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Abstract

The extremely radioresistant eubacterium Deinococcus radiodurans and the phenotyp‐
ically related prokaryotes, whose genomes have been completely sequenced, are
presently used as model species in several laboratories to study the lethal effects of
DNA-damaging and protein-oxidizing agents, particularly the effects of ionizing
radiation (IR). Unfortunately, providing relevant information about radioresistant
prokaryotes (RP) in a neatly centralized and organized manner still remains a need.
In this study, we designed RadioP1 Web resource (www.radiop.org.tn) to gather
information about RP defined by the published literature with specific emphasis on
(i) predicted genes that produce and protect against oxidative stress, (ii) predicted
proteins involved in DNA repair mechanisms and (iii) potential uses of RP in
biotechnology. RadioP1 allows the complete RP proteogenomes to be queried using
various patterns in a user-friendly and interactive manner. The output data can be
saved in plain text, Excel or HyperText Markup Language (HTML) formats for
subsequent analyses. Moreover, RadioP1 provides for users a tool “START ANALY‐
SIS”, including the previously described R-packages “drc” and “lethal”, to generate
exponential or sigmoid survival curves with D10 and D50 values. Furthermore, when
accessible, links to external databases are provided. Supplementary data will be
included in the future when the sequences of other RP genomes will become available.
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1. Introduction

To be considered as an RP, a microorganism should have a D10—the ionizing-radiation (IR)
dose necessary to effect a 90 % reduction in colony-forming units (CFU)—threshold that is
greater than 1 kilogray (kGy), corresponding to efficient physiological, genetic and proteic
protection and repair mechanisms ([1, 2] and references therein). In this context, to our
knowledge, even when prokaryotic members belonging to a radioresistant-species-harbouring
genus have contrasted optimum temperatures—for example, ranging from 10 to 47 ºC—the
least IR-resistant ones do not have D10 values inferior to 1 kGy [3]. Furthermore, as suggested
from D10 and F10—the ultraviolet (UV) dose necessary to effect a 90 % reduction in CFU—
reported in literature [4-6], an RP is tolerant to both IR (e.g. α and β particles, γ- and x-rays,
neutrons) and non-IR (UV light); and correlations were suggested [7]. In this context, it is
important to note that UV may cause effects similar to those stimulated by IR [8].

The first RP to be described, designated Micrococcus radiodurans, was isolated from irradiated
meat [9] and was subsequently reclassified as D. radiodurans [10]. IR resistance has been
observed in a broad range of prokaryotic groups [11], including halophilic Archaea (Halobac‐
terium sp.) [12], hyperthermophilic Archaea (Pyrococcus abyssi, Pyrococcus furiosus, Thermococcus
gammatolerans, Thermococcus marinus and Thermococcus radiotolerans) [13-16], Actinobacteria
(Geodermatophilus dictyosporus, Geodermatophilus obscurus, Geodermatophilus poikilotrophi,
Kineococcus radiotolerans, Rubrobacter radiotolerans and Rubrobacter xylanophilus) [17-23],
Cyanobacteria (Arthrospira sp. and Chroococcidiopsis sp.) [24, 25], the Deinococcus-Thermus group
(many Deinococcus spp. and Truepera radiovictrix) ([3, 26-28] and references therein), Proteobac‐
teria (Acinetobacter radioresistens and Methylobacterium radiotolerans) [29, 30] and Sphingobacte‐
ria (Hymenobacter actinosclerus) [31]. Recently, members of the genera Knoellia, Lysobacter,
Microvirga, Nocardioides, Paracoccus, Pontibacter and Rufibacter were suggested as RP [32].
However, the list of RP with available experimental D10/F10 values (see examples in Table 1)
and completely sequenced genomes is still limited.

As a complicated multifaceted phenotype, prokaryotic radioresistance is an important subject
in radiation microbiology. A focus on just one contributing mechanism is unlikely to yield a
complete understanding of the phenomenon [53]. The radioresistance of prokaryotes depends
on their ability to protect enzymes including those needed to repair and replicate DNA from
inactivation by oxidative protein damage (protein-centric view) and to fully amend their DNA
—double-strand breaks (DSBs)—(DNA-centric view). Obviously, much is yet to be discovered
from the mesmerizing radioresistance strategies posed by RP. There is an increasing need to
compile the entire data about RP in a centralized and organized manner and to mine it
regarding prokaryotic radioresistance. RadioP1 is addressing these requests by providing
pertinent information as well as diverse analytical tools. This first version of RadioP is a
preliminary step towards the establishment of a comprehensive RP database. The increase of
the number of side aspects of radioresistance make us keen to collect and to make available
for the scientific community the most up-to-date and relevant information.
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Organism
D10 value
(60Co, Gy)

F10 value
(UV-C, J/m2)

Reference

Archaea

Archaeoglobus fulgidus 1,087 108 [4]

Ignicoccus hospitalis with
Nanoarchaeum equitans

1,473 n.d. [4]

I. hospitalis 1,482 n.d. [4]

Methanocaldococcus
jannaschii

1,036 n.d. [4]

Pyrococcus furiosus 1,018 64 [4]

Halobacterium salinarum 5,000 280 [12, 33]

Thermococcus stetteri 6,000 30 [11]

Bacteria

Aquifex pyrophilus 2,842 63 [4]

Deinococcus aerius 4,900 n.d. [34]

Deinococcus aetherius >8,000 n.d. [35]

Deinococcus alpinitundrae 4,000 690 [3]

Deinococcus altitudinis 3,800 550 [3]

Deinococcus claudionis 3,600 310 [3]

Deinococcus deserti >7,500 n.d. [36]

Deinococcus ficus 11,000 n.d. [37]

Deinococcus geothermalis 5,100–16,000 1800 [38-40]

Deinococcus gobiensis 12,700 >800 [41]

Deinococcus grandis 7,000–11,000 n.d. [37, 42, 43]

Deinococcus guangriensis 9,800 n.d. [44]

Deinococcus indicus 4,200 n.d. [37]

Deinococcus mumbaiensis 17,000 n.d. [45]

Deinococcus murrayi 9,100 n.d. [40]

Deinococcus piscis 7,400 n.d. [46]

Deinococcus proteolyticus 10,300 n.d. [37]

Deinococcus radiodurans 6,700–16,000 660–2000 [3, 37-39, 47-50]

Deinococcus radiomollis 2,200 220 [3]

Deinococcus radiophilus >16,000 n.d. [51]

Deinococcus radiopugnans 5,300 n.d. [52]

Enterococcus faecium 2,000 n.d. [38]

Geodermatophilus poikilotrophi 9,000 6300–12600 [22]

n.d.: not determined
For further details: www.radiop.org.tn

Table 1. F10 and D10 values for 90 % reduction of selected radioresistant prokaryotes (RP)
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2. Source of data

Used information was obtained by searching the NCBI database [54]. Clusters of Orthologous
Group (COG) [55] were used to classify orthologous gene records in RadioP1. Orthology was
calculated with Basic Local Alignment Search Tool (BLAST), the best reciprocal hit approach
and InParanoid program.

3. Database construction

We built the database on a recent version of Linux operation system. MySQL workbench 5.2.38
was used to handle the database schema and to build the relational database. Perl scripts were
developed to retrieve genome data and gene information from GenBank files collected from
NCBI using file transfer protocol (FTP) and to store RP information in the appropriate database
tables. A frontend user interface was developed using HTML5, JavaScript, Cascading Style
Sheet (CSS) and Hypertext Preprocessor (PHP) program languages. Perl CGI (Common
Gateway Interface) modules and PHP scripts were developed and used to link the Web
interface to the database. These scripts allow all users to send requests via the Web interface
to the server, run the jobs on the server and then return and display results on the Web interface
(Figure 1).

Data source: http://docs.oracle.com/cd/E19146-01/821-1828/6nmpm01g9/index.html

Figure 1. Overview of the interactions between the Web interface and the database using CGI modules
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The database schema (Figure 2) consists of 13 tables, allowing to search and to retrieve any
stored biological data. Among the main tables is the species table (primary information:
organism name and taxon ID), which is connected to the taxonomy and chromosome tables.
from NCBI, and is linked to the taxonomy and chromosome tables. This later is connected to
seqfile tables detailing the different file formats and paths related to each chromosome. The
gene table, related to the chromosome table, stores information such as gene name, gene ID,
symbol, first position, last position and strand. The gene table is linked to the orthology table.

Figure 2. RadioP1 database structure

4. RadioP1 database user guide

RadioP1 is freely accessible through a Web browser at http://www.radiop.org.tn. There are at
least three ways to use the database: browse, search and generate data.

5. Browse in the database

In the main page of RadioP1, a clickable list of currently available groups of IRRP—ionizing-
radiation-resistant prokaryotes—is organized at the top-left side, allowing users to browse
pages for each of the groups, IR-resistant archaea (IRRA) and IR-resistant bacteria (IRRB).
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6. Search the database

RadioP1 provides a search engine that is able to extract information from the database through:
(i) text search, (ii) BLAST search and (iii) function category search..

The text and homology search contains three categories:

1. “SEARCH GENES”: This search category allows extracting annotation information—gene
symbol, chromosome name, strand, predicted orthologous genes, etc.—using querying
gene locus tags.. The querying results are displayed in a table with each hit represented
by a row containing a corresponding gene ID and a summary of characteristics—gene
name, symbol, strand and product. In addition, each listed row in the output table
provides a link to the individual gene pages, which highlight the querying genes found
in the page of NCBI [54]. Users can get results in HTML, plain text or Excel formats for
further analyses.

2. “RETRIEVE SEQUENCES”: This search category enables extracting nucleic or proteic
sequences using querying gene locus tags.

3. “HOMOLOGY DATA”: This search category enables extracting predicted orthologous
gene clusters using querying gene locus tags.

The function category search contains four subclasses:

1. “OXIDATIVE STRESS PRODUCTION”:

When the generation of reactive oxygen species (ROS; superoxide (O2⋅
⋅−), hydrogen peroxide

(H2O2) and hydroxyl (HO⋅) radicals) produced by metabolism or irradiation exceeds the
capacity of endogenous scavengers to neutralize them, cells become vulnerable to damage, a
condition referred to as oxidative stress [56, 57]. Typically, during irradiation, ~80 % of DNA
damage is caused indirectly by irradiation-induced ROS and the remaining ~20 % by direct
interaction between c-photons and DNA [57]. HO⋅ radicals are the primary product of the
radiolysis of water and in the presence of oxygen, can also generate some O2⋅

⋅− and H2O2 by
dismutation of O2⋅

⋅− [57]. In contrast, the primary ROS generated by metabolism are O2⋅
⋅− and

H2O2 [56]. The total intracellular titer of cytochromes and flavins might serve as a marker for
the proclivity of cells to survive radiation and other oxidizing conditions [58, 59]. For instance,
the total number of c-type cytochromes in D. radiodurans and Shewanella oneidensis (D10 = 70 Gy
[38]) is 7 and 39, respectively [58]. Searching RadioP1 by this function subcategory provides a
way to find out predicted genes involved in ROS production and subsequently estimate
cellular radioresistance level.

2. “OXIDATIVE STRESS PROTECTION”:

Unlike DNA DSB lesion yields ([6] and references therein), in IR-sensitive cells, yields of IR-
induced protein oxidation can be ~100 times greater than in IR-resistant cells [60, 61]. Indeed,
presently, it is demonstrated that proteins are major targets of IR damage and that shield
against protein oxidation is an important mechanism for survival from IR exposure. IR
resistance in some prokaryotes was highly correlated to the accumulation of high intracellular
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concentration of Mn2+, supporting the idea of a common model of Mn2+-dependent ROS
scavenging in the aerobes ([6, 62] and references therein). For example, the aerobic archaeon
H. salinarum accumulates high intracellular concentration of Mn2+, 155 ng/109 cells [62, 63]. In
contrast, hyperthermophilic anaerobic archaea T. gammatolerans and P. furiosus do not contain
significant amounts of intracellular Mn2+, 3 ng/109 cells and 14 ng/109 cells, respectively [62].
These low concentrations of Mn2+ in anaerobic hyperthermophiles were explained by the low
levels of IR-generated ROS under anaerobic conditions combined with efficient detoxification
systems [62]. In RadioP1, using the “OXIDATIVE STRESS PROTECTION” function subcate‐
gory, a summary table is provided to users giving insights about radioprotectors of each RP.

3. “DNA REPAIR GENES”:

During irradiation, DNA double-strand breaks (DSBs) are considered as the most lethal
damage, although they are the least frequent form of cellular DNA damage—compared to
single-strand breaks and DNA base damages [60]. For example, in D. radiodurans, PprA protein
has an important role in DNA DSBs repair [64]. Exploring RadioP1 by the “DNA REPAIR
GENES” function subcategory allows users to generate a list of genes—orthologs of genes in
Table 2—for which a functional knockout may change the level of radioresistance of mutant
cells.

Gene name (locus tag, D10 of a D. radiodurans strain lacking the gene) Reference

recA (DR_2340, 0.1 kGy) [65]
polA (DR_1707, 1 kGy) [66]
recQ (DR_1289, 6 kGy) [67]
recD (DR_1902, 6 kGy) [68]
crtB (DR_0862, 9 kGy) [69]
crtI (DR_0861, 9 kGy) [69]

sbcC (DR_1922, 15 kGy) [70]
sbcD (DR_1921, 15 kGy) [70]
polX (DR_0467, 15 kGy) [71]
pprA (DR_A0346, 2 kGy) [64]
ddrB (DR_0070, 8 kGy) [65]

ddrA (DR_0423, 12 kGy) [65]
ddrC (DR_0003, > 14 kGy) [65]
ddrD (DR_0326, > 14 kGy) [65]

Table 2. Selected important DNA protection and repair genes for ionizing-radiation-resistant prokaryotes (IRRP)
based on data of Deinococcus radiodurans

4. “USE IN BIOTECHNOLOGY”:

RP provide inestimable opportunities in therapeutics for multiple diseases [72], biotechnology
[73], pharmaceuticals [74] and bioengineering—bioremediation—of toxic and radioactive
compounds [75-81]. The function “USE IN BIOTECHNOLOGY” in RadioP1 was designed to
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present the diversity of IRRP genomes in terms of genes with potential applications in
biotechnology.

7. Generate survival plots and Dx (D10 and D50) values

Cell survival models aim to describe the relationship between the absorbed dose and the fraction
of surviving cells—cell survival curve. Distinct cell survival models were described [82-86]: the
linear—single-hit  single-target,  the linear-quadratic  (LQ) and the repairable-conditionally
repairable damage (RCR) models. Other models include those based on target theory first
described by Lea [87] and those described by Tobias [88], Curtis [89] and Sontag [90].

For instance, for UV-C-irradiated prokaryotes, as summarized previously [91], the mathemat‐
ical dose-response models which describe the probability of a specific biological response at a
given dose can be represented as follows (Figure 3):

Shoulder curve (A), linear (B), two-stage curve (C) and sigmoid (D)
N=N0e-α(t-tc) for t≥tc (A)
N=N0e-αt (B)
N=N0[(1-F0)e-α

1
t+F0e-α

2
t](C)

N=N0[(1-F0)e-α
1
(t-t)

c+F0eα
2

t-t
c] for t≥tc(D)

Where:
* N and N0 represent the microorganisms surviving at time t and those initially present at time t = 0 respectively.
* α is a parameter proportional to the applied UV-C intensity and depends on the sensitivity of the microorganism to
the UV-C ray exposure.
* tc is the time during which microorganisms are substantially not inactivated.
* F0 represents the most resistant fraction, characterized by a lower sensitivity to the UV-C rays exposure, in a popula‐
tion of microorganisms, compared to the fraction (1 − F0) less resistant to such exposure.

Figure 3. Summary of prokaryotic survival curves
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RadioP1 provides a tool “START ANALYSIS” for users to generate exponential survival curves
[92, 93]. In addition, it integrated the previously described R-packages “drc” [94] for sigmoid
curves and “lethal” [95] that computes lethal doses (LD) with confidence intervals [22]. All
curves are supplied with D10 and D50 values.

8. Future directions

RadioP1 is a specialized database aimed at making a comprehensive repository of identified
RP with experimentally determined D10. It is complemented by data extraction and analysis
tools to help further analysis of RP. Researchers are kindly requested and encouraged to
invigorate RadioP1 by depositing their new results—D10—of RP at RadioP1. Submission might
either be performed through the “Submit new RP with a D10” form accessible under the IRRP
main page or by e-mail to corresponding authors. In the future, we intend to include more
detailed information about RP in the area of evolutionary biology, biotechnology and thera‐
nostics. Additional data sources like Kyoto Encyclopedia of Genes and Genomes (KEGG) and
COGs will be integrated to extract further information about gene functions, clusters and
pathways, helping users to categorise genes of interest into functional units and perform more
efficient analysis on RP genomes.
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