
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 7

Strengthening Dental Porcelains by Ion Exchange
Process

Humberto Naoyuki Yoshimura and
Paulo Francisco  Cesar

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/60617

Abstract

Porcelains have been used in dentistry for many decades because of their excellent
aesthetic qualities, besides other favorable characteristics. Despite these desirable
characteristics, porcelain restorations may fail in the oral environment due to fracture.
Studies on the clinical success rate of porcelain onlays, inlays and veneers have shown
that their fracture rate is relatively high and is among the main reasons for failure of
these restorations. The fracture of dental porcelains is a consequence of its brittle
nature and low fracture toughness. Porcelains are also highly susceptible to weaken‐
ing during their lifetime in the oral environment, because the sizes of defects tend to
increase by the slow crack growth phenomenon. Therefore, in order to increase the
lifetime of porcelain restorations, it is necessary to enhance their overall resistance to
crack propagation. Among the methods proposed to strengthen glasses and ceramics,
a potential method to improve the mechanical properties of dental porcelains is the
chemical strengthening or tempering by the ion exchange process. In this chapter, the
effects of chemical tempering on mechanical behavior of dental porcelains are
reviewed. Dental porcelains are based on alkali-containing aluminosilicate glass
compositions and can have leucite (KAlSi2O6) crystalline particles dispersed in the
glassy matrix. The ion exchange process can be carried out by the paste method using
KNO3 salt at a temperature that is 80% of glass transition temperature (Tg) of porcelain
during a short time (15 to 30 min). In this treatment, the small Na+ ions in the glassy
matrix are exchanged by larger K+ ions from the salt, resulting in a K+ concentration
profile that results in a steep gradient of residual compressive stress by the ion stuffing
effect at the surface region of the porcelain. No significant variations in strengthening
have been observed when temperature and time varied around the above indicated
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values, since the increase in these parameters enhanced the stress relaxation process,
which hinders the effect of higher ion interdiffusion. Although few porcelains with
high leucite content have no strengthening response to ion exchange process, most
dental porcelains can be strengthened and significant increases in fracture toughness
(up to around 150%) have been reported. The same level of increase in flexural
strength has been observed, but the variability of fracture stress also increases due to
the relative small thickness of compressive layer and the decreasing resistance curve
effect. The lower reliability is counterbalanced by significant increases of the resistance
to slow crack growth phenomenon, leading to higher strength retention after long
lifetimes even at low levels of fracture probability. Therefore, it is expected that the
application of chemical tempering (strengthening by ion exchange) can improve the
lifetime of dental porcelain restorations.

Keywords: Bioceramics, dental porcelain, ion exchange, chemical tempering,
strength, toughening, lifetime

1. Introduction

Dental porcelains have been used in dental restorations due to their good qualities, including
high color stability, high resistance to stain, good biocompatibility, low thermal conductivity,
high wear resistance, and capacity to mimic dental structures [1–3]. Notwithstanding,
disadvantages of these restorations include high susceptibility to fracture, risk of debonding,
and microleakage [4–6]. For feldspathic porcelain onlays placed in posterior teeth after 6 years,
the observed cumulative survival rate was ~60%, with bulk fracture in 16% of the restorations
[7]. The reported clinical success rate for maxillary anterior porcelain veneers after 10 years
was 64%, and main reasons for failure were fracture (11%) and large marginal defects (20%)
[2]. Similar behavior was also observed for posterior feldspathic porcelain inlays, and marginal
defects and fracture were 22% and 11% of the restorations, respectively, after an 8-year period
of clinical assessment [8].

The high susceptibility to fracture of porcelain restorations is caused by their brittle nature,
that is, their low capability to absorb strain energy due to an external loading before fast crack
propagation occurs. The resistance to crack propagation can be quantified by the fracture
toughness (KIc) which is given by [9,10]:

Ic fK Y cs= × × (1)

where, Y is a geometrical constant, σf is fracture stress, and c is crack size that results in fracture.
From Griffith’s energy failure criterion, the termσ f.c1/2 is constant, which implies that strength
(σf) is not constant and varies inversely with the square root of critical flaw size (c1/2). Further‐
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more, Equation 1 also shows that the porcelain strength is directly related with its fracture
toughness, KIc.

Dental porcelains have relatively low values of KIc (around 0.6 to 1.2 MPa.m1/2) [11,12],
especially when compared to metals, which have KIc higher than around 30 MPa.m1/2 [13]. As
a consequence, porcelains have low strength values usually in the range of 40 to 120 MPa [14,
15]. Moreover, the strength of porcelain restorations can decrease during their lifetimes in the
oral environment, since a weakening effect known as subcritical crack growth causes the flaw
sizes to increase slowly over time [16,17]. Therefore, it is important to develop processing
methods that can enhance the overall resistance to crack propagation, particularly strength
and fracture toughness, in order to increase the lifetime of porcelain restorations.

Different methods have been proposed to strengthen dental porcelains, including addition of
reinforcing phases, like ceramic fibers or phase transformable tetragonal zirconia particles, and
incorporating a compressive surface layer, which can be achieved by thermal tempering,
glazing with a glassy material having lower thermal expansion coefficient, or chemical
tempering [18–20]. Among these, chemical strengthening by ion exchange is a promising
method to significantly enhance the mechanical behavior of dental porcelain restorations.

2. Chemical tempering

Chemical tempering is a strengthening or toughening treatment by ion exchange process
that introduces a residual compressive stress layer on the surface of glassy materials that
hinders  the  crack  propagation  and  increases  the  material  resistance  to  fracture.  In  this
treatment, alkali ions of the glass are removed and exchanged by other larger alkali ions
from an external source at a temperature sufficiently high to promote ion interdiffusion.
Figure  1  shows  the  sizes  of  different  alkali  ions.  The  most  applied  alkali  ion  pair  for
strengthening is the Na+/K+, but other pairs are also exchangeable, like Li+ by Na+ and K+

by Rb+, depending on the glass composition [21,22].

Figure 1. Pauling’s calculated ionic diameters for alkali metals. Data from [21]

An usual practice is to make an ion exchange treatment in sodium-containing aluminosilicate
glasses with a melt of KNO3 salt, at a temperature between the melting point of salt and the
glass transition temperature (Tg) of the glass. During the process, Na+ ions diffuse out from the
glass into the salt and simultaneously the diffusion of K+ ions from the salt into the glass takes
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place, with equal and coupled counterdiffusing ion fluxes (JNa+ = JK+) to maintain the eletro‐
neutrality (Figure 2) [23].

Figure 2. Schematics of (a) before and (b) after ion exchange process in dental glassy porcelain. J – ion flux

During the ion exchange process, concentration gradients of K+ and Na+ are formed at the
region near the glass surface that can be described by the Fick’s second law, given by [22–26]:
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2
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where, Cx is the ion concentration at depth x (from surface) after ion exchange time t, C0 is the
initial ion concentration in glass, erf(z) is the Gaussian error function, and Ď is the interdiffu‐
sion coefficient given by:
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where, Ni is fractional concentration of alkali ion i and Di is its self-diffusion coefficient in
mixed-alkali glass compositions, which increases exponentially with temperature by:

0 exp dQD D
kT

æ ö
= -ç ÷

è ø
(4)

where, D0 is preexponential factor, Qd is activation energy for diffusion, k is Boltzmann’s
constant and T is temperature. Figure 3a shows examples of K+ concentration profiles after ion
exchange at different time or temperature.
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Figure 3. Normalized potassium concentration profiles (Equation 2) (a), and normalized residual stress profile (b) in
dental glassy porcelain after ion exchange process

The bigger K+ ions that replace Na+ ions tend to cause material expansion (known as ion
stuffing) in the exchanged surface layer, which is restricted by the non-ion exchanged glass
region. This situation, when the ion exchange is carried out at a temperature lower than the
Tg of glass, generates a residual compressive stress field parallel to the surface in the K-rich
layer. This layer has a gradient of compressive stress similar to the potassium concentration
gradient, that is, the compressive stress is high at the surface and decreases with the increase
in distance from surface. In order to counterbalance the net stress state, a residual tensile stress
field is generated below the compressive layer (Figure 3b).

The residual compressive stress layer adds a toughening contribution, KRC, which hinders crack
propagation, leading to an increase in the fracture toughness in ion exchanged glass, KIc,IE, by:

, 0Ic IE RCK K K= + (5)

where, K0 is the fracture toughness of unreinforced glass. The higher KIc leads to a higher
fracture stress, if a flaw size c is unaltered (Equation 1). Therefore, the generation of a surface
compressive layer by ion exchange can result in the increase in fracture toughness and strength
of glasses and porcelains.

The toughening effect depends on the thickness of compressive layer, known as case depth
(Figure 3b), especially when the glass contains deep surface flaws. Because of the relative slow
ion exchange rate, the case depths varying from few tens to hundreds of micrometers have
been reported, depending on the ion exchange parameters, including time (up to hundreds of
hours of treatment have been reported), temperature, salt composition, exchangeable ionic
pair, and glass composition [22,26,27].

An effect that can lower the strengthening rate by the ion exchange process is the stress
relaxation that can occur during this process, leading to a reduction in the magnitude of
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residual compressive stress [27]. Stress relaxation occurs by viscous flow of the glass and can
be described by the Maxwell’s model given by [28,29]:

0 exp G ts s
h

æ ö×
= ç ÷

è ø
(6)

where, σ is the remaining stress at time t, σ0 is initial stress, and G and η are shear modulus
and viscosity of glass, respectively. Since η decreases strongly with temperature, the rate of
stress relaxation is more rapid with the increase in temperature.

The chemical tempering has been applied to strengthen cockpit windows for aircrafts, high
speed train windshields, photocopier scanner glass, display windows in mobile personal
electronic devices, compact disks for portable hard drives, high-end ophthalmic glasses, and
glass items for drug delivery [22,26]. Advantageous characteristics of chemical tempering
include: possibility to strengthen complex geometries and thin components (thickness of up
to around 100 μm), which are difficult in thermal tempering; higher compressive stress level
on the surface compared to thermal tempering; low level of internal residual tensile stress,
with less fragmentation and explosion-like fracture propagation; and did not cause optical
distortion. Disadvantageous characteristics include: limited to alkali-containing glasses;
shallow depth of residual compressive stress layer (case depth); generation of corrosive alkali-
containing salt residue; and high cost when long time of ion exchange is applied [22,26].

3. Dental porcelains

The feldspathic porcelain is a predominantly glassy material with variable crystalline content.
Its basic structure has a network of silica with potassium, sodium, and other ions as network
modifiers. In order to reduce the glass softening temperature and increase fluidity, metal oxide
fluxes are added (CaO, K2O, Na2O), which decrease the softening temperature by reducing the
amount of cross linking in the porcelain structure. The addition of alumina (between 8 and 20
wt%) is used for controlling the viscosity and decreasing the flow at high temperatures. When
added, B2O3 in concentrations below 12 wt% also acts as a flux to form a less stable network
of BO4/SiO4 [30–33].

Silica, soda, potash, and alumina are the constituents of mineral feldspar (Na2O/
K2O.Al2O3.6SiO2), the main raw material used in the manufacturing of dental porcelain [30].
Silica and alumina account for most of the feldspar, about 70 and 17 wt%, respectively. Feldspar
porcelains are relatively pure and colorless, so pigments are added to produce shades of
natural tooth [34]. In the process of obtaining porcelain, feldspar is mixed with fluxes, then
heated to temperatures between 1150 and 1530°C, and rapidly cooled in water. With the
thermal shock, the glass breaks into fragments called frits. Opacifiers (TiO2, ZrO2) and
pigments (Cr2O3, Fe2O3) are also added to this glass [34]. Heating feldspar to high temperatures
leads to an incongruent melting resulting in the formation of leucite and a liquid glass. The
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leucite crystal is a mineral (potassium aluminum silicate) with high coefficient of thermal
expansion compared to feldspathic glasses [30]. The porcelain structure after incongruent
melting of feldspar has leucite (K2O.Al2O3.4SiO2) crystals involved in an aluminosilicate glassy
matrix [32,33,35]. In general, the leucite ratio is governed by the K2O content of the frit and the
time and temperature of the heat treatment; thus, the desired leucite content can be achieved
by controlling the appropriate time and the crystallization temperature range [36].

The frits based on leucite are used in Dentistry since the early 60s [31]. However, feldspar is
not essential as a precursor for the formation of leucite, and many dental porcelains do not use
feldspar as the raw material. These materials are called feldspar-free porcelain and are
synthesized in the laboratory by controlled addition of leucite instead of mineral processing.
It has been suggested that porcelains with a large amount of leucite dispersed in the glass
matrix are called leucite-based instead of feldspathic porcelains [30].

Feldspathic porcelains are usually presented as a liquid-powder system, in which the liquid
(water with dispersant) is mixed with porcelain powder to form a slurry or paste that is applied
to the refractory die or metal framework. After production of the green body, it is taken into
an electric furnace for the firing cycle (Figure 4a) [3,37]. Chemical reactions between the
porcelain powder components are completed during the process of obtaining the frits.
Therefore, the main purpose of firing is sintering of particles, although some chemical reactions
may occur during prolonged firing times or during multiple firing [30]. According to the firing
(sintering) temperature, the porcelain used for restorations and bridges can be classified as
being of high fusion (850 to 1100°C) and low fusion (below 850°C) [30]. The firing procedure
involves high heating rates (around 60°C/min) under vacuum and few minutes at the maxi‐
mum temperature. During this procedure, sintering process transforms the porous green body
(Figure 4b) in a translucent and dense solid, almost pore free (Figure 4c), by means of densi‐
fication mechanisms with mass transport by viscous flow [3,37]. Vacuum firing is a resource
used to reduce the porosity of these materials [31]. At the end of the firing procedure, the
porcelain can have three distinct phases: a crystalline phase (leucite), the glass matrix, and
pores.

Most dental porcelain developed for metal-ceramic restorations contain leucite (KAlSi2O6) as
a main crystalline phase [38]. Leucite was first introduced so that the porcelain could reach a
linear thermal expansion coefficient close to that of alloys used in metal-ceramic restorations.
In this way, metal and porcelain have similar behavior when cooled together during the firing
process, preventing the appearance of cracks in the porcelain [39]. Leucite is also the main
crystalline constituent of most generations of porcelain for all-ceramic restorations [40]. In this
case, leucite is not added with the aim of achieving thermal compatibility, but to increase the
strength and fracture toughness of the material [32,41]. The amount, average crystal size, and
crystal structure of leucite directly affect the thermal, optical, and mechanical properties of the
final restoration [42]. One of the advantages having leucite as the crystalline phase is that the
translucency of the porcelain is not lost, since the refractive index of this crystal is similar to
that of the glassy matrix [43,44].
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Figure 4. Dental porcelain furnace (a), green (b), and sintered (c) porcelain body [5]

The leucite crystal has a crystallographic polymorphic transformation (without change of
composition) from tetragonal to cubic during heating. This transformation is displacive
(martensitic) and accompanied by a marked change in the parameters of crystalline lattice with
an increase of 1.2% by volume of the unit cell [38]. When a porcelain containing leucite is cooled
from the firing temperature to room temperature, residual stresses arise in the material as a
result of the large difference between the linear thermal expansion coefficients of the glass
matrix (8.6 ppm °C-1) and tetragonal leucite (22.3 ppm °C-1). After cooling, tangential com‐
pressive stresses and radial tensile stresses appear in the glass matrix around the leucite
particle and opposite stress fields in the tetragonal crystals [38,43]. The compressive stresses
have a beneficial effect on the porcelains as they function as a mechanism for increasing the
toughness, as opposed to the tensile stresses, which drive the cracks forward [45].

Figure 5 shows typical micrographs of dental porcelains containing leucite crystals. For
porcelains with high leucite contents, the distribution of crystals usually is not homogeneous
in the glassy matrix (Figure 5a), forming agglomerates of leucite particles (Figure 5b). In these
micrographs, it is possible to see some circumferential cracks in the glass matrix surrounding
leucite agglomerates, which reveal the radial tensile stresses generated during cooling [11].
The residual stress fields associated with the leucite crystals have significant effects on the
fracture behavior of porcelain, since they change the propagation trajectory of a crack, driving
it through the glassy matrix region with radial tensile stresses. The result is that a crack
propagates bowing around leucite particles and agglomerates (Figure 5c). This effect is called
crack deflection and is the main toughening mechanism caused by leucite crystals in dental
porcelains. In fact, it has been observed that fracture toughness, KIc, increases with the increase
of volume fraction of leucite [11].

The increase in porcelain’s strength with the increase in leucite content has been observed
experimentally. However, there is a tendency of this increase to achieve a maximum, because
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for porcelains with high leucite volume fraction spontaneous microcracks can be generated
around big leucite agglomerates during cooling after sintering. These flaws have large size (c
value in Equation 1) and limit the porcelain’s strength, despite the increase in fracture
toughness, KIc [42,46]. Besides the quantity, the size, and distribution of the leucite particles
also influences the mechanical properties of the porcelain [18,41].

4. Hardness and toughness of chemically strengthened dental porcelains

In this section, the effects of chemical strengthening using ion exchange by paste method on
the hardness and fracture toughness of dental porcelains with different microstructures are
shown. Table 1 shows descriptions of five porcelain powders used in this study, two recom‐
mended to be used as veneering materials for alumina cores (V and Cb) and three recom‐
mended for porcelain fused-to-metal restorations (C, D, and B), containing wide variation of
leucite fraction (0 to 22 vol%).

Table 2 shows the chemical compositions of the porcelains measured by X-ray fluorescence
spectroscopy (XRF 1500, Shimadzu), showing that all porcelains had aluminosilicate compo‐
sitions with alkali and alkaline-earth metal oxides, besides other minor oxides. For porcelains
containing leucite particles (C, D, and B), parts of SiO2, Al2O3, and K2O contents composed
these particles. Considering the fraction and stoichiometry of leucite (KAlSi2O6 =
K2O.Al2O3.4SiO2), the compositions of glassy matrix of these porcelains were calculated and
are also shown in Table 2. Note that all porcelains had in the glassy matrix an initial K2O
content, and also potentially exchangeable Na+ ions by K+ ions from an external source.

Green specimens with bar shape (5 × 6 × 40 mm) were prepared by the vibration-condensation
method, mixing the porcelain powder with distilled water and using a steel mold. Then, the
specimens were vacuum sintered in a dental porcelain furnace (Keramat I, Knebel), following
the firing schedules recommended by the manufacturers (sintering temperatures indicated in
Table 1). After firing, the specimens were machined following the guidelines in ASTM C 1161
to the dimensions of 3 × 4 × 30 mm, and one of larger surfaces was mirror-polished using a

  

Figure 5. Micrographs (a – optical, b,c – scanning electron microscopy) of dental porcelains showing: (a) leucite (KAl‐
Si2O6) crystals dispersed in glassy matrix; (b) agglomerate of leucite particles; (c) radial crack emanated from Vickers
indentation corner (blue arrow) deflecting among leucite particles (green arrow). In (a,b), red arrow indicates circum‐
ferential crack around leucite agglomerate generated by chemical etching with HF solution (also used to reveal leucite
particles)
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semi-automatic polishing machine (Ecomet 3, Buehler), with diamond suspensions of 45, 15,

6, and 1 μm. For each material, 10 specimens were prepared.

Porcelain Manufacturer / Brand Name Manufacturer’s Description Leucite fraction
(vol%)

V VITA Zahnfabrik/Vitadur
Alpha

Porcelain used with alumina frameworks. Sintering
temperature: 960°C

0

Cb Noritake/Cerabien Porcelain used with alumina frameworks. Sintering
temperature: 960°C

0

C Dentsply/Ceramco Finesse Leucite-based porcelain, used for metal-ceramic or
all ceramic restorations, containing fine-grained
leucite particles. Sintering temperature: 800°C

6

D Ivoclar/d.Sign Leucite-based porcelain, used for metal-ceramic or
all ceramic restorations, containing leucite particles
and crystals of fluorapatite. Sintering temperature:
875°C

15

B Dentsply/Ceramco II Leucite-based porcelain, used for metal-ceramic or
all ceramic restorations, containing equiaxial leucite
particles. Sintering temperature: 1000°C

22

Table 1. Description of five dental porcelains. Data from [47]

Oxide V Cb C D B

SiO2 75.9 82.9 70.1 (69.9) 67.6 (66.7) 72.0 (71.9)

Al2O3 10.0 5.6 6.4 (5.7) 9.0 (7.6) 9.5 (7.5)

K2O 7.1 4.6 8.7 (8.6) 8.1 (7.7) 9.2 (8.8)

Na2O 3.6 3.6 5.5 (5.8) 4.9 (5.8) 3.8 (4.9)

CaO 3.0 1.1 3.8 (4.0) 3.7 (4.4) 3.9 (5.0)

Others 0.3 ZrO2 0.8 ZrO2

0.7 MgO
0.3 CeO

5.0 (5.3) MgO
0.4 (0.5) Tb4O7

3.0 (3.5) ZnO
1.3 (1.6) ZrO2

1.2 (1.4) BaO
0.6 (0.7) TiO2

0.4 (0.5) P2O2

0.7 (0.9) BaO
0.6 (0.7) CeO

Traces
(<0.2%)

Fe, Ni, Ti, Rb,
Sr, Pb

Fe, Ni, Zn, Ti, Cr,
Hf, V, I

Fe, Ni, Zr, Rb, Sr, Re,
Cl

Fe, Ni, Cr, Hf Fe, Ni, Rb, Sr, Cs, Tb,
Cl

Table 2. Overall chemical composition (mol%) of dental porcelains. The calculated compositions of glassy matrix for
porcelains containing leucite particles are given in parenthesis. Data from [48]
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Later, the polished surfaces were subjected to an ion exchange treatment. First, the surface of
the specimen was coated with a layer of a paste composed of distilled water mixed with
potassium nitrate (KNO3). The amount of paste placed on each specimen was controlled by
mass measurement. Then, the specimens coated with the paste were heat treated in an electric
furnace (FP32, Yamato). The ion exchange cycle was conducted at a heating rate of 5°C/min
with a first step of drying at 150°C for 20 min to remove the water from the paste, followed by
a step of melting of KNO3 and ion exchange at 450°C for 30 min, and then cooled inside the
furnace to room temperature. The KNO3 paste residue was easily detached and removed with
a wet piece of cotton and the ion exchange treatment did not affect the superficial appearance
of the specimens.

The contents of K2O and Na2O on the polished surfaces before and after ion exchange were
determined by energy dispersive spectroscopy (EDS, Noram) coupled in a scanning electron
microscopy (SEM, JSM 6300, Jeol). This analysis showed that the KNO3 paste method caused
the decrease of Na2O content with the increase of K2O content in all porcelains (Figure 6),
indicating that the Na+ ions from the glassy matrix were successfully exchanged by K+ ions
from the paste. The porcelains Cb and B (with 0 and 22% of leucite, respectively) had the highest
relative increase in K2O content of around 35%.

Figure 6. K2O content on the surface of dental porcelains before and after ion exchange process (value in parenthesis is
the volume fraction of leucite crystal). Data from [47]

Vickers hardness and fracture toughness by indentation fracture (IF) method were evaluated
on the polished surface before and after ion exchange. These properties were measured using
a Vickers microhardness tester (MVK-H-3, Mitutoyo) with load of 9.8 N and dwell time of 20
s. The diagonal of hardness impression and the length of radial crack emanated from the corner
of hardness impression were measured using an optical microscope (Zeiss) under magnifica‐
tion of 200 times, within 30 s after indentation to minimize the slow crack growth phenomenon
[16]. Vickers hardness, HV, and fracture toughness, KIc, were calculated according to the
following equations [16,49]:
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where, P is the indentation load, a and c is the half-size of diagonal of the indentation or radial/
median crack, respectively (Figure 7), E is the elastic modulus, and H is the material’s hardness
[defined as H = P/(2a2)]. The elastic modulus of each porcelain was determined by the ultrasonic
pulse-echo method [50].

Figure 7. Optical micrograph of a Vickers hardness impression and the radial/median cracks generated on the corners
of impression on the polished surface of a dental porcelain (a), and schematic image showing the dimensions a and c
used to calculate the hardness, HV, and fracture toughness, KIc, by indentation fracture (IF) method

Figure 8a shows that ion exchange process increased significantly the fracture toughness, KIc,
of most of the tested dental porcelains, with the increase in this property achieving up to
around 150% (variation from 0.61 to 1.56 MPa.m1/2 in porcelain C). However, there was also
one porcelain (B with highest leucite content) that had no positive response to this toughening
treatment. In general, the increase in KIc was higher for the porcelains with lower leucite
content. The variation in Vickers hardness, HV, followed similar tendency as KIc (Figure 8b),
but with lower relative increases that achieved up to around 70% (variation from 7.6 to 12.7
GPa in porcelain Cb).

Another work also observed beneficial effects of applying ion exchange (with K-containing
compound at 450°C for 30 min) to increase the fracture toughness of dental porcelains. For
eight dental porcelains, KIc increased between 39% and 116%, but no significant differences in
hardness values were observed [51].
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Figure 8. Fracture toughness, KIc (a), and Vickers hardness, HV (b), of dental porcelains before and after ion exchange
(IE) process (in parenthesis the vol% of leucite crystal). Data from [47]

The increase in KIc value is indicative of the operation of ion stuffing mechanism by ion
exchange of smaller Na+ by larger K+ in the glassy matrix, which introduced residual com‐
pressive stress fields on the surface region of the porcelain. The compressive stresses hinder
the radial/median crack propagation generated by the Vickers indentation (Figure 9), decreas‐
ing the ratio c/a (ratio between the sizes of radial/median crack and indentation diagonal) and
increasing fracture toughness. This behavior is highly desirable since the compressive surface
layer may decrease or even inhibit the generation of large and deep cracks on the surface of a
dental porcelain restoration during mastication. Since surface cracks are deleterious to the
mechanical strength of porcelains, decreasing its size results in lower strength degradation.

Figure 9. Schematic images of radial/median cracks generated at the corners of Vickers impression: (a) before ion ex‐
change, without residual stresses and (b) after ion exchange, indicating the shortening of the cracks due to the residual
compressive stress fields (indicated by arrows)

The residual stress (MPa) introduced by ion exchange was calculated according to the
following equation [47]:
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where, KIc,b and KIc,a are the fracture toughness measured before and after ion exchange,
respectively. Figure 10 shows the calculated residual compressive stress values. It can be seen
that ion exchange by paste method can generate significant compressive stresses, up to around
90 MPa, on the surface of dental porcelains.

Figure 10. Residual compressive stress generated on the surface of dental porcelains by ion exchange process. Data
from [47]

For porcelain B, which had the highest leucite fraction (22%), however, there was no intro‐
duction of residual compressive stress, although significant increase in K2O content after ion
exchange have been detected (Figure 6). A possible explanation could be the occurrence of
stress relaxation caused by the viscoplasticity of glassy matrix during the heat treatment of ion
exchange process. The temperature used for ion exchange (450°C), however, seemed to be
sufficiently lower than the glass transition temperatures, Tg, for all porcelains, as indicated by
their annealing point (Table 3). This point is defined as the temperature at which the glass
viscosity is 1014 Pa.s and most of the internal stresses are reduced within about 15 min [52].
The annealing point was determined by calculating the viscosity curve as a function of
temperature from the chemical composition using the program SciGlass (SciGlass v.7.7, MDL
Information Systems) [53].

Porcelain V Cb C D B

T (°C) at η = 1014 Pa.s 708 673 564 641 659

Table 3. Calculated annealing point (temperature) of dental porcelains

The overall and glassy matrix chemical compositions (Table 2) of porcelain B, compared to the
other porcelains, did not justify the ineffectiveness of ion exchange to improve the mechanical
properties in the porcelain B. The tendency that the relative increases in fracture toughness
and hardness decreases with the increase in leucite content (Figure 8) suggests that the
beneficial effects of ion exchange are counterbalanced by the toughening effect of leucite
particles. It is possible that the ion exchanged K+ ions could preferentially occupy the sites
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under the tensile residual stressed regions around leucite particles and agglomerates, which
could be energetically more favorable causing less increase in residual stresses. The chemistry
of the glassy matrix also affected the response to ion exchange treatment, as can be seen from
the results of both completely glassy porcelains (V and Cb, Figure 8). Both porcelains had the
same initial Na2O content (3.6 mol%, Table 2), but in porcelain Cb higher residual compressive
stress was generated (Figure 10). It is difficult to predict the interactive effects of different ions
present in the glassy matrix in the ion exchange process between Na+ and K+ ions, since even
low concentrations of some elements can have strong effects [26].

5. Ion exchange on strength, reliability, and lifetime of dental porcelains

In this section, the effects of chemical toughening using ion exchange by the paste method on
the strength and lifetime of dental porcelains are shown. In this study, a feldspathic porcelain
(Ultropaline Super Transparent, Jen Dental – UST) recommended for metal-ceramic or all
ceramic restorations was used. The chemical composition of this porcelain is shown in Table 4.

SiO2 Al2O3 K2O Na2O CaO MgO Traces

70.2 (69.9) 10.4 (9.6) 10.6 (10.7) 4.1 (4.6) 3.1 (3.5) 1.3 (1.5) Ti, Fe, Zr, Ni

Table 4. Chemical composition (mol%) measured by XRF spectroscopy and calculated glassy matrix composition (in
parenthesis) of Ultropaline Super Transparent (UST) dental porcelain (containing 12 vol% leucite particles)

Disc-shaped green specimens were prepared by vibration-condensation method and then
sintered at 930°C following the firing schedule recommended by the manufacturer. After
firing, the specimens were machined and mirror-polished with diamond suspensions down
to 1 μm. For each test condition at least 10 specimens (12.5 mm in diameter and 1 mm in
thickness) were prepared.

For the chemical tempering, a paste was prepared by mixing 10 g of KNO3 powder (Merck)
with 4 mL of deionized water. Porcelain discs, containing 0.4 g of this paste on the polished
surface, were subjected to the ion exchange treatment in an electric furnace (FP-32, Yamato)
with a heating rate of 5°C/min at 470°C (or other specified temperature) during 15 min, after
an intermediate step at 150°C for 20 min for drying. After the treatment, the paste residue was
easily removed with sprayed water.

The porcelain’s strength was determined in biaxial flexural mode, which is an adequate
loading condition for thin specimens, like the dental restorations. The biaxial flexure strength
(σf) was determined using a piston-on-three-balls loading device in a universal mechanical
testing machine (Syntech 5G, MTS) at a constant stress rate of 10 MPa/s (or other specified
rate), with the specimen immersed in artificial saliva (Table 5) heated to 37°C (Figure 11).
Flexural test performed in artificial saliva at 37°C is more severe (strength tends to be lower)
than in usual laboratory environment, but these conditions are more clinically relevant, since
they are closer to the oral environmental conditions.
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KH2PO4 (2.5
mM)

Na2HPO4 (2.4
mM)

KHCO3 (1.5
mM)

NaCl (1.0 mM) MgCl2 (0.15
mM)

CaCl2 (1.5 mM) Citric acid (0.002
mM)

100 mL 100 mL 100 mL 100 mL 100 mL 100 mL 6 mL

Table 5. Composition of artificial saliva [5,54]

Figure 11. Images of biaxial flexural device: (a) loading piston and three-ball support; (b) disc specimen positioned in
the flexural device and immersed in artificial saliva with heating element; (c) general view of the biaxial flexural load‐
ing device [5]

The biaxial flexural strength (σf) was calculated using the following equation [5,55]:
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where, F is the load at fracture, w is the specimen thickness, A is the radius of the support circle
(4 mm), B is the radius of the piston (0.85 mm), C is the radius of the specimen, and ν is the
Poisson’s ratio (determined by ultrasonic pulse-echo method [56]).

Figure 12 shows the effects of ion exchange temperature on biaxial flexural strength, σf, and
fracture toughness, KIc, determined by the indentation fracture method. It can be seen that ion
exchanged specimens had significantly higher σf values (around 130 MPa) compared to the
control sample – without chemical tempering (57 MPa). This substantial increase of around
130% in strength was directly related to the increase in material’s resistance to crack propa‐
gation, that is, fracture toughness. This property increased from 1.3 MPa.m1/2 in control sample
to around 2.8 MPa.m1/2 in chemically tempered samples (relative increase of around 120%) [57].
The ion exchange by the paste method although short in time results in significantly strength‐
ening and toughening of dental porcelains. Other works also showed increases between 20 to
83% in flexural strength by applying this method for feldspathic porcelains [58,59], although
there are also reports showing no significant increases in some dental porcelains [60], partic‐
ularly those with high K2O content [61].

No effects of ion exchange temperature on σf and KIc were observed when this treatment was
carried out between 430 and 510°C (Figure 12), which corresponded to a range between 75 and
89% of the glass transition temperature (Tg) of UST porcelain. This temperature (Tg), deter‐
mined by differential thermal analysis, DTA (404S, Netzsch), at a heating rate of 5°C/min in
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air, was 575°C [57]. At this temperature range, one could expect a significant increase in the
ion exchanged K+ ions with the increase in temperature, since the kinetic of ion exchange by
interdiffusion with Na+ ions of the porcelain is exponentially dependent on the temperature
(Equations 2–4). In fact, it was determined by XRF spectroscopy that the sodium content in the
KNO3 paste residue increased with the increase in temperature of ion exchange treatment
(Figure 13). The increase in K2O content and reduction of Na2O content in porcelain were also
confirmed by EDS analysis in SEM. In this case, it seems that the increase in ion exchange rate
was counterbalanced by the stress relaxation with the increase in temperature (Equation 6),
inhibiting further increase in residual compressive stress and increases in toughness and
strength. Therefore, an appropriate temperature for making ion exchange in dental porcelains
with K+ ions exchanged by Na+ ions by paste method seems to be around 80% of glass transition
temperature (Tg), or around 100°C lower than Tg (for UST porcelain at 470°C).

Figure 12. Biaxial flexural strength, σf, and fracture toughness, KIc, of UST dental porcelain before and after ion ex‐
change (IE) at different temperature. In parenthesis is the temperature of IE relative to the glass transition temperature
(Tg = 575°C). Data from [57]

Figure 13. Sodium (Na) content in the KNO3 paste residue after ion exchange treatment at different temperature for
UST porcelain. Data from [57]
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Small variations in flexural strength with varying ion exchange temperatures were also
reported in another work. In general no significant differences were observed in strength when
ion exchange with K-containing compound was applied to three dental porcelains between
300 and 600°C (for 30 min), although maximum values were observed at 450°C. Besides, small
variations in strength with varying ion exchange time (10 to 90 min at 450°C) were also
observed [62].

In order to evaluate the effects of the size of surface flaws on the strength of ion exchanged
porcelain, the polished surface of specimens was indented with Vickers impression with
increasing load from 2 to 49 N. In Figure 14a, it can be seen that the biaxial flexural strength,
σf, of UST porcelain, without (control) and with ion exchange treatment (KNO3, 470°C, 15 min),
decreased with the increase in indentation load, since this increase causes the increase in radial/
median crack size, c (Figure 7b). However, the decrease in σf was more accentuated in the ion
exchanged specimens. These results showed that the beneficial effects of ion exchange are more
pronounced for small surface cracks, and less effective for larger and deeper flaws. This
behavior is related to the gradient of K+ ion content introduced in the surface region, which
results in a gradual decrease of residual compressive stress to the interior of porcelain. The
positive effects of ion exchange disappear for flaws deeper than the thickness of compressive
stress layer.

 


Δ

Δ

 


Δ

Figure 14. Biaxial flexural strength, σf, after a Vickers indentation at different loads (a) and fracture resistance, KR, as a
function of crack extension, Δc (b), for UST dental porcelain with and without ion exchanges. Data from [63,64]

The fracture resistance, KR, or KIc as a function of crack extension, Δc, can be evaluated using
the following equation [64–66]:

( )q
RK k c= × D (11)

Where, the parameters k and q are determined using the data obtained by power law fits on
the results of biaxial flexural strength, σf, as a function of indentation load, P, in Figure 14a.
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The calculated fracture resistance, KR, values as a function of crack extension, Δc, are shown
in Figure 14b. For the non-treated porcelain, KR increased with the increase in crack size, the
so-called rising R-curve behavior (crack growth resistance curve). This behavior is observed
in leucite-containing porcelains and is caused by the friction between rough crack surfaces
caused by crack deflection around leucite agglomerates [11]. Since this mechanical grip acts in
the crack wake, the shielding effect at the crack tip is intensified with the increase in crack
extension [67]. Rising R-curve effect is a desirable material behavior since it is necessary
additional energy to propagate the crack, besides that needed at the crack tip [65,66]. For the
ion exchanged porcelain, an opposite result was observed, with the decrease in KR as the crack
size increased. The decreasing residual compressive stress from the ion exchanged surface
cancelled the rising R-curve effect of porcelain microstructure and in addition, resulted in a
decreasing R-curve effect. This behavior makes the strength of ion exchanged porcelain more
sensitive to the size of flaws.

The variability of strength in ceramic materials is closely related to its flaw population, since
fracture is a probabilistic event due to a random-like distribution of the strength-limiting flaws
[68]. The strength variability of ceramic materials can be evaluated using Weibull statistic,
which is based on the weakest-link theory, where the more severe flaw results in fracture
propagation and determine the strength [69]. The Weibull two-parameter distribution is given
by [14]:
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where, Pf,i is the probability of fracture of ith specimen, i is order number of σf,i (fracture stress
of ith specimen, ranked in ascending order of values), σ0 is the characteristic strength (scale
factor, defined for Pf = 63.2%), and m is the Weibull modulus (shape factor; the lower this value,
the higher is variability). For this analysis, 30 specimens of UST porcelain for each condition
(without and with ion exchange treatment – KNO3, 470°C, 15 min) were tested in biaxial
flexural mode at a stress rate of 1 MPa/s (in artificial saliva at 37°C). The Weibull parameters
(σ0 and m) were calculated based on the maximum likelihood method [70] and the results are
shown in Figure 15.

It can be seen in Figure 15 that the ion exchange treatment increased more than 100% the
characteristic strength, σ0, but it also caused larger variability in fracture stress, reducing
around 50% the Weibull modulus, m. Higher variability means lower reliability in the strength
of porcelain, which was caused by the decreasing R-curve behavior in ion exchanged porcelain
(Figure 14b), since shallow cracks were significantly toughened by high residual compressive
stress level near the surface, but deeper surface cracks were less shielded by the decreasing
resistance to crack growth. Therefore, strongest specimens in non-treated porcelain were
strengthened more than the weakest ones. Clinically, it is more relevant to consider the fracture
stress in an acceptable fracture probability, for example, at Pf = 5%. Although strengthening is
not so high as compared to the σ0 value (Pf = 63.2%), even at this low level of Pf,5% a significant

Strengthening Dental Porcelains by Ion Exchange Process
http://dx.doi.org/10.5772/60617

183



strengthening effect (at 95% confidence interval) is observed (Figure 15). In practice, the
strengthening effect could be even higher than for Pf = 5%, since clinical studies of inlays
constructed with feldspathic porcelains have shown high fracture rates, up to 48% in evalua‐
tion periods of up to 3 years [72,73]. Therefore, although ion exchange reduces the mechanical
reliability of dental porcelain, the strengthening effect is still significant even for low levels of
fracture probability.

Another relevant factor related to the lifetime of a porcelain restoration is the mechanical
degradation over time. When a ceramic material is subjected to a stress level lower than the
fracture stress, the flaws (cracks) can growth slowly in a stable manner up to the time at which
loading comes to a halt, reducing the material’s strength due to the increase in crack size, or
when a flaw achieves a critical size, given by the Griffith-Irwin fracture criterion (Equation 1),
that results in (fast) fracture. This phenomenon is known as slow (or subcritical) crack growth,
SGC, and silicate glasses, like porcelains, usually are highly susceptible to this type of degra‐
dation [74–76]. SCG occurs mainly by a stress corrosion mechanism (Figure 16), in which water
molecules diffuse and are adsorbed at the crack tip, and then cause bonding rupture of glass
network yielding Si–OH groups on each fracture surface, resulting in crack growth, by [76,77]:

2Si O Si H O 2Si OH- - + ® - (13)

Since the oral environment is aggressive to porcelain restorations and has many characteristics
that favor SCG (water from saliva and dentin tubules, masticatory stresses, temperature and

Figure 15. Weibull plot of biaxial flexural strength data, σf, for UST dental porcelain with and without ion exchange.
Dotted lines are 95% confidence interval; m is Weibull modulus, σ0 is characteristic strength, and σ5% is fracture stress
at 5% fracture probability. Data from [71]
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pH variations [67,78]), it is important to understand the response of strengthened porcelain to
this phenomenon. The main method used to characterize the material’s susceptibility to SCG
is the dynamic fatigue method, in which specimens are tested in different stress rates and using
the following equation [79–81]:

0
1log log log

1f fn
s s s= +

+
& (14)

where, σf is the flexural strength, σ̇ is the stress rate, σf0 the scaling parameter, and n is the slow
crack growth, SCG, susceptibility coefficient (the higher is n value the lower is the suscepti‐
bility). Figure 17 shows the results of this test for UST porcelain, non-treated and ion exchanged
(KNO3, 470°C, 15 min). It can be seen that ion exchanged porcelain had significantly higher n
value (relative increase of around 50%), showing more resistance to SCG degradation. This
effect is substantial and can impact the lifetime of a restoration.



 





  

  

Figure 17. Biaxial flexural strength, σf, as a function of stress rate (a) and predicted flexural strength as a function of
time to fracture (b) for UST dental porcelain, with and without ion exchange, in artificial saliva at 37°C. In (a),σ f0 is the
scaling parameter and n is the slow crack growth, SCG, susceptibility coefficient. Inert strength was determined at 100
MPa/s in air with a drop of silicone oil on the tensile surface to inhibit the occurrence of SCG. In (b), the slope of fitted
curve is related with n. Data from [63,71]

Figure 16. Schematic molecular images of slow crack growth (SCG) phenomenon in silicate glass: (a) diffusion of water
molecule to the crack front (dotted line); (b) bonding breakage of SiO4

4- network causing increase in crack size
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Using the results of the dynamic fatigue test, it is possible to extrapolate the strength decrease
after long lifetimes, as shown in Figure 17b. For both conditions, the average strength decreases
over time, and after 10 years the expected remaining strength drops to around 30 MPa for the
non-treated porcelain, but it still remains high (around 90 MPa) for the ion exchanged porcelain
[71]. The increase in the stress corrosion coefficient, n, is a significant effect, since the difference
in strength between ion exchanged porcelain and non-treated one increases over time.
Therefore, besides increasing the strength the compressive layer generated by ion exchange
process also decreases the rate of strength degradation by slow crack growth phenomenon.

Using the results of Weibull distribution (Figure 15) and dynamic fatigue test (Figure 17a) it
is possible to construct the strength-probability-time (SPT) diagram [79,82,83], as shown in
Figure 18. This diagram makes possible the estimation of a fracture stress at any time during
the lifetime of a dental restoration at any fracture probability level. For example, it is possible
to verify that UST porcelain after ion exchange has at least twice the fracture stress than non-
treated porcelain even at a fracture probability as low as 1% during long lifetimes (e.g., 100
years). Note that the difference in fracture stress increases over time, at any level of fracture
probability.

Figure 18. SPT (strength-probability-time) diagram for 1 day (1 d), 1 year (1 y), and 100 years (100 y) for UST dental
porcelain, with and without ion exchange. Data from [63,71]

6. Two-step tempering processes

There are some two-step tempering methods proposed to overcome some limitations of the
conventional (one step) ion exchange process. It was demonstrated that the application of ion
exchange by the paste method after a thermal tempering treatment in a feldspathic porcelain
resulted in an increase in the Weibull modulus (m = 14.6) compared to only thermal tempered
condition (m = 8.7), with small decrease in average strength value [84]. Similar results were
observed after applying a thermal tempering followed by a short-time chemical tempering in
a silica-soda-lime glass dielectric, in which the reliability of thermal shock resistance was
enhanced, with no change in the strength [85].
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In order to increase the case depth, a two-step ion exchange was applied to a feldspathic
porcelain. The specimens coated with a slurry containing 10 mol% LiCl and 90 mol% NaCl
were heat treated at 750°C for 30 min and then cooled and heat treated at 450°C for 30 min.
The first step was conducted above the melting temperature of chloride mixture and the second
step below the glass transition temperature (Tg) of porcelain. The intent of first step was to
exchange Na+ ions and some K+ ions in porcelain by smaller Li+ ions from chloride mixture,
considering that the high diffusivity at 750°C could result in a deeper exchanged layer. In the
second step, some of Li+ ions would be re-exchanged by bigger Na+ ions, introducing a deep
compressive layer. The determined thickness of ion exchanged layer was at least 140 μm [86].

Another two-step ion exchange method was proposed to introduce an engineered stress profile
(ESP), in which a designed ion exchange stress profile with steep increase of the compression
stress from the surface achieves a maximum at a predetermined depth and then decreases
towards the interior of the glass. In the ESP glass, surface cracks growth in a stable manner up
to the maximum compressive stress and are subsequently arrested, resulting in an uncommon
surface crack pattern with a set of arrested cracks, before unstable fracture occurs. This
behavior results in significant lower variability of fracture stress. The ESP is generated by a
short second ion exchange process carried out for partial removal of the stuffing ion introduced
in the first extended treatment [87,88]. This method was applied to a leucite-reinforced glass-
ceramic prepared by heat-pressing method (Empress), using a KNO3 bath in first step during
11 h at 450°C followed by a second step with a bath of 70 mol% KNO3 and 30 mol% NaNO3 at
400°C for 30 min (both temperature lower than Tg of Empress). The two-step method resulted
in increase in Weibull modulus (m = 11.7) in relation to the single-step ion exchange (m = 5.1)
[89], and very high slow crack growth (SCG) susceptibility coefficient (n = 107) [90]. Figure
19 shows schematically the residual surface stress profiles from different ion exchange
methods.

Figure 19. Residual surface stress profiles expected from different ion exchange (IE) methods: conventional extended
(one-step) IE; two-step IE; and paste method (short IE treatment). Vertical dotted lines represent the depths of small
and large surface crack. Data from [71]
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7. Concluding remarks

Dental porcelains have been used for many decades because of their excellent aesthetic
qualities, including the possibility to mimic natural teeth, besides other favorable character‐
istics. However, the low strength and fracture toughness, and high susceptibility to mechanical
degradation by slow crack growth result in relatively low lifetimes in the oral environment.
The introduction of a compressive surface layer by ion exchange is a promising process to
enhance the mechanical behavior of dental porcelains. Exchanging small ions (e.g., Na+) by
larger ones (e.g., K+) in the glassy matrix at temperatures lower than its glass transition
temperature (Tg) can result in a steep gradient of residual compressive stress, which signifi‐
cantly increases the fracture toughness (KIc) in the porcelain surface. This increase leads to
significant strengthening effects, even using the paste method, which is carried out in short
times (less than 1 h). However, the strengthening is more pronounced for shallow surface
flaws, because of the limited thickness of compressive layer and decreasing resistance curve
(R-curve) behavior, which increases the variability of fracture stress and decreases the
mechanical reliability (decreases the Weibull modulus, m). On the other hand, strengthening
by ion exchange also significantly increases the resistance to slow crack growth phenomenon
(stable crack propagation at low stresses intensified by water corrosion). This results in lower
strength degradation over time and counterbalances the negative effect of decreasing reliabil‐
ity, leading to higher strength retention after long lifetimes (decades) even at a level of low
fracture probability (e.g., 5%). The two-step ion exchange method has the advantage of
increasing the material reliability, but at the expense of longer periods of treatment (above 10
h). In conclusion, it is expected that the application of chemical tempering (strengthening by
ion exchange) can improve the lifetime of dental porcelain restorations.
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