
infrequently [177-179]. Nausea and vomiting affects about one in six patients at the beginning
of the treatment, but these effects often reduce in the first month [177]. Although the use of

Study
Clinical
trial*

Sample size Limitations Evidence

Among men who have
sex with men

iPrEX trial (n=2499) Phase lll trial
TDF/FTC (n=1251)
Placebo (n=1248)

Adherence High

US MSM Trial(n=400) Phase ll trial
TDF/FTC (n=201)
Placebo (n=199)

Minimal High

Among heterosexual men
and women

Partners PrEP(n=4758) Phase lll trial
TDF(n=1589)
TDF/FTC (n=1583)
Placebo (n=1589)

Minimal High

TDF2(n=1219) Phase ll trial
TDF/FTC (n=201)
Placebo (n=199)

-High loss to follow-up Moderate

Among heterosexual Women

FEM-PrEP(n=2120) Phase lll trial
TDF/FTC (n=1062)
Placebo (n=1058)

-Stopped at interim analysis
-Limited follow-up
-Very low adherence

Low

West African(n=936) Phase ll trial
TDF (n=469)
Placebo (n=467)

-Stopped early for operational
concerns
-Small sample size
-Limited follow-up time on assigned
drug

Low

VOICE(n=3019)
Phase llB
trial

TDF(n=1007)
TDF/FTC (n=1003)
Placebo (n=1009)

-TDF arm stopped at interim analysis
-Very low adherence to drug regimen
in both
TDF and TDF/FTC arms

Low

Among injection drug users

BTS(n=2411) Phase lll trial
TDF (n=1204)
Placebo (n=1207)

Minimal High

Table 5. Clinical trials with TDF/FTC (Truvada®) for pre-exposure prophylaxis (PrEP)(GRADE Criteria). Note: Grade
quality rating: high=further research is very unlikely to change our confidence in the estimate of effect;
moderate=further research is likely to have an important impact on our confidence in the estimate of effect and may
change the estimate;low= further research is very likely to have an important impact on our confidence in the estimate
of effect and is likely to change the estimate; very low=any estimate of effect is very uncertain. *All trials in this table
were randomized, double-blind, prospective clinical trials.
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TDF/FTC may be in a single daily dose, it is important to assess the risk of developing drug
resistance. Thus, it is necessary for all patients to be seronegative for HIV-1 before beginning
treatment, to perform laboratory tests every two or three months, in order to confirm their
seronegative status for HIV-1 [185]. In individuals with signs and/or symptoms of acute HIV-1
infection, or who reported ppotential HIV-1 exposure in the previous month, HIV-1 infection
should be excluded by repeated tests before starting PrEP [177, 179, 185]. Further, the starting
of PrEP with TDF/FTC requires that individuals carry out medical examinations and screening
for diagnosing possible STI in six-month intervals [185-190]. The main clinical studies of TDF/
FTC and TDF monotherapy, which allowed the approval of this therapy as choice for PrEP,
are shown in Table 5.

11. Microbicides for prevention of HIV transmission

Recently, strategies for prevention of HIV-1 infection with topical formulations for vaginal
application and/or rectal have been receiving attention. Whereas most phase I and phase II
clinical trials have found microbicide compounds to be safe and well tolerated, phase III trials
completed to date have not demonstrated efficacy in preventing HIV transmission [191].
Different topical microbicides under study for prevention of HIV-1 are grouped into classes
of agents, based on where they disrupt the pathway of sexual transmission of HIV. These
classes include surfactants/membrane disruptors, vaginal milieu protectors, viral entry
inhibitors, reverse transcriptase inhibitors, and other groups whose mechanism is unknown.
Surfactants and acidifying agents act non-specifically, either by disrupting viral and cellular
membranes, or creating a more hostile environment in the genital tract for viral transmission
[191-193] (Table 6).

11.1. Specific microbicide agents

11.1.1. Reverse transcriptase inhibitors

Reverse transcriptase inhibitors are antiretroviral with recognized efficacy and safety in the
treatment of HIV-1 infection and prevention of mother-to-child HIV-1 transmission. This class
of drugs has allowed the formulation of topical microbicide less toxic and more effective [194].
The nucleotide reverse transcriptase inhibitor tenofovir was the first antiretroviral drug to
safely demonstrate in animal models both pre-exposure and post-exposure prophylaxis as
proof-of-concept against the sexual transmission of HIV-1 [195, 196]. Two other compounds
of class NNRTIs being studied as topical microbicides to prevent HIV-1 infection, are the
TMC120 and UC781. Preclinical or clinical testing of these compounds as potential topical
microbicides have several features in common, and both compounds show minimal systemic
absorption, and good safety profiles in animal studies [200, 201]. In vitro, TMC120 and UC781
prevent cell-free and cell-associated virus from infecting co-cultures of monocyte-derived
dendritic cells and T cells [202-204].
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11.1.1.1. Tenofovir

Tenofovir is active as a diphosphate, rather than a triphosphate, which does not act via HIV
DNA chain termination, coupled with the limited phosporylation ability of macrophages. This
explains why the drug might be effective in macrophages and other non-dividing cells [197,
198]. Based on the animal studies and with an appreciation for tenofovir’s relatively high
barrier to resistance compared with other reverse transcriptase inhibitors [196], the compound
became the first antiretroviral drug to be assessed as a VM in a clinical trial. In a phase I study
(HPTN 050), 0 3% and 1% vaginal tenofovir gel, formulated as a diphosphate, was used once
or twice daily for 14 days by HIV-1 infected and uninfected women. The gel was found to be
safe, well tolerated, and acceptable to participants [199].

Drug Clinical trial*

Specific microbicide agents

Reverse transcriptase
inhibitors (NRTIs and
NNRTIs)

Tenofovir (NRTI);
(PMPA; nucleotide
analogue)

Phase I trial, Phase II (NCT00561496, NCT00540605,
NCT00594373), Phase II (NCT00111943), Phase IIb
(CAPRISA 004; NCT00441298), and Phase II/IIb
(NCT00705679)

TMC120 (NNRTI) Phase III trial efficacy study and phase I/II safety

UC781 (NNRTI) Phase I trial, Phase I(NCT00441909, NCT00132444,
NCT00385554), and Phase I (NCT00408538). Male tolerance
study ongoing(NCT00385554)

Entry inhibitors: CCR5
blockers

PSC-RANTES Protected macaques from SHIV (SF162)

CPMD167 Full protection of macaques from SHIV (162P4) not
achieved alone, but only with addition two peptides
BMS-378806and C52-L

Non-specific microbicide agents

Vaginal milieu protectors/
acidifying agents

Carbopol 974P (BufferGel®) Phase II/IIb trial (HPTN 035) (NCT00074425)

Acidform (Amphora®) Phase III trial: preventionof N. gonorrhoeae and C. trachomatis

Entry inhibitors: anionic
polymers

Naphthalene sulfonate
(PRO2000®)

Phase II/IIb trial (NCT00074425), Phase III (NCT00262106)

Carrageenan (Carraguard®) Phase III trial

Cellulose sulfate
(Ushercell®)

Phase III trial
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Drug Clinical trial*

Cellulose acetate
phthalate/CAP

Phase I trial

Dendrimers:
SPL7013(Vivagel®)

Protection from HIV in a macaque model and from HSV
models
Phase I trial,Phase I trial(NCT00331032), Phase I trial
(NCT00442910)

Detergents or surfactants Nonoxinol 9 (nonoxynol-9®)No current clinical trials for HIV prevention. Phase III

C31G (Savvy®) Phase III trial

Sodium dodecyl sulphate
(SDS)(Invisible Condom)

Phase II trial(NCT00136643)and Phase II/III trial

Note: NNRTI=non-nucleoside reverse transcriptase inhibitor; STI=sexually transmitted infection; SHIV=chimeric simian/
human immunodeficiency virus;HSV=herpes simplex virus.

*NCT number: Clinical trials.gov website :http://www.clinicaltrials.gov.

Table 6. Specific and non-specific microbicides agents for prevention HIV-infection.

11.1.1.2. TMC120 and UC781

Two other compounds of class NNRTIs being studied as topical microbicides to prevent HIV-1
infection, are the TMC120 and UC781. Preclinical or clinical testing as potential topical
microbicides showed that they possess several features in common, and both compounds show
minimal systemic absorption, having revealed goodsafety profiles in animal studies [200, 201].
In vitro, TMC120 and UC781 prevent cell-free and cell-associated virus from infecting co-
cultures of monocyte-derived dendritic cells and T cells [202-204]. TMC120 (4-[{4-[(2,4,6-
trimethylphenyl)amino]pyrimidin-2-yl} amino]benzenecarbonitrile), a diarylpyrimidine, was
the first topical microbicide the NNRTIs class, in gel form, with activity and effectiveness
proven in vivo [201, 203]. The thiocarbanilide UC781 (N-[4-chloro-3-(3-methyl-2-butenyloxy)
phyenyl]-2-methyl-furan-3-carbothioamide), presents a good capacity to block cell-free and
cell-associated HIV-1 transmission in human cervical tissue-based culture organ [205, 206],
and have shown effectiveness as a VM safety studies in rabbits [200]. Additional phase I trials
are underway [205, 207] (Table 6).

11.1.2. Entry inhibitors: CCR5 blockers

CCR5 blockers, also known as CC chemokine receptor 5 [CCR5] antagonists, entered the
market in 2007 as antiretroviral drugs, such as drugs capable of effectively blocking the fusion
of HIV-1 to CCR5 receptors (Selzentry, Maraviroc®) of the target cell. Its effectiveness at
blocking HIV-1 fusion raised its possible ability to act as topical microbicide for the prevention
of HIV-1 infection [208, 209]. CCR5 is the most important co-receptor for macrophage-tropic
viral strains, which can predominate in the early stages of viral transmission (126). Two CCR5
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receptor antagonist have been studied as topical microbicides, the PSC-RANTES [208] and
CMPD167 [209].

11.1.2.1. PSC-RANTES

PSC-RANTES, a potent synthetic inhibitor of the CCR5 co-receptor, had in vitro, showed
antiviral activity against all HIV-1 subtypes as well as being able to inhibit the infection of
Langerhans cells by HIV-1, which are considered crucial cells for HIV-1 transmission across
the vaginal epithelium [210-212].

11.1.2.2. CMPD167

CMPD167, a cyclopentane-based compound formulated as a 5 mmol vaginal gel, provided
protection from vaginal simian/human immunodeficiency virus (SHIV) challenge in eight out
of ten macaques [209], and, has been assessed in combination with two peptides that block the
viral–host cell interaction at different loci, BMS-378806 and C52-L. BMS-378806 binds viral
gp120 and prevents attachment to the CD4 and CCR5 receptors [213, 214], whereas C52-L, a
modified version of enfuvirtide, inhibits gp41-mediated viral–cell fusion [209, 215]. Although
these animal studies evaluating combinations of compounds with different mechanisms are
promising, it is not yet clear whether they will correlate with protection from HIV-1 in human
trials [209]. An important challenge in considering the CCR5 inhibitors for use as topical
microbicides is their inability to block the entry of CXCR4-tropic virus. Although this latter
pathway is less important in sexual transmission, it might still have a role in the infection
process. Another concern is the pressure that CCR5-inhibiting compounds might place on
HIV-1 to shift toward the use of non-CCR5 pathways/co-receptors to gain entry into cells. A
clinically effective microbicide most likely will need to block all modes of receptor-mediated
entry [191].

11.1.2.3. Cyanovirin-N

Additionally, beyond the fusion inhibitor C52-L, which inhibits viral-cell gp41-mediated
fusion [209, 215], another fusion inhibitor that is being evaluated in clinical trials as a topical
microbicide is cyanovirin-N, the lectin purified compound from cyanobacterium. A cyano‐
virin-N, prevents viral–host cell fusion by binding high mannose residues in the HIV-1
envelope [216, 217]. However, it is necessary to consider that some lectins have shown
unwanted side-effects, such as human red blood cell agglutination, mitogenic stimulation of
peripheral blood mononuclear cells (PBMC), inflammatory activity, and cellular toxicity [218].
Various formulations of cyanovirin-N, including those expressed by lactobacilli, are under
development [219] (Table 6).

11.2. Non-specific microbicide agents

11.2.1. Vaginal milieu protectors/acidifying agents

Vaginal milieu protectors are topical microbicides that promote the maintenance and restora‐
tion of natural protective mechanisms within the vaginal canal - the acidic pH maintained by
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lactobacilli. A pH between 4 0 and 5 8 has been shown to inactivate HIV-1 [220-222]. Therefore,
various factors affecting this acidic pH, such as the presence of sêmen or bacterial vaginosis,
neutralise the baseline acidity of the vagina. Use of microbicidal compounds in this class can
act as direct acidifying agents, or as enhancers of lactobacilli production [220-224]. Some
representatives of this class that have been evaluated in clinical studies are carbopol 974
(BufferGel®) [223, 224] and acidoform (Amphora®) [225, 226] (Table 6).

11.2.1.1. Carbopol 974P

Different studies on the efficacy of carbopol 974P (BufferGel®) as topical microbicide have been
conducted. The compound is a polyacrylic acid that buffers twice its volume of semen to a pH
of 5 or less, and has shown spermicidal activity [223], virucidal in vitro activity to HIV-1 [221]
and herpes simplex virus (HSV) [227], and protection in mouse vaginal models against HSV
and C. trachomatis [224]. In gel form, inhibits human papillomavirus (HPV) in animal models
[228]. Their safety, as topical microbicide, has also been demonstrated in clinical trials phase I
[229, 230]. BufferGel was safe and acceptable among men in a penile tolerance study in HIV-1
infected and uninfected men [231], and a study of phase II/IIb (HPTN 035), showed safety and
efficacy when compared with a placebo gel and with condoms.

11.2.1.2. Acidoform

Acidoform (Amphora®) is a sexual lubricant, however, acid-buffering and its bioadhesive
properties make it appealing for development as a microbicide candidate. Acidform has
undergone two phase I safety studies, as well as the male penile tolerance study [232-234].
Clinical studies have shown that acidoform is well tolerated when used alone, and in combi‐
nation with nonoxinol 9 (N-9) compound, promotes vaginal irritation (80). The presence of
moderate vulvar irritation, including itching, tingling, burning, dryness, erythema, ulceration,
and vesicles, have been presented, but are instances considered mild [232, 233].

11.2.2. Entry inhibitors

Advances in the drug development against HIV-1 have lead to the identification of new
compounds which could be used to target cellular entry and nuclear integration of virus
in addition to drugs that commonly target RT and protease. Cellular entry of HIV-1 is a
multistep procedure involving a range of cellular and molecular interactions between virus
envelope protein and receptors expressed on the surface of the target cells,  thus provid‐
ing many opportunities to block infection [235]. Topical microbicide agents of class entry
inhibitors act by blocking the binding of HIV-1 to host cells, as well as inhibit fusion of the
viral membranes. This class, stand out as anionic polymers microbicide agents, in which
they present negative charges in their structure, interact with viral envelope proteins (gp120
and/or  gp41)  which  interfers  with  attachment  of  HIV-1  to  CD4+  cells  [236].  The  gp120
protein  of  CXCR4-tropic  viruses  are  vulnerable  to  the  actions  of  anionic  polymers  by
changing the melting capacity of these viruses in the host cell membranes. However, there
is  controversy about  the effectiveness  of  anionic  polymers for  CCR5-tropic  viruses  [236,
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237].  Naphthalene sulphonate [238],  carrageenan [239],  cellulose sulphate [240],  cellulose
acetate phthalate [241], and dendrimers [242], are the main compounds evaluated in clinical
trials, phase l, ll and lll (Table 6).

11.2.2.1. Naphthalene sulphonate

Naphthalene sulphonate (PRO2000® gel), is a sulphfonated polymer with in vitro activity
against HIV-1, C. trachomatis, N. gonorrhoeae, and HSV [243, 244]. Phase I clinical trials have
shown that naphthalene sulphonate gel was generally well tolerated [238, 245]. Phase ll/llb
revealed safety and efficacy, and a phase III efficacy trial, show that the naphthalene sulpho‐
nate gel has better efficacy when compared with BufferGel, gel placebo, or the condom [238,
244, 246].

11.2.2.2. Carrageenan

Carrageenan (Carraguard/R515®) is a sulphonated polysaccharide derived from a seaweed
extract, and blocking HIV-1 transmission by binding the HIV-1 envelope. Carrageenan has
been found to prevent HIV-1-infected mononuclear cells from migrating across vaginal
epithelia to pelvic lymph nodes in mouse models [247]. Phase I safety trials of carraguard gel
and similar carageenan-based formulations showed safety in HIV-1 negative men and women
[248, 249]. Other clinical trials have shown that carraguard gel was safe in preventing infection
by HIV-1 [250, 251]. However, a placebo-controlled phase III study in South Africa, with HIV-1
negative and non-pregnant women, found that although carraguard gel was safe when used
over a 2-year period, incident HIV-1 infections occurred at a similar rate in the Carrageenan
and placebo groups, with incidence of 3:3 infections per 100 woman-years in the Carrageenan
group, and incidence of 3:7 per 100 woman-years in the placebo group, raising major questions
about whether poor adherence contributed to the lack of efficacy found in the trial [252].

11.2.2.3. Cellulose sulphate and cellulose acetate phthalate

Cellulose sulphate gel (Ushercell®), acts by binding the V3 loop of the gp120 HIV-1 envelope,
and it can inhibit both CXCR4 and CCR5-tropic virus types [253]. Phase III efficacy trials of
cellulose sulphate versus placebo showed a higher HIV seroincidence in the trial group [240].
Cellulose acetate phthalate (CAP) is another anionic polymer under investigation as a
microbicide agent, that blocks gp120 binding sites, and showed in vitro activity against HIV-1
and HSV (types 1 and 2) [255]. CAP has been presented in the form of a film and micronized
gel, and has shown ability to block gp120 binding site on CXCR4 and CCR5-tropic virus types
[256, 257]. Additionally, the micronised form of CAP provides an acidic environment, which
was shown in one study to cause disintegration and loss of infectivity of HIV-1 [258].

11.2.2.4. Dendrimers

Dendrimers are anionic polymers containing macromolecules, and contain a central core,
interior branches, and terminal surface groups adapted to specific targets. Because of their size
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and multiple terminal surface groups, they possess the ability to bind to multiple locations on
multiple cells. O SPL7013 (Vivagel®) is a first dendrimer to be formulated as a microbicide gel
and tested clinically. It showed protection from chimeric SHIV in a macaque model, and from
HSV2 in two different animal models [259].

11.2.3. Detergents or surfactants

Detergents or Surfactants were the first compounds evaluated clinically as topical microbi‐
cides. These topical agents act in a nonspecific way disrupt membranes, offering contraceptive
properties and activity against a wide range of potential STI pathogens [260, 261]. The agents
of this class of topical Microbicides are represented by nonoxynol 9 (N-9), C31G, and sodium
lauryl sulfate (SLS) (Table 6).

11.2.3.1. Nonoxinol 9 (N-9)

This prototype detergent compound is the non-ionic surfactant nonoxynol 9 (N-9) that forms
a chemical barrier between the vaginal mucosa and the ejaculate. The nonoxynol 9 is a
spermicide low cost and easy access sulfactant that proved effective against HIV-1 infection,
in vitro tests [262]. However, since nonoxynol 9 disrupts the phospholipid membrane of cells,
it can cause non-specific damage to vaginal epithelium cells, uterine and cervical tissue thus
increasing rather than decreasing the likelihood of HIV-1 infection [260, 261]. In a blinded,
randomized controlled efficacy trials of nonoxynol 9, in seronegative sex workers for HIV-1
in Cameroon, the data showed no difference in the rate of HIV-1 infection, though a higher
incidence of genital ulcers with the use of nonoxynol 9 compared with placebo was observed
[263]. In turn, the efficacy trial in female sex workers in four countries showed an association
between N-9 and increased HIV-1 seroincidence when nonoxynol 9 has been used more than
three times daily [264]. These findings suggest that the toxicity of nonoxynol 9 on tissue of the
vaginal mucosa at higher doses would be a possible cause for increased transmission among
frequent users, which led researchers to disregard the use of nonoxynol 9 as a HIV-1 preventive
microbicide [191].

11.2.3.2. C31G

C31G (Savvy®), or cetyl betaine and myristamine oxide, is a surfactant with the potential to
microbicide and contraceptively spermicide, in addition it has in vitro activity against C.
trachomatis, HSV, and HIV-1 [265-267]. A clinical study has shown that many patients are
reluctant to use it because of associated burning sensations [268]. The C31G co-polymer gel
(1%, 0.5% and 1.7%) was evaluated, but the results were inconclusive regarding their safety
and efficacy for preventing HIV-1 infection, and clinical trials of C31G have recently been
discontinued [268, 269].

11.2.3.3. Sodium Dodecyl Sulphate (SDS)

Sodium dodecyl sulphate (SDS), also called sodium lauril sulphate (SLS) [270, 271], are
sulphated (negatively charged) surfactants that denature membrane proteins of pathogens and
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cells. SDS in vitro and in animal models have inhibitory activity against HIV-1 and HSV [272],
promoting the reduction of adsorption of the HIV viral envelope glycoproteins in the mem‐
brane of the target cell [273]. In the form of a thermoreversible gel acts as a physical barrier
and as a denaturing agent of the viral envelope glycoproteins [272, 273]. In similarity with
nonoxynol 9, its long time application can cause non-specific damage to the vaginal epithelium
cells, uterine and cervical tissue.

12. Intravaginal rings

PrEP using intravaginal rings (IVR) with antiretroviral drugs, is emerging as a promising
strategy for the prevention of sexual HIV-1 infection [274]. The use of IVR as controlled release
strategy of antiretroviral drugs may improve adherence to PrEP, and provide sustained
mucosal levels independent of coitus and daily dosing [275]. The delivery of two or more
antiretroviral drugs from conventional IVR designs involves significant technological and
manufacturing challenges [276]. Recently, an IVR was developed which allows the release of
multiple agents over a wide range of target delivery rates and aqueous solubilities [277-279].
Researchers have evaluated the pharmacokinetics of IVR containing five drugs as a proof-of-
concept, described as advanced multipurpose prevention technology, which combines three
antiretroviral drugs from different mechanistic classes (tenofovir, nevirapine, and saquinavir)
with a proven estrogen-progestogen contraceptive for prevention of HIV-1 infection and
unintended pregnancy [280, 281]. Studies with IVR delivering TDF and emtricitabine, as well
as a triple-combination IVR delivering TDF, emtricitabine, and selzentry are in progress for
safety and pharmacokinetics evaluation. Preliminary results show that no adverse events were
observed, although certain toxicological findings were observed. Mild-to-moderate increases
in inflammatory infiltrates were observed in the vaginal tissues of some animals in both the
presence and absence of IVR [277-281]. New perspectives and challenges are open for the
development of IVR delivering multiple drugs, to ensure the safety and efficacy for the
prevention of HIV-1 infection [279-281].

13. Diet and lifestyle

Changes in diet and lifestyle, and the adequacy of a hypocaloric diet are recommendations
that seek to reduce the concentrations of TC and its fractions, especially LDL [282-284]. These
changes bring benefits over short periods of time and reduce the risk for cardiovascular and
atherosclerotic diseases. The dietary recommendations are addressed to the entire population
and specifically to HIV-1 patients which also indicates measures that should be applied to
delay the need for lipid-lowering drugs, even before the treatment of dyslipidemia [282-285].
Changes in diet can directly alter the levels of circulating LDL including saturated fats,
cholesterol, and trans-unsaturated fats. The highest impact comes from saturated fats, which
are in a solid state at room temperature or under refrigeration. The major sources of saturated
fats are meat and meat products (poultry, pork, beef, lard, and sausages), dairy (milk and
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cheeses), and vegetable oils (derived from palm or coconut). For an adequate daily diet, the
recommended consumption is equal or <7% of saturated fats, for the total daily caloric intake.
Dietary cholesterol is exclusively found in animal products such as meats (particularly organ
meats and tissues such as brain, kidney, and liver), egg yolks, and dairy products. It is
recommended to keep dietary cholesterol consumption to <200 mg/day. Trans fats and
unsaturated fats are found in breads and cookies, doughnuts, stick margarine, and fried foods
[286, 287]. The consumption of unsaturated fats preferred sources include fish such as salmon,
mackerel, tuna, and vegetables such as avocado, olives and olive oil and vegetable oils [289].
Other foods that are considered for the maintenance and/or lipid-lowering effects are the
omega-3 fats, which are polyunsaturated fats that can lower TG levels. Omega-3 fats are
considered as fish oils, they are present in fish such as salmon, tuna and mackerel, but these
are also found in krill and flax seed oil. Currently, a diet with 25-35% of daily calories derived
from fat sources is recommended, including saturated fats, which must be <7% [289]. In
addition, physical activity improves cardiorespiratory function, promotes the reduction of
LDL and TG, and decreases insulin resistance (in both uninfected and HIV-1 patients) [290,
291]. Physical exercise has shown reduction effects in TC and TG, also reduced total fat mass,
and increased muscle mass in HIV-1 patients with hypertriglyceridemia [291-293]. Addition‐
ally, physical exercise is associated with greater cardiovascular fitness, improved muscle
strength and endurance, and the reduction of depression and anxiety. In addition, it helps with
problems resulting from lipodystrophy (dyslipidemia, insulin resistance, and osteoporosis)
and cardiovascular disease [291-293]. However, there are several factors that can directly
influence the reduction of metabolic disorders observed in seropositive patients. The common
observation of gastrointestinal diseases in patients in advanced stages of infection may reduce
the positive effects of a balanced dietary regimen [292, 293].

14. Conclusion

After more than three decades of the emergence of HIV/AIDS, it is clear the advances achieved
with HAART in patients infected with HIV-1. A better quality of life, reducing morbidity and
mortality, and a greater survival rate are evident in patients who use the therapy. The
therapeutic arsenal is wide, and many possibilities occurs in those cases where viral resistance,
viral genetic mutations, presence of quasispecies and also adhesion problems of treatment and
maintenance due to adverse reactions and side effects such as those produced on lipid
metabolism. In turn, the advent of PrEP is undoubtedly the most important and innovative
approach to prevent infection by HIV-1, and is already showing excellent results in several
clinical studies conducted to date. Additionally, maintaining perspective of low viral load
levels in patients who use HAART is considered as one of the keys to reducing the transmission
of infection, and associated with PrEP, presents us with a positive scenario for the coming
years. Beside the excellent results obtained with HAART , a definitive cure for HIV-1 remains
a major obstacle. Nevertheless, nowadays patients infected with HIV-1 have a better perspec‐
tive of life.
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