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Abstract

Among the pathogenic protozoa, trypanosomatids stand out due to their medical and
economic impact, especially for low-income populations in tropical countries. Togeth‐
er, sleeping sickness, Chagas disease and leishmaniasis affect millions of humans and
animals worldwide, yet are neglected by the pharmaceutical industry. The current
drugs for trypanosomatid infections are limited and unsatisfactory, with severe side
effects leading to reduced quality of life and, in several instances, to the abandonment
of treatment. An intense search for alternative compounds has been performed, aim‐
ing at specific parasite targets by cellular, molecular and biochemical approaches. One
interesting strategy could be interference with the protozoan cell death pathways.
However, these pathways are poorly understood in unicellular eukaryotes, with the
controversial existence and uncertain biological relevance of programmed cell death
(PCD). This chapter will discuss apoptosis-like and autophagic cell death and necrosis
in Trypanosoma brucei, Trypanosoma cruzi and Leishmania sp. and the possible implica‐
tions of these pathways for the parasite life cycle and infection persistence. It will also
revisit the genomic and proteomic metadata of these trypanosomatids in the literature
to rebuild the map of cell death proteins expressed under different conditions. The in‐
teraction of leading candidates with parasite-specific molecules, especially with en‐
zymes that regulate key steps in the cell death process, is a rational and attractive
alternative for drug development for these neglected diseases.

Keywords: Cell death, apoptosis-like, autophagy, necrosis, Leishmania sp, T. cruzi, T.
brucei

1. Introduction

Neglected tropical diseases (NTDs) are a group of the seventeen mostly life-threatening
infections, which affect more than a billion people worldwide. They affect poor populations,
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often in underdeveloped and developing countries (low-income countries) [1]. Among NTDs,
infections caused by the so-called “protozoan” parasites, such as African trypanosomiasis,
Chagas disease and leishmaniasis, are responsible for a high annual death toll among the poor
populations of tropical countries. New safe and affordable medicines are urgently needed.
These diseases all present therapeutic difficulties by developing resistance to existing therapies
and/or by toxic side effects.

1.1. Neglected tropical diseases and trypanosomatids

1.1.1. Sleeping sickness

Human African trypanosomiasis (HAT), or sleeping sickness, is caused by extracellular
protozoa belonging to the genus Trypanosoma and the species T. brucei. Two subspecies of T.
brucei cause diseases with different epidemiological and clinical patterns: T. b. gambiense, a
chronic disease present in western and central Africa accounting for 98% of the cases, and T.
b. rhodesiense, an acute zoonosis located in eastern and southern Africa that occasionally infects
humans. In 2001, WHO launched a major initiative to reinforce disease control and surveil‐
lance. After 10 years, the number of new cases of HAT decreased by 73.4%. Presently, the
estimated the number of cases is 30, 000, and 70 million people are at risk [2, 3]. HAT clinically
evolves in two stages. In the first stage, parasites are found in the lymphatic system and
bloodstream. After a variable period of time, which is much shorter for the rhodesiense form,
the second stage begins, with the parasites penetrating the blood-brain barrier and invading
the central nervous system, leading to progressive neurological damage [4]. HAT is usually
fatal if left untreated. Rhodesiense HAT usually progresses to death within six months, while
gambiense HAT has a more chronic progressive course with an average duration of almost
three years [5].

T. brucei is transmitted by the tsetse fly Glossina spp when it takes a blood meal. Non-dividing
metacyclic forms enter the bloodstream of the mammalian host and differentiate into a rapidly
dividing slender form able to evade antibody responses through antigenic variation [6]. Most
of these forms undergo cell cycle arrest and develop into short-stumpy forms. When the tsetse
fly bites an infected host, only the short-stumpy parasites survive in the insect’s midgut and
develop into a procyclic form, which undergoes multiple developmental phases on its way to
the salivary gland, finally culminating in the infective metacyclic form [7, 8].

The drug of choice for treatment depends on the infecting species and the stage of infection.
In early stages, T. b. gambiense and T. b. rhodesiense infections can be treated with pentamidine
and suramin, respectively [9]. If the disease has progressed, treatment relies on melarsoprol
or eflornithine. Melarsoprol, an arsenical drug, is extremely toxic. Eflornithine is less toxic, but
is expensive, and has a difficult administration than melarsoprol and lacks efficacy against T.
b. rhodesiense [2]. Since 2001, this drug has been combined with nifurtimox (NECT) for first-
line treatment for CNS-stage T. b. gambiense HAT. It is the most recent breakthrough in anti-
trypanosomiasis drug research and was added to the World Health Organisation’s list of
essential medicines in 2009. A major problem related to the treatment of HAT is the develop‐
ment of resistance to melarsoprol and the other drugs [10].
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1.1.2. Chagas disease

Chagas disease is caused by the intracellular obligatory parasite Trypanosoma cruzi and affects
approximately  eight  million  individuals  in  Latin  America  [11].  The  transmission of  this
disease occurs through the faeces of sucking triatominae insects, blood transfusions, organ
transplantation,  oral  contamination,  laboratory  accidents  and  congenital  routes  [12,  13].
Current  major  concerns  are  the  outbreaks  of  acute  Chagas  disease  associated  with  the
ingestion of  contaminated food and its  emergence in non-endemic areas,  such as  North
America and Europe, due to the immigration of infected individuals [14-16]. This disease is
characterised by two clinical phases. The acute phase appears shortly after infection and is
defined by patent parasitaemia. If left untreated, symptomatic chronic disease develops in
about one-third of individuals after a long latent period (10-30 years), which is known as the
indeterminate form. The main clinical manifestations of Chagas disease include digestive
and/or cardiac alterations. The chronic cardiac form of the disease is the most significant
clinical  manifestation.  Consequences  include  dilated  cardiomyopathy,  congestive  heart
failure, arrhythmias, cardioembolism and stroke [17].

The life cycle of T. cruzi involves four major developmental stages during its passage through
vertebrate and invertebrate hosts [18]. The infective stage of the parasite, the metacyclic
trypomastigote, enters the mammalian host from insect faeces through wound openings or
mucous membranes. In the mammalian host, the metacyclic trypomastigote differentiates into
the amastigote form. After several rounds of replication in the host cells, the amastigote
differentiates into the bloodstream trypomastigote, which can enter new cells and perpetuate
the infection. When the insect bites an infected host, the bloodstream trypomastigote differ‐
entiates into the replicative epimastigote that lives in the insect’s gut. Finally, in the rectum of
the insect, the epimastigote differentiates into the infective metacyclic trypomastigote, which
is ready to infect its host again.

The available chemotherapy for this illness includes two nitroheterocyclic agents, nifurtimox
and benznidazole, which are effective against acute infections, but show poor activity in the
late chronic phase, with severe collateral effects and limited efficacy against different parasitic
isolates. These drawbacks justify the urgent need to identify better drugs to treat chagasic
patients, and several new compounds are currently in preclinical development involving in
vitro parasite phenotype screens and target-based drug discovery [19-21]. Recently, clinical
trials with the azoles posaconazole and E1224 (ravuconazole prodrug) led to higher percen‐
tages of treatment failure in chronic patients than benznidazole [22, 23], suggesting their
potential use in combination therapy [24].

1.1.3. Leishmaniasis

Leishmaniasis, which is caused by different species of Leishmania, is a vector-borne disease,
with an estimated 12 million cases worldwide. Infection is caused by the bite of infected female
sand flies of the genera Phlebotomus (Europe, Asia, Africa) and Lutzomyia (America) [25].
Leishmania parasites live a digenetic life cycle as either a promastigote flagellar or an amastigote
form. The type of clinical manifestation depends on the infecting species and host factors, such
as general health and genetic and immune constitution [26]. It is a disease complex with three
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clinical manifestations, visceral (VL, kala-azar), cutaneous (CL) and muco-cutaneous (MCL),
which arise from parasite replication in the mononuclear phagocyte system, dermis and naso-
oropharyngeal mucosa, respectively [27]. Some post-treated L. donovani-infected patients
develop the diffuse cutaneous form named post-kala-azar dermal leishmaniasis (PKDL) [28,
29]. VL, after initial skin lesions, takes 2-8 months to develop gross inflammatory reactions
within the viscera (liver and spleen in particular) and is usually fatal unless treated. CL
manifests as an open sore at the site of the insect bite and will frequently self-heal, leaving a
scar. The diffuse form of CL is more problematic, causing lepromatous type lesions dissemi‐
nated across the skin that can be difficult to heal. The MCL form, endemic in parts of Latin
America, starts with skin sores that spread to the mucosal membranes of the face. Profound
inflammatory damage can lead to the erosion of the nostrils and mouth in particular [29].

In the Leishmania life cycle, there are two principal parasite forms: amastigotes and motile
promastigotes. In the alimentary tract of the insect vector, the parasite exists as multiplicative,
non-infective procyclic promastigotes and non-multiplicative, infective metacyclic promasti‐
gotes [30]. Upon injection into the mammalian host, promastigotes are taken up by macro‐
phages where the metacyclic forms differentiate into small multiplicative, non-motile
amastigotes that live in a lysosomal compartment known as the parasitophorous vacuole [31].
These developmental forms are distinguished by their nutritional requirements, their growth
rate and ability to divide, the regulated expression of their surface molecules, and their
morphology. Metacyclic promastigotes are pre-adapted for survival in the mammalian host,
as they are complement-resistant. Amastigotes are intracellular, non-motile forms that have
adapted to the low pH of this compartment and have an adapted energy metabolism.

The current drugs are highly toxic, resistance is common and compliance of patients to
treatment is low, as the treatment is long and the drug price is high. Although recent initiatives
have improved the antileishmanial drug arsenal by combining current medicines or using new
formulations of old ones, none are ideal for treatment due to their high toxicity, resistance
issues, prohibitive prices, long treatment length and need of intravenous administration
[32-34]. Pentavalent antimonials (glucantime and pentostan) are first-line drugs for both VL
and CL. However, they present several limitations, including variable efficacy, need for daily
injectable administration for approximately one month, and severe side effects. Many patients
are unable to complete the treatment, increasing the risk of drug resistance development.
Amphotericin B is a systemic antifungal that is used as a second-line drug for VL. It is highly
toxic, requiring careful and slow intravenous administration. Lipid formulations of ampho‐
tericin B have been developed to improve its bioavailability and pharmacokinetic properties,
reducing toxicity [35]. Miltefosine is the most recent antileishmanial drug on the market and
the first effective oral treatment against VL [36]. However, it has common gastrointestinal side
effects and is also limited by its relatively high cost [34], potential teratogenicity and growing
concerns in relation to increases in clinical isolate susceptibility [37]. Paromomycin is an
aminoglycoside antibiotic that is used in topical treatment for CL and as a parenteral drug for
VL. Pentamidine was used as a second-line drug in antimony-resistant VL treatment. How‐
ever, its high toxicity combined with decreased efficacy led to the abandonment of this drug
to treat VL in India, but it is valuable for combined therapies [38].
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2. Cell death: State of art

As used for whole organisms, the term death is employed to describe a sequence of events
culminating in the breakdown of all biological functions. However, more than one century
after the first citation [39], cell death still represents a crucial gap in our understanding of
cellular physiology. It can be triggered by natural processes or induced by extrinsic factors
(exposure to chemicals or physical stresses). The consequent tissue injury usually leads to a
state of disease [40]. On the other hand, many studies pointed to cell death playing a funda‐
mental role in the physiology of multicellular organisms, especially in processes such as
metamorphosis and embryogenesis [41]. In this context, in 1964, the term programmed cell
death (PCD) was created, proposing a sequence of well-controlled steps regulating a non-
accidental cell death process in the absence of an inflammatory response [42]. Currently, it is
known that distinct death mechanisms and phenotypes participate in PCD, with apoptosis
and autophagy being the most prominent [43].

2.1. Apoptosis

The apoptotic pathway was first described in the early 1970s as a fundamental step for proper
embryo development [44]. This process is crucial during tissue development, especially in
immune response regulation and removal of infected or damaged cells [45, 46]. Apoptosis is
involved not only in growth regulation in multicellular organisms [47, 48] but also in their
defence against viral, bacterial or parasitic infections [49-53] and even against cancer devel‐
opment [54-57]. The removal of non-functional cells by the apoptotic pathway is efficient and
prevents the inflammatory response [58].

During apoptosis in multicellular organisms, the cell activates death machinery that culmi‐
nates in chromosomal condensation and nuclear DNA fragmentation [59, 60]. Biochemically,
apoptosis is orchestrated by the activation of a family of cysteine proteases, named caspases,
that are activated by extrinsic and intrinsic factors [45, 46]. The extrinsic pathway is activated
by the interaction of death ligands with their respective cell surface receptor (i.e., FasL/Fas,
TNF-α/TNFR) [61-63]. Such binding triggers the cleavage of procaspase 8 into active caspase
8, which cleaves procaspase 3. Executioner caspase 3 activates endonuclease G (EndoG),
starting the characteristic DNA fragmentation, a distinctive marker of apoptosis [63-65]. On
the other hand, the intrinsic pathway can be triggered by two distinct mechanisms with
mitochondrion or endoplasmic reticulum (ER) dependency. In the mitochondrial pathway,
activation occurs by membrane permeabilization, releasing cytochrome c, apoptosis induction
factor (AIF), EndoG and regulators of the B-cell lymphoma 2 (Bcl2) protein family into the
cytosol. In the cytosol, the apoptosome is formed by the interaction of released cytochrome c
with apoptotic protease activating factor 1 (APAF-1) and procaspase 9, activating caspase 9,
which subsequently activates the effector caspase 3 [66-70]. The ER pathway is mainly caspase
12-dependent and occurs in this organelle during stress conditions. Because this pathway was
described in the mouse and humans lack functional caspase 12, the relevance of ER-mediated
apoptosis is still debatable [71-73].
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Undoubtedly, the caspase cascade represents a central point in the apoptotic process. Its
regulation is well-controlled by pro- and anti-apoptotic molecules from the Bcl-2 family [74].
The apoptotic morphological and biochemical phenotypes include cell shrinkage, membrane
blebbing (formation of apoptotic bodies), chromatin condensation and typical internucleoso‐
mal DNA fragmentation, externalization of phosphatidylserine (PS), loss of mitochondrial
membrane potential (ΔΨm), and target protein degradation by caspase activation [75-79]. The
characterization of apoptosis is experimentally based on the detection of apoptotic markers.
The loss of ΔΨm (labelling with rhodamine 123 derivatives, such as TMRE), PS exposure
(binding to labelled annexin V), chromatin condensation (DAPI labelling) and DNA fragmen‐
tation (TUNEL technique) are usually quantified by fluorescence microscopy or flow cytom‐
etry. DNA fragmentation can also be assessed by agarose gel electrophoresis, presenting a
laddering pattern that represents internucleosomal cleavage. Analysis of caspase activity using
labelled specific substrates and/or inhibitors can be performed by immunotechniques such as
ELISA [80].

2.2. Autophagy

In the 1950s, acidic organelles involved in the intracellular degradation of macromolecules
were described and termed lysosomes by Dr. Christian de Duve. In a subsequent study [81],
he proposed the term autophagy for a self-degrading process [82]. Currently, the autophagic
pathway is considered to be the main cellular mechanism for the degradation of non-functional
organelles and/or macromolecules and is fundamental for homeostasis in eukaryotic cells [83].
In other words, autophagy is a housekeeping self-digestion mechanism that is crucial for
cellular turnover and recycling and occurs by the engulfment of cytosolic portions containing
material that should be degraded. Degradation starts immediately after the fusion of auto‐
phagosomes to lysosomes in an organelle named the autophagolysosome [84, 85].

In multicellular organisms, autophagy is involved in many physiological situations, including
development, cell growth and cell differentiation. Autophagy sustains cell survival under
‘extracellular stress’, such as nutrient starvation, hypoxia, acidic pH and high temperature. It
acts as a housekeeping device under ‘intracellular stress’ by removing damaged or redundant
cytoplasmic components, including organelles [86]. Increased autophagic activity is observed
in pathological states and in host defences against pathogens [87-92]. Despite the relevant role
of autophagy for the maintenance of the regular cell cycle, prolonged starvation periods or
other strong autophagic stimuli induce a cellular misbalance and promote autophagic cell
death [93, 94].

The autophagic molecular machinery was first assessed in the yeast model Saccharomyces
cerevisiae, and 30 proteins, called Atgs (AuTophaGy-related), were described and associated
with different steps of the pathway [95]. Atg orthologues were identified in all eukaryotes,
with Atg8 (LC3 in mammals) being one of the most studied [82]. Autophagy can be a selective
or non-selective process, degrading specific or random cellular components. Examples of
selective routes are mitophagy, pexophagy or reticulophagy, in which mitochondria (or part
of the organelle), peroxisomes and ER are degraded, respectively [82].
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Additionally, there are three types of autophagy: macroautophagy, microautophagy and
chaperone-mediated autophagy (CMA). The most common is macroautophagy, a process that
involves the engulfment of cytosolic portions by a double membrane structure called the
phagophore. The double-membrane vesicle formed from phagophore engulfment is named
the autophagosome and is directed to lysosomes for degradation by lysosomal hydrolases.
These steps are regulated by Atgs [92, 96-98]. The chronological events related to macroau‐
tophagy are (a) autophagic induction; (b) cargo selection; (c) phagophore elongation; (d)
autophagosome formation; (e) fusion to lysosomes; and (f) cargo degradation [99]. The early
steps in this process depend on the serine/threonine protein kinase TOR (target of rapamycin),
which is essential for autophagic regulation. TOR complexes 1 and 2 work as sensors of
nutritional availability (especially amino acids). The autophagic enzyme Atg6 (Beclin 1 in
mammals) is a phosphatidylinositol 3-kinase (PI-3K) and shares its signalling function with
other cellular pathways. For autophagy, these kinases present a critical role for autophagosome
formation [82].

In contrast, there are no autophagosomes in the microautophagic pathway. Invagination of
the lysosomal membrane occurs, resulting in a single-membrane small vesicle inside the
lysosomes that will be degraded. Interestingly, both macro- and microautophagy could be
selective or non-selective processes. Indeed, CMA appears to be the most selective type of
autophagy. The proteins that will be degraded contain pentapeptide motifs (KFERQ, QREFK
or VDKFQ), the binding sites of a cytosolic chaperone. Such a chaperone-substrate complex
binds to a LAMP-2A receptor in the lysosomal membrane, promoting receptor dimerization.
A membrane channel is formed, and the specific protein reaches the lysosomal lumen to be
degraded [82, 100].

For many years, electron microscopy was the only tool available for the identification of
autophagic morphological features, especially the presence of double-membrane vesicles
(autophagosomes). In the last 20 years, advances in the molecular description of autophagy
allowed the detection, localization and quantification of Atgs by molecular, biochemical and
morphological approaches. Currently, the gold-standard method to monitor autophagy is
Atg8/LC3 detection by different techniques: (a) Western blotting (presence of two isoforms);
(b) confocal or fluorescence microscopy (identification of LC3 puncta); (c) knock down or
knock out (deletion and analysis of the phenotype); and (d) pharmacological induction/
inhibition (rapamycin and/or PI-3K inhibitors). These techniques can also be employed in
vitro or in vivo for other Atgs, indicating autophagic activity [101].

2.3. Necrosis

Necrosis is a term that is extensively employed as synonymous with cell death. In the Greek
aetiology, it signifies the "stage of dying". In this death type, strong cellular damage occurs
caused by external stimuli (drugs, infection, mechanical trauma), promoting the random
degradation of the whole cell, with plasma membrane disruption. Necrosis is defined as an
accidental cell death process, differing from PCD (especially apoptosis) [102]. One of the main
differences between apoptosis and necrosis is the induction of the inflammatory response in
the latter. The release of intracellular material into the extracellular environment during
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necrotic cell death triggers intense inflammation in the surrounding cells and tissues [103].
Classical necrotic features are the loss of plasma membrane integrity, cytosolic vacuolization,
disruption of calcium homeostasis, general degradation by lysosomal hydrolases and induc‐
tion of the inflammatory response.

Necrosis can also be a regulated process. Necroptosis is a programmed and non-accidental
death pathway. Surprisingly, the activation of this pathway can occur by TNF-α or FasL,
classical apoptotic ligands. Necroptosis depends on the participation of the receptor-interact‐
ing protein kinases 1 and 3 (RIPK1 and RIPK3), which are kinases that regulate this pathway.
RIPK1 is pharmacologically inhibited by a small molecule named necrostatin-1 (Nec-1)
[104-106].

2.4. Others

In addition to apoptosis, autophagy and necrosis (accidental or not), other non-canonical death
styles can take place in eukaryotic cells. In an inflammatory context, pyroptosis and NETosis
are prominent. Pyroptosis, primarily observed in macrophages after bacterial infection, is
caspase 1-dependent. This caspase promotes an increase in the inflammatory cytokine levels
(IL-1β and IL-18) and the formation of plasma membrane pores, leading to the release of
cellular material to the extracellular matrix. The main difference between pyroptosis and
apoptosis is the participation of caspase 1, which is only involved in the pyroptotic death
pathway, a proinflammatory PCD [106-108]. Another type of cell death that plays a crucial
role in the innate immune response is the neutrophil extracellular trap (NETosis), where
neutrophilic death leads to the release of a neutrophil DNA network coated with histones and
elastase to the extracellular environment to capture pathogens. However, the direct antimi‐
crobial effect of the NETs is still controversial [109, 110]. Currently, DNA release has also been
described in other immune cells, such as eosinophils, basophils, macrophages and mast cells,
but its precise role deserves further analysis [110-114].

Other cell death types not involved in inflammation have been characterized. Ferroptosis is
iron-dependent cell death that has been identified in some mammalian cells and involves
oxidative stress induced by a small molecule named erastin, which is inhibited by ferrostatin
1. Despite that lack of complete understanding of the erastin mechanism, the XC−Cys/Glu
antiporter system is inhibited in ferroptosis, leading to a misbalance of these amino acids inside
the cell [106, 115]. Additionally, there is another non-canonical cell death pathway in cancer
cells (in vitro and in vivo models) called autoschizis, which involves oxidative stress induced
by treatment with ascorbate and menadione. Autoschizic cell death presents remarkable
morphological evidence, with electron microscopy as the best technique for its identification.
Among the autoschizic features are cell shrinkage, extrusion of large portions of the cytosol
(without any organelles), random DNA fragmentation and the subsequent deterioration of all
cellular structures [116, 117]. Interestingly, annexin V (AV) and propidium iodide (PI) assays
(gold standards for apoptosis detection in mammals) of cells treated with ascorbate and
menadione demonstrate high percentages of AV-/PI+ cells [117], which are not discussed in
almost all apoptotic studies, suggesting that these membrane shedding events could occur in
a large variety of cell models. Table 1 summarizes the main types of cell death discussed herein.
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Cell death Features References

apoptosis cell shrinkage
membrane blebbing
DNA fragmentation
externalization of PS
activity of caspases
regulation by Bcl-2 family proteins
loss of ΔΨ
release of cytochrome c
no inflammatory response

[44, 76, 78]

autophagy presence of autophagosomes
participation of Atgs
regulation by PI-3K and TORC
degradation by lysosomes
presence of KFERQ, QREFK or VDKFQ motifs in the protein to be
degraded (only in CMA)

[82, 101]

necrosis disruption of plasma membrane
cytoplasmic vacuolization
imbalance of Ca2+ homeostasis
release of lysosomal enzymes
induction of inflammatory response

[102, 103]

necroptosis participation of RIP1 and RIP3
inhibition by Nec-1

[104, 106]

pyroptosis participation of caspase 1
increase in IL-1β and IL-18 levels
induction of inflammatory response

[106-108]

NETosis formation of NETs
participation of elastase and histones
occurrence in neutrophils, macrophages, mast cells, eosinophils and
basophils

[109, 110]

ferroptosis participation of iron
presence of oxidative stress
induction by erastin
blockage of XC−Cys/Glu antiporter system
inhibition by ferrostatin 1

[106, 115]

autoschizis cell shrinkage
random DNA fragmentation
extrusion of large cytosolic portions (without organelles)
degradation of cellular components
increase in the AV-/PI+ population

[116, 117]

Table 1. Types of cell death
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3. Cell death in trypanosomatids: An overview

The term PCD was employed for decades to exclusively describe cell death in metazoans and
its involvement in embryogenesis and maintenance of homeostasis. Indeed, the relevance of
PCD for lower eukaryotes is unclear. In an evolutionary scenario, these regulated processes
could allow clonal selection in the parasite population, guaranteeing the propagation of
identical genetic information even in adverse environmental conditions. However, differences
in the cell death mechanisms observed between metazoans and protozoans must be considered
[78, 118]. In the following sections, we will discuss the role of different death styles described
in pathogenic trypanosomatids.

3.1. Apoptosis-like

In trypanosomatids, the first PCD report was published in 1995 by Ameisen and coworkers
describing apoptotic characteristics (DNA fragmentation and cytoplasmic and nuclear
morphological alterations) in T. cruzi epimastigotes during differentiation to trypomastigotes
[119]. In the last two decades, a variety of stimuli were reported to induce the appearance of
the apoptotic phenotype in this parasite, including exposure to fresh human serum (FHS), heat
shock and drugs [76, 119-128]. Curiously, the apoptosis-like phenotype was also associated
with the regulation of the T. cruzi life cycle [129]. These cell death phenotypes in pathogenic
trypanosomatids have been characterized by the use of classical apoptotic markers (see item
2.1) [76, 79, 118, 123, 130-133]. Among the apoptotic hallmarks identified, we found (a) loss of
ΔΨm, (b) cytochrome c release, (c) PS externalization, and (d) abnormal DNA condensation
and fragmentation [76, 119, 129, 130, 134] (Table 3, Figure 1).

In Leishmania sp., apoptotic features (nuclear condensation, DNA fragmentation, cell shrink‐
age, loss of ΔΨm, and release of cytochrome c) were also observed in stress conditions induced
by heat, starvation, oxidative agents and drugs [118, 134, 136-139, 135]. L. donovani, L. major
and L. mexicana stationary phase promastigotes and axenic amastigotes exhibited DNA
fragmentation with a laddering electrophoretic profile, suggesting oligonucleosomal cleavage.
These data were corroborated by the description of a non-canonical, Ca2+- and Mg2+-inde‐
pendent 45-59 kDa endonuclease [76, 136, 140].

As in other pathogenic trypanosomatids, apoptotic features were also identified in T. brucei
under non-physiological conditions, such as incubation with drugs, cytokines or ROS [129,
133, 141-143]. Interestingly, the gene for prohibitin and the receptor for activated protein kinase
C have been correlated with the apoptotic process, suggesting convergence between these
pathways in protozoa and mammals (Table 2) [129]. Despite several reports about caspase-like
activity in trypanosomatids [75, 134, 136, 144], the exact role of these proteases in protozoa is
not clear. Metacaspases are structurally similar to mammalian orthologues, but their catalytic
activity on caspase substrates is quite controversial [145-147]. Despite their presence in T.
cruzi, T. brucei and Leishmania sp., only L. major metacaspase shows in vitro self-proteolytic
activity (Table 2) [146]. In fact, the participation of metacaspases cleaving vital substrates in
the cell death cascade has not yet been described [148, 149]. Surprisingly, experimental
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evidence pointed to the involvement of these proteases in cell cycle control and metacyclo‐
genesis, not in death [145, 150-153].

In unicellular organisms, the mitochondrion is a central organelle in cell death pathways,
leading to ROS production [125]. In T. brucei procyclic forms, mitochondrial Ca2+ influx
misbalance culminates in ROS generation [154]. Additionally, prostaglandin D2-induced ROS
production in both the bloodstream and procyclic forms led to the labelling of different
apoptotic markers, with the death phenotype reverted by oxidative scavengers, such as N-
acetyl cysteine [130, 155, 156]. In L. donovani, hydrogen peroxide induced classical apoptotic
features (DNA fragmentation, loss of ΔΨm and caspase-like activity). This phenotype was
partially reverted by caspase inhibitors [134, 137]. Oxidative stress plays a crucial role not only
in apoptosis-like PCD but also in autophagy and necrosis, as we will discuss later [78, 157].

Figure 1. Schematic representation of apoptosis-like PCD in pathogenic trypanosomatids. Apoptotic stimuli induce
loss of ΔΨm, release of mitochondrial cytochrome c to the cytosol, PS externalization and DNA fragmentation by En‐
doG activity. Apoptotic regulators from the Bcl-2 family were not found until now, and the role of metacaspases is
controversial, suggesting that apoptosis-like PCD in trypanosomatids is a caspase-like- and Bcl-2-independent path‐
way. N: nucleus; M: mitochondrion; K: kinetoplast; F: flagellum.
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Molecule Organism References

Prohibitin
RACK

T. brucei [129]

Elongation factor 1 ∝ T. cruzi [161]

Metacaspases 1
L. donovani
T. brucei

[147, 162, 163]

Metacaspases 2
L. donovani
T. brucei

[145, 147, 162]

Metacaspases 3
T. cruzi
T. brucei

[145, 150, 153, 162]

Metacaspases 4 T. brucei [162, 164]

Metacaspases 5
T. cruzi
T. brucei
L. major

[145, 150, 162, 165]

Metacaspase Z-DEVD-FMK -sensitive
T. cruzi
L. donovani

[124, 134, 136]

Endonuclease G

L. major
T. brucei
L. infantum
L. donovani

[132, 158, 166]

LdFEN-1
LdTatD-like nuclease

L. donovani [158]

Table 2. Apoptotic molecules described in pathogenic trypanosomatids

The participation of EndoG-like in mitochondrial-mediated cell death has been reported, but
the process is metacaspase-independent (Table 2) [132, 158, 159]. L. infantum submitted to heat
stress also presents an apoptotic pattern, but without caspase-like activity, which was partially
reversed by the expression of the anti-apoptotic mammalian gene Bcl-XL [160]. On the other
hand, the overexpression of mammalian anti-apoptotic Bcl-2 in T. brucei caused no reversion
of the mitochondrial damage induced by ROS [154]. However, members of the Bcl-2 protein
family have not been described in trypanosomatids [129]. More studies regarding the regula‐
tion steps of apoptosis-like processes in trypanosomatids need to be performed.

3.2. Autophagy

Almost forty years ago, the first morphological autophagic evidence was described in trypa‐
nosomatids by electron microscopy of T. brucei [170]. In the last four decades, many studies
have described recurrent autophagosome formation (initially named autophagic vacuoles),
multivesicular bodies as well as myelin-like structures in pathogenic trypanosomatids treated
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with different classes of drugs (Figure 2) [169, 168, 171-178]. Such autophagosomes showed
distinct levels of degradation depending on the degree of cellular structure damage inside the
organelle. Myelin-like structures are one of the most frequent ultrastructural alterations
detected in drug-treated parasites and are suggestive of the cellular recycling of damaged
structures. Currently, it is postulated that myelin-like structures are phagophores (or pre-
autophagosomal structures, PAS), an early step in the formation of doubled-membrane
autophagosomes (Table 3). In T. cruzi, ER profiles were reported as the main origin of phago‐
phores (Figure 2). These profiles usually surround a pre-lysosomal compartment, named the
reservosome, suggesting the participation of this organelle in autophagolysosome formation
in epimastigote forms [82, 178].

Figure 2. Schematic representation of autophagy in pathogenic trypanosomatids. Autophagic stimuli induce the for‐
mation of phagophores from ER profiles. The phagophore engulfs organelles and molecules, generating autophago‐
somes. Targeting and engulfment are Atg-dependent processes. These autophagosomes fused with lysosomes generate
autophagolysosomes. Continuous autophagic stimuli lead to autophagic cell death, which is inhibited by the pre-treat‐
ment of the parasite with autophagic inhibitors (wortmannin or 3-methyladenine).
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Cell death Features Organism References

apoptosis-like cell shrinkage
membrane blebbing
DNA fragmentation
PS exposure
loss of the ΔΨm
release of cytochrome c

T. cruzi
T. brucei
Leishmania sp.

[76, 118, 119, 130]

autophagy presence of autophagosomes-like
Golgi and/or ER profiles surrounding
organelles
detection of Atg8 and Atg4

T. cruzi
T. brucei
Leishmania sp.

[82, 92, 167]

necrosis cytosolic vacuolization
plasma membrane disruption

T. cruzi
T. brucei
Leishmania sp.

[149, 168, 169]

Table 3. Types of cell death described in pathogenic trypanosomatids

In the last few years, a functional autophagic pathway was characterized in trypanosomatids
and ATG homologues were identified. However, almost half of the yeast Atgs are lacking in
these protozoa [167, 179-181]. Currently, in trypanosomatids, twenty autophagic genes have
been found to be involved in all of the steps, from vesicle expansion and completion to
degradation (Figure 2) [167]. Bioinformatic approaches revealed all four genes of the Atg8
conjugation system (Atg3, Atg4, Atg7 and Atg8). Atg8 is well-characterized in T. cruzi, T.
brucei and Leishmania sp. and is located in autophagosomes, as observed in yeast and mammals.
Atg8 has four isoforms (Atg8, Atg8A, Atg8B and Atg8C) that are processed by two isoforms
of Atg4 (Atg4.1 and Atg4.2) [92, 181-185] (Table 3). On the other hand, the Atg12 conjugation
system has poor sequence similarity in trypanosomatids, and Atg5, Atg10 and Atg12 sequen‐
ces are lacking [167, 180]. Pathogenic trypanosomatids have two TOR kinases (TOR1 and
TOR2) that form their respective complexes, TORC1 and TORC2 (Table 4). These two com‐
plexes show a distinct molecular behaviour, subcellular localization and susceptibility to
rapamycin [186, 187]. The treatment of T. brucei bloodstream forms with rapamycin led to cell
cycle arrest and an increase in the number of autophagosomes due to TORC2 inhibition.
However, rapamycin had no effect on the parasite TORC1, suggesting another function for
this complex [186, 188].

In addition to the recycling function, autophagy plays a fundamental role in parasite differ‐
entiation and survival, mitochondrial function and homeostasis of phospholipids [92, 182, 189,
190]. In metacyclogenesis, the autophagic pathway is triggered by nutritional deprivation,
playing an important function in both the infectivity and virulence to the vertebrate host [182].
During the T. cruzi life cycle, epimastigotes are submitted to starvation in the insect rectum, a
crucial event for protozoa differentiation. Starved epimastigotes express Atg8.1, but such
expression is decreased in metacyclic forms [82, 92]. Reservosomes disappeared during
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differentiation, most likely due to the cysteine proteinase activity, in particular, cruzipain [159,
191, 192].

In Leishmania sp., autophagy is essential for metacyclogenesis, with several observed auto‐
phagosomes during the process [193, 194]. The deletion of Atg4.2 led to an accumulation of
Atg8 lipidated isoforms, compromising the autophagic activity. Subsequently, a reduction in
the number of differentiating promastigotes was observed [194]. Interestingly, autophagy also
participates in the differentiation of L. mexicana metacyclic promastigotes to amastigotes [193].
In the sandfly, the exposure of promastigotes to different stress stimuli, including higher
temperature, low pH, and nutritional deprivation, acts as a crucial event for the success of the
metacyclogenesis [189, 192]. L. mexicana shows that lysosome-like structures, called mega‐
somes, are involved in parasite differentiation, with the activity of two megasomal cysteine
peptidases (CPA and CPB) associated with autophagy. The deletion of these proteases strongly
impaired its differentiation into amastigotes, leading to an accumulation of autophagosomes
containing multi-vesicular tubules (structures related to endocytosis) [180, 193].

A peculiar role for autophagy was observed in T. brucei. In a selective pathway, glycosomes
are degraded during differentiation from bloodstream to procyclic forms. This organelle is a
peroxisome-like structure that is also involved in the glycolytic pathway, and its degradation
via autophagy led to important changes in the protozoa bioenergetics [195]. This evidence
supported the existence of pexophagy in trypanosomes, an essential event for energy balance
during the parasite life cycle. Depending on the environmental conditions (distinct hosts), the
sources of energetic substrates vary, as does the ATP demand [180]. Recently, it was also
reported that T. brucei acidocalcisomes (an acidic compartment that stores ions responsible for
polyphosphate metabolism) regulate autophagy by the acidification of this organelle. More‐
over, the blockage of acidocalcisome biogenesis also inhibited the autophagic pathway without

Molecules Organism References

Atg4.1, Atg4.2 L. major [197]

Atg5 L. major [190]

Atg5, Atg10, Atg12 L. major [183]

Atg8A, Atg8B, Atg8.2 T. brucei [183]

Atg8.1, Atg8.2 T. cruzi [92]

Atg8, Atg8A, Atg8B, Atg8C L. major [183]

TOR1
TOR2

T. brucei
L. major

[186, 198, 199]

TOR3 L. major [199]

Vps34
T. cruzi
T. brucei

[200, 201]

Table 4. Autophagic molecules described in pathogenic trypanosomatids
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the impairment of lysosomal biogenesis or function, suggesting the relevance of acidocalci‐
somes as an autophagic regulator [196].

Autophagic cell death occurs when the homeostatic balance is broken [40]. To evaluate whether
autophagy participates in the cell death process, the use of the PI-3K inhibitors wortmannin
and 3-methyladenine (3-MA) before the autophagic stimulus is provided is an interesting
experimental approach. Pre-treatment with these inhibitors totally abolished the trypanocidal
activity of naphthoimidazoles in T. cruzi epimastigotes and trypomastigotes. Although the
involvement of components of the Atg8 conjugation system was also demonstrated, the
molecular mechanisms of cell death regulation in this parasite deserve further examination
[82, 178].

3.3. Necrosis

As described for higher eukaryotes, necrosis is poorly studied in protozoa, especially due to
its conception as an accidental and uncontrolled process. The most typical necrotic feature is
the plasma membrane rupture that leads to the loss of cellular homeostasis and consequent
cell lysis as the consequence of a mechanical or chemical stimulus [103]. Necrosis is always the
cell death endpoint, culminating in the generation of cellular debris. Thus, independent of the
cell death mechanism that is induced, all parasites will lyse in a system without phagocytic
cells to clean the microenvironment. In this context, a high percentage of anti-trypanosomatid
natural or synthetic drugs present a mechanism of action with a lytic effect [29, 149, 202-205]
(Table 3).

Another crucial stress condition that induces trypanosomatid disruption is the activation of
the complement pathway. This cascade can be triggered by the binding of lectins to lipophos‐
phoglycans presented on the surface of Leishmania sp. promastigotes and of glycosylated
molecules in the T. cruzi metacyclic form [206-209]. Indeed, pathogenic trypanosomatids show
different mechanisms to evade the complement pathway. For example, T. brucei expresses a
vast number of variant surface glycoproteins (VSG) that change the parasite coat to escape
from the host immune system [210]. In relation to programmed necrosis, RIPK-like molecules
have not yet been identified in unicellular organisms, and the direct effect of Nec-1 has not
been evaluated, suggesting that an orchestrated pathway similar to necroptosis is absent in
trypanosomatids.

3.4. Others

Curiously, no studies have been reported about non-canonical PCD pathways in trypanoso‐
matids. Pyroptosis and NETosis are processes that are characterized exclusively in mammalian
cells, specifically during an inflammatory response. Such pathways involve the death of
immune cells to block the progression of any infection by a well-regulated mechanism [106,
110]. The absence of these PCD types in unicellular organisms is not strange. On the other
hand, the existence of specific oxidative stress-related cell death types in trypanosomatids
would be reasonable. Continuous exposure of these parasites to ROS under distinct environ‐
mental conditions during their life cycles indicates the important role of oxidative stress in the
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control of protozoa populations. ROS involvement in trypanosomatid apoptosis-like processes
and autophagy has been described in different experimental conditions [130, 155, 156, 211,
212], but ferroptosis has not yet been investigated. Further studies about the effect of erastin
as well as the inhibition by ferrostatin 1 should be performed in these parasites. Autoschizis
was only observed in cancer cells under very specific conditions, but interestingly, an auto‐
schizic phenotype (high percentages of AV-/PI+ cells) was detected in T. cruzi treated with
naphthoimidazoles [178]. The AV-/PI+ population is ignored in the majority of the studies,
including in pathogenic trypanosomatids [213-215]. A better characterization of this parasite
population must be performed to exclude the existence of autoschizis in protozoa.

3.5. Cell death and evasion of host immune response

Trypanosomatids presented a highly sophisticated repertoire to evade mammalian immune
systems, including the capacity to prevent the cell death pathways of the infected host cells
[188]. This efficient strategy allows host PCD modulation by the parasites to establish the
infection. Depending on the protozoan species and the host cell type, PCD exacerbation or
inhibition fluctuates. For example, the induction of apoptosis in immune cells increases the
parasite persistence and survival in immunocompetent hosts [78]. In T. cruzi infection,
apoptosis of lymphocytes and macrophages is essential for the parasite to escape, promoting
inflammation reduction by anti-inflammatory cytokines and also amastigote proliferation [78,
216, 217]. The Leishmania strategy is quite different. Promastigotes externalize PS to be
recognized by phagocytic cells. The binding of PS to its receptor on the phagocyte surface
triggers a signalling cascade that guides TGF-β production and the subsequent anti-inflam‐
matory response. This phenomenon, called apoptotic mimicry, facilitates parasite internaliza‐
tion and increases the success of the infection [218, 219]. Additionally, the intracellular cycle
of Leishmania sp. also depends on the impairment of host cell apoptosis. This event is necessary
to stop or delay the elimination of infected cells. For example, L. major uses the infected
apoptotic granulocytes as "Trojan horses" to invade macrophages, the definitive host cells,
avoiding the direct activation of phagocytes via the interaction between host receptors and
protozoa [220].

Host autophagy also represents a valuable mechanism for both innate and adaptive responses
to stop the infection. Its blockage is a crucial tactic for pathogenic trypanosomatids to evade
host defences. Autophagy uses a process to eliminate pathogens, called xenophagy, directing
microorganisms to be digested in lysosomes. This strategy is usually employed by protozoa
living inside parasitophorous vacuoles to use the autophagic machinery to provide nutrients
[82]. However, protozoa, such as Leishmania sp., change the autophagosomal pH and impair
vesicular traffic, compromising the fusion to lysosomes. L. amazonensis amastigotes proliferate
in starvation or even after treatment with rapamycin, but the proliferation is inhibited by
incubation with the autophagic inhibitors wortmannin or 3-methyladenine [221]. The impor‐
tance of autophagy for the Leishmania infection was corroborated by the observation that this
pathway is exacerbated in L. amazonensis-infected mice and in a natural L. donovani infection
in humans [222, 223]. Similar data were observed in the in vitro T. cruzi infection, suggesting
that the autophagic pathway favours the parasite during its interaction with the host cell [224,
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225]. However, the role of host autophagy in this trypanosomatid is still controversial due to
the autophagic participation in the control of T. cruzi infection [226-228]. Furthermore,
differences among strains and host cells must be considered to clarify whether host autophagy
kills T. cruzi or provides nutrients for its survival.

4. Concluding remarks

In spite of the variety of studies about cell death in protozoans, including trypanosomatids,
and the evidence of PCD, the detailed aspects of the molecular mechanisms and regulation
remain unclear. The absence of key molecules together with the lack of an obvious role for this
process in unicellular organisms makes the existence of PCD in these cells a debatable point,
and the term “apoptosis-like” is more convenient [130, 172, 229]. In this context, the lack of a
strong correlation between the proteolytic properties of caspases and their role in PCD should
be highlighted. Currently, there is no description of the participation of trypanosomatid
metacaspases in cell death processes, but these proteases have been postulated to function in
proliferation and differentiation, which are important events for parasite survival [145, 148,
149, 153, 230]. In the post-genomic era, a rigorous search should be performed in proteomic
databases of pathogenic trypanosomatids to correct misannotations in cell death proteins,
validating the real role of these molecules for PCD processes.

Nevertheless, PCD was conserved during evolution, suggesting its essential function for the
survival and maintenance of these species. However, it has been proposed that these pathways
appeared in the phylogenetic tree in the multicellular organism branches, suggesting that the
death molecular mechanisms identified in unicellular parasites came from a divergent
evolutionary event [48]. This idea is supported by the replacement or complete absence of some
PCD molecules, justifying the differences observed in protozoa mechanisms [79]. In addition
to being an interesting evolutionary model for PCD, its physiological relevance for protozoa
is still the most attractive question.

An altruistic hypothesis has been raised for unicellular organisms, especially for pathogenic
trypanosomatids [130]. It was associated with the control of parasite populations, including
protozoa density regulation, clonal selection and immune host system evasion, events related
to the success of the infection [7, 76, 82, 136, 231]. Trypanosomatid cell death limits parasite
colonization in insects in response to scarce resources of nutrients, avoiding invertebrate death
[118, 130, 134]. On the other hand, PCD of T. cruzi or L. amazonensis insect forms under
mammalian temperatures could evade host immune response derived from parasite lysis,
facilitating the infection [76, 119, 135].

Autophagic cell death has been proposed as a PCD pathway, suggesting an active role of
autophagy in death processes, but the precise mechanisms of regulation are not yet clear [174,
178, 232]. The majority of the autophagic studies were performed in yeast and mammal models.
However, little is known about protozoan pathways. Autophagy is a regulated process that is
directly involved in the preservation of cellular homeostasis and survival. Several hypotheses
have been raised about the participation of this pathway in cell death in dying cells. The
selective autophagic degradation of essential cellular factors, such as cell death regulators,
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triggers death events, including caspase activation [232, 233]. Another hypothesis suggested
that autophagy is not a specific and regulated cell death process but is a consequence of
extensive injury. Once such an injury compromises cellular physiology, the damaged structure
needs to be degraded for cell survival. This hypothesis also explains the presence of similar
phenotypes in parasites after treatment with different compounds with distinct mechanisms
of action. Such autophagic phenotypes, detected independent of the stimuli, reinforced this
pathway as a desperate attempt of the cells to stay alive [168, 212, 232]. The determination of
the connection between the autophagic cell death of pathogens, such as trypanosomatids,
could have crucial implications for human health, but further mechanistic studies should be
addressed in this field.

Figure 3. Different pathways of trypanosomatid death. The death stimulus triggers specific mechanisms of action de‐
pending on the environmental conditions, time of treatment and dose. Death signals lead to distinct well-known phe‐
notypes from each pathway. Cross-talk could also be observed between apoptosis-like processes, autophagy and
necrosis, culminating in protozoa death. The existence of an alternative unknown process cannot be discarded (dashed
arrow).
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The existence of cross-talk among different cell death pathways, especially autophagy and
apoptosis, has been proposed (Figure 3) [93, 234]. In unicellular parasites, different cell death
types have been described to be induced by physical and/or chemical stress conditions (drugs,
heat shock, and nutritional deprivation, among others), resulting in a non-classical cell death
phenotype. The total absence of commercial typical PCD markers, such as antibodies and
enzyme activity kits, for protozoa and of key autophagic and apoptotic-like molecules
reinforce the hypothesis of an interplay of distinct death mechanisms, suggesting their
convergence, leading to necrosis. Likewise, the possibility of the occurrence of other PCD forms
cannot be excluded [74, 78, 168, 178]. A better molecular characterization of cell death in
pathogenic trypanosomatids is essential for advances in novel alternatives for therapeutic
intervention.
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