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1. Introduction

Particulate matter (PM) is an air pollutant comes from vehicular traffic, industrial activities
and street dust, or from the atmosphere, by transformation of the gaseous emissions. In
recent years the interest in the health effects of this pollutant have increased, since high
concentration levels in urban area have been measured.

Several studies suggest an association between fine particulate air pollution and the increase
of the mortality rate [1]. In particular, PM up to 10 micrometers in size (PM10) could cause
negative health effects such as respiratory illness or cardiovascular problems. Hence, the
analysis of temporal evolution of this pollutant could be useful in decision-making process
for environmental policy.

Typically, in time series analysis, the Box-Jenkins methodology is widely applied and the
autocorrelation function (ACF) is used as a standard exploratory tool to identify the model
structure [3, 4]. In this context, the use of geostatistical techniques could also be convenient,
nevertheless these techniques are usually applied to analyze, through the variogram, spatial
relationships among sample data measured at some locations in a domain and to predict
the corresponding spatial phenomena [6, 18, 22, 29]. In particular, the variogram could
represent a complementary exploratory tool for assessing stationarity in time series [2, 19]
and it has the considerable advantage that it is defined in much wider circumstances than
the autocovariance and the autocorrelation. Moreover, this analytical tool is appropriate to
identify trends and periodicity exhibited by the data and to obtain kriging predictions of the
variable under study, either for temporal intervals with missing values (interpolation mode)
and in time points after the last available data (extrapolation mode).

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Different studies have suggested the use of geostatistical methods in time domain [7, 19].
In particular, De Iaco et al. [12] illustrated the role of variogram in this context for different
purposes.

The aim of this paper is to analyze PM10 air pollution in an area of South Italy characterized
by high levels of industrial emissions and vehicular traffic, through geostatistical techniques.

Thus, after a brief review on stochastic processes and geostatistical methods in time series
analysis, the temporal evolution of PM10 daily concentrations, for the period 2010-2013 has
been assessed. After the identification of trend and periodicity, the reconstruction of the
analyzed time series by estimation of missing values has been discussed, and predictions of
PM10 daily concentrations at some unsampled points have been produced. Moreover, the
probability distributions of the variable under study have been estimated for future time
points.

For interpolation and prediction purposes, a modified version of GSLib kriging routine has
been used.

2. Theoretical framework

In time series analysis the observed values of a variable for different time points or intervals
can be reasonably considered as a finite realization of a real-valued random process, denoted
with {Xt, t ∈ T ⊆ R}.

Besides the common second-order moments used to describe the random process {Xt, t ∈ T},
such as the autocovariance function and the autocorrelation function, the variogram can also
be considered and even preferred with respect to covariance function [10, 19].

Given a stochastic process {Xt, t ∈ T} over a temporal domain T ⊆ R, the corresponding
variogram is defined as follows

γ(t, t + ht) = 0.5Var
[

Xt − Xt+ht

]

, t, t + ht ∈ T. (1)

Note that a function γ(·) is a variogram if and only if it is conditionally strictly negative
definite [23].

As known in the literature [3–5], time series analysis is based on the theory of stationary
processes. It is worth highlighting that the second-order stationarity implies the intrinsic
stationarity, but the converse is not true [18, 22].

In particular, the stochastic process {Xt, t ∈ T} is intrinsically stationary if its variogram
γ(t, t + ht) depends solely on the temporal lag ht and the expected value of the difference
(Xt − Xt+ht

) is constant.

The variogram, widely used in geostatistical context, could be applied efficiently in time
series analysis [14, 15], since

• it can describe a wider class of stochastic processes, i.e. the class of intrinsic stochastic
processes, which includes the class of second-order stationary stochastic processes,
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• its estimation does not require the knowledge of the expected value of the associated
stochastic process,

• it is appropriate to identify trend and periodicity exhibited by data,

• it can be used for prediction purposes.

Regarding this last aspect, geostatistical techniques provide different parametric and
nonparametric prediction methods, among these the sample and ordinary kriging, the
universal kriging and the indicator kriging. Further details can be found in the specialized
literature [7, 12, 19]. Thus, the estimation of the unknown value xt of the stochastic
process {Xt, t ∈ T}, using the data observed in the past (extrapolation mode), or the data
observed before and after the time point t (interpolation mode) can be easily supported by
geostatistical tools.

In the following, the ordinary kriging method and the indicator kriging approach are briefly
reviewed, since these geostatistical tools are used for analyzing the variable under study.

Let X̂t the linear predictor of the intrinsic stationary process {Xt, t ∈ T}:

X̂t =
n

∑
i=1

λi(t)Xti
, (2)

where λi(t), i = 1, 2, . . . , n, are unknown real coefficients and Xti
are random variables of the

process X at the sampled time points ti. The unknown weights λi(t), i = 1, 2, . . . , n, of (2) are
obtained by solving the following kriging system




γ11 . . . γ1n −1

γ21 . . . γ2n −1

...
. . .

...
...
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1 . . . 1 0



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µ




=


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γ10

γ20

...

γn0

1




, (3)

where γij = 0.5 Var(Xti
− Xtj

), γi0 = 0.5Var(Xti
− Xt), µ is the Lagrange multiplier. If γ

is conditionally strictly negative definite, then the above system presents one and only one
solution.

The ordinary kriging [22] requires only the knowledge of the variogram model and it is used
when the expected value of the process is constant and unknown. Since the kriging system
can be expressed in terms of the variogram, as in (3), the kriging predictor can be used even
when the stochastic process under study satisfies the intrinsic hypothesis. Moreover, using
a predictor based on a variogram, rather than on a covariance, avoids the estimation of the
expected value, if this last is unknown.

The usefulness of geostatistical techniques in time series analysis can be appreciated through
nonparametric estimation of the variable under study.

PM10 Time Series Analysis Through Geostatistical Techniques
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The kriging approach, based on the knowledge of variogram, leads naturally to
nonparametric estimation [17]. Indicator kriging is a nonparametric approach to estimate
the posterior cumulative distribution function (c.d.f.) of the variable under study at an
unsampled point [16, 25, 26].

In this context, given the observed time series xti
, ti, i = 1, 2, ..., n, the conditional

probability Prob {Xt ≤ x|Hn}, with Hn = {xti
, ti, i = 1, 2, ..., n}, is interpreted as conditional

expectation of an indicator random field I(t; x) [27], that is

Prob {Xt ≤ x|Hn} = E [I(t; x|Hn)]

where

I(t; x) =

{

1, i f Xt ≤ x
0, i f Xt > x.

In the case study presented hereafter, ordinary kriging and indicator kriging are applied
for interpolation and prediction purposes of an environmental variable. Note that a GSLib
routine for kriging, named “KT3DP” [12], has been used in order to define appropriate
temporal search neighborhoods in presence of periodicity, since environmental time series,
such as the ones for air pollution data, usually are characterized by a periodic behavior.
Hence, the use of periodic and nonperiodic variogram models have been proposed through
two different approaches:

• the periodic component has been factored out using the moving average method [5] and
nonperiodic variogram model has been fitted;

• the periodicity has been retained and described by a periodic variogram model.

3. PM10 time series

In the present case study, the analysis of daily concentrations of PM10 (µg/m3), measured
at one of the monitoring stations of Brindisi district during the period 2010-2013, has been
conducted through geostatistical techniques.

These data have been collected by the Environmental Protection Agency of Apulian region
(ARPA Puglia) which controls the air quality of urban, suburban, and industrialized areas of
the region.

Note that PM10 monitoring stations are classified in the following three categories:

- traffic stations, located in areas with heavy traffic;

- industrial stations, located close to industrialized areas;

- background stations, located in peripheral areas.

The analyzed station, named “Torchiarolo” is located in the municipality of Torchiarolo
(Brindisi district), as shown in Fig. 1. It is classified as industrial station, since it is strictly
close to an industrial site, i.e. the thermoelectric power station “Enel-Federico II” in Cerano
(Brindisi district).
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“Torchiarolo”
monitoring station

Figure 1. “Torchiarolo” monitoring station belonging to the Environmental Protection Agency of Apulian region (ARPA
Puglia)

3.1. Exploratory Data Analysis

In order to assess the statistical properties of PM10 measured at the “Torchiarolo” station
in the period 2010-2013, an exploratory data analysis has been performed. Some results are
shown in Tab. 1.

Year Min Max Mean Standard Deviation Number of exceedances
2010 8 114 35.10 20.09 67
2011 8 147 36.08 21.57 66
2012 10 108 32.83 17.01 49
2013 8 146 35.83 22.71 61
2010-2013 8 147 34.97 20.47 243

Table 1. Descriptive statistics of PM10 (µg/m3), measured in the period 2010-2013 at the “Torchiarolo” monitoring
station

According to the National Law concerning the human health protection, PM10 daily average
concentrations cannot be greater than 50 µg/m3 for more than 35 times per year. During the
period under study, the PM10 daily values exceeded the threshold 243 times; in addition, the
station has measured more than 35 exceedances per year.

The box plot in Fig. 2 shows that the observed time series is characterized by a seasonal
component. During summertime, particle pollution shows lower levels compared to those
recorded during wintertime; in particular, in summertime, PM10 doesn’t exceed the limit
value fixed by the National Law.
On the other hand, in wintertime changes in the lower layer of the troposphere determine
PM10 stagnation. Hence, high levels of this pollutant are recorded.
In the following sections, the study of the temporal evolution of PM10 at the analyzed station
has been conducted by performing

• structural analysis,

• estimation of some consecutive values assumed as missing,

• prediction of PM10 daily averages,

• estimation of the c.d.f. of PM10 daily concentrations at some unsampled time points.
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Figure 2. Box plot of PM10 daily concentrations, grouped by month, and limit value fixed by the National Decree
(Decree-law 60/2002)

4. Structural Analysis

As previously pointed out, the variogram can describe a wider class of stochastic processes,
that is the class of intrinsic stochastic processes and is usually preferred to the use of the
covariance function.

In structural analysis, before modeling the temporal correlation described by the variogram,
its estimation from data is required. The following classical estimator [9] is often used:

γ̂(rt) =
1

2 |M(rt)|
∑

M(rt)

[

Xt+ht
− Xt

]2
(4)

where rt is the temporal lag, M(rt) = {t + ht ∈ H and t ∈ H, such that ‖rt − ht‖ < δt}, δt

is the tolerance, H is the set of data at different time points (not necessarily equally-spaced)
and |M(rt)| is the cardinality of this set.

In the present case study the variogram has been used as an exploratory tool to assess
stationarity and periodicity. In particular, sample temporal variogram for PM10 daily
observations, shown in Figure 3-a), reproduces the seasonal behavior of the variable under
study, which presents an annual periodicity at 365 days. In equation (5) the analytic
expression of the periodic variogram model, fitted to the sample variogram for the observed
values, is proposed:

γ(ht) = 265 Exp(|ht|; 10) + 130 Cos(|ht|; 365); (5)

where Exp(·) and Cos(·) are the exponential and the cosine variogram models [29],
respectively.

On the other hand, since the variable under study, is characterized by periodicity, this
seasonal component could be factored out. Moving average and monthly averages techniques
have been applied in order to obtain PM10 residuals. Note that the FORTRAN program
“REMOVE” [11] has been used to apply moving average techniques.
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(a) (b)

Figure 3. Sample temporal variograms and fitted models. (a) Variogram for PM10 daily concentrations (b) Variogram
for PM10 residuals

The sample variogram of the residuals has been computed and modelled and the following
nonperiodic variogram model has been chosen:

γ̃(ht) = 348 Exp(|ht|; 30) + 30 Exp(|ht|; 365); (6)

where Exp(·) is the exponential variogram model [8].

The sample temporal variogram for PM10 daily residuals and the corresponding nonperiodic
fitted model (6) are illustrated in Fig. 3-b).

In both cases (original data and residuals), the behavior of the variogram functions near the
origin is assumed to be linear with no nugget effect.

The goodness of variogram models (5) and (6) has been evaluated through cross-validation,
which allows the estimation for PM10 daily concentrations and PM10 residuals, respectively,
at all data points. Figure 4 shows the scatter plots of PM10 observed values (a) and PM10

residuals (b) towards the corresponding estimated values. The high values of the linear
correlation coefficients (0.783 and 0.780, respectively) confirm the goodness of the above
fitted models.

It is important to point out that the variogram model (5) has been validated using a
modified version of the GSLib program “KT3D” [13], named “KT3DP”. This program has
been developed in order to properly define the neighborhood, i.e. the subset of available
data used in the kriging system.

By taking into account the main features of the analyzed pollutant and its temporal behavior
(periodicity at 365 days), the kriging routine has been modified and the value at time t is
estimated by considering data observed

• at the two adjacent time points (t − 1) and (t + 1),

• at the same day of the year before and/or later, (t − d) and (t + d), with d = 365 and
some days before and/or later, (t − d ± k) and (t + d ± k), with k = 1, 2, 3,

PM10 Time Series Analysis Through Geostatistical Techniques
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• at the same day of two years before and/or later, (t − 2d) and (t + 2d), with d = 365 and
some days before and/or later, (t − 2d ± k) and (t + 2d ± k), with k = 1, 2, 3,

up to a maximum number of eight values.

The variogram model (6), which describes the temporal correlation for PM10 residuals, has
been validated using the GSLib program “KT3D”.

(a) (b)

Figure 4. Scatter plots between observed and estimated values. (a) Diagram of PM10 daily concentrations towards the
estimated ones (b) Diagram of PM10 residuals towards the estimated ones

5. Estimation of missing values

In this section the reconstruction of PM10, by using the kriging technique, has been discussed
[20, 21, 30, 31].

The reconstruction of temporal data is required if a time series is incomplete. This problem
could be due to a malfunction of the monitoring station or the presence of invalid data.

With this aim, six consecutive PM10 values from the 12th to the 17th of June 2011, have been
considered as missing, both for the observed time series with a 365-day periodic behavior
and the deseasonalized values.

Kriging daily estimations for these missing values have been obtained using, alternatively

1. the periodic variogram model (5), which describes the temporal correlation for PM10 daily
concentrations,

2. the nonperiodic variogram model (6), which describes the temporal correlation for PM10

daily residuals.

Since the time series of the observed values is characterized by a periodic behavior, GSLib

routine “KT3DP”, properly modified in order to define an appropriate neighborhood, has
been used with the aim to estimate PM10 daily measurements.

Current Air Quality Issues118



On the other hand, for the deseasonalized time series, PM10 residuals have been estimated
by the original version of “KT3D”. Finally the periodic component, previously estimated
by the moving average and monthly averages techniques, has been added to the estimated
residuals, in order to obtain estimates of PM10 daily concentrations.

Time series of estimated missing values, obtained with the periodic variogram model (5) and
the nonperiodic variogram model (6), are shown in Fig. 5, together with the time series of
PM10 values, observed on June 2011.
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Figure 5. Time plot of PM10 estimated missing values and PM10 daily concentrations (µg/m3), from the 12th to the
17th of June 2011

In order to test the validity of the estimation procedure, the linear correlation coefficients have
been computed. In particular, the linear correlation coefficient between the PM10 observed
values and the corresponding estimates, obtained with the periodic variogram model, is
equal to 0.805. On the other hand, the linear correlation coefficient between the residuals
and the corresponding estimates, obtained with the nonperiodic variogram model, is equal
to 0.831. These results confirm the goodness of the kriging technique as estimator of missing
values.

In Table 2 some results of estimation procedure are shown. Note that the mean value of the
kriging standard error is lower if the periodic variogram model is used, compared with the
kriging results based on the nonperiodic variogram model.

Therefore, the flexibility of kriging to reconstruct the time series has been demonstrated even
when the periodic component is not factored out and the temporal correlation is described
by a periodic variogram model.

6. Prediction of PM10 values

In this section, predictions for the variable under study in time points after the last available
data are discussed [23, 24, 28].

The periodic variogram model (5) of PM10 concentrations and the nonperiodic variogram
model (6) of PM10 residuals, have been used in order to predict six time points after the
last available data, i.e. the 31st of December 2013. In particular, kriging predictions have

PM10 Time Series Analysis Through Geostatistical Techniques
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June PM10 PM10 Est. Est. Est. Est.
2011 value valuea Errora valueb Errorb

12th 22 20.970 -1.030 22.029 0.029
13th 22 22.821 0.821 22.940 0.940
14th 27 26.437 -0.563 23.178 -3.822
15th 25 24.867 -0.133 23.878 -1.122
16th 25 24.926 -0.074 24.473 -0.527
17th 30 25.466 -4.534 25.825 -4.175

Mean values 21.167 24.248 -0.919 23.720 -1.446
a Results obtained by using the periodic variogram model (5) b Results obtained by using the nonperiodic variogram model (6)

Table 2. Kriging estimations of a sequence of 6 missing values, from the 12th to the 17th of June 2011 and
corresponding errors for periodic and nonperiodic variogram models

been computed for the period ranging from the 1st to the 6th of January 2014, by using,
alternatively

1. the available data, the variogram model (5) and the modified GSLib routine “KT3DP”
which builds the searching neighborhood taking into account the periodicity exhibited by
the data,

2. the deseasonalized PM10 observations, the variogram model (6) and the original
GSLib routine “KT3D” which produces PM10 predicted residuals at which the diurnal
component of the day before has been added to obtain predictions of PM10 daily
concentrations.

In Fig. 6, the time series of PM10 daily concentrations measured from the 9th of December
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Figure 6. Time plot of PM10 predicted values and PM10 daily concentrations (µg/m3), from the 1st to the 6th of January
2014

2013 to the 6th of January 2014 is shown together with the predicted PM10 values for the
period ranging from the 1st to the 6th of January 2014. Note that the kriging procedure using
the nonperiodic variogram model (6) related to PM10 residuals has produced overestimates
of the pollution levels.

Moreover, in Table 3 some results of the performance of the prediction procedure are
presented. The mean value of the kriging standard error is lower if the periodic variogram
model is used, compared with the case of kriging based on the nonperiodic variogram model.

Current Air Quality Issues120



January PM10 Obs. PM10 Est. Est. Est. valueb Est.
2014 value valuea Errora Errorb

1st 58 69.415 11.415 55.774 -2.226
2nd 119 61.031 -57.969 72.985 -46.015
3rd 122 106.051 -15.949 137.731 15.731
4th 67 108.397 41.397 164.909 97.909
5th 40 67.545 27.545 91.090 51.090
6th 37 41.498 4.498 30.738 -6.262
Mean values 73.833 75.656 1.823 92.205 18.371

a Results obtained by using the periodic variogram model (5) b Results obtained by using the nonperiodic variogram model (6)

Table 3. Kriging predictions of a sequence of six days, from the 1st to the 6th of January 2014 and corresponding
errors for periodic and nonperiodic variogram models

It is important to highlight that in the period 1-5 January 2014 predicted values greater than
50 µg/m3 (i.e. the limit value fixed by the National Law) have been obtained.

Note that in the period 1-4 January 2014, PM10 values greater than this threshold have been
measured. On the other hand, at day 5th, the kriging procedure produces overestimate of
the variable under study.

7. Estimation of the c.d.f.

For a given time series of PM10, it might be useful to estimate the probability that the
variable under study exceeds a fixed limit, so that appropriate and prompt solutions might
be adopted if necessary.

In this section, estimation of c.d.f. of PM10 daily concentrations (µg/m3) has been conducted.

In particular, the c.d.f. of PM10 at unsampled time points has been estimated by indicator
kriging [17].

Six threshold values for PM10 (22, 35, 50, 78, 98, and 108 µg/m3) have been properly chosen,
and six indicator variables according to the fixed thresholds have been defined as follows

• I1(t; 22) =

{

1, i f PM10 ≤ 22
0, i f otherwise

• I2(t; 35) =

{

1, i f PM10 ≤ 35
0, i f otherwise

• I3(t; 50) =

{

1, i f PM10 ≤ 50
0, i f otherwise

• I4(t; 78) =

{

1, i f PM10 ≤ 78
0, i f otherwise

• I5(t; 98) =

{

1, i f PM10 ≤ 98
0, i f otherwise

• I6(t; 108) =

{

1, i f PM10 ≤ 108
0, i f otherwise

with t ∈ T. Note that indicator data are equal to 1 if the values of the variable under study
are not greater than the considered threshold and they are equal to 0 otherwise. For each
threshold, the temporal indicator variogram has been computed and modelled (Figs. 7, 8).
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(a) x1 = 22 µg/m3 (b) x1 = 22 µg/m3

(c) x2 = 35 µg/m3 (d) x2 = 35 µg/m3

(e) x3 = 50 µg/m3 (f) x3 = 50 µg/m3

Figure 7. Indicator maps of PM10 daily concentrations and their sample indicator variograms with the fitted models,
for three threshold values. (a) Indicator map and (b) sample variogram indicator for the threshold x1 = 22 µg/m3. (c)
Indicator map and (d) sample variogram indicator for the threshold x2 = 35 µg/m3. (e) Indicator map and (f) sample
variogram indicator for the threshold x3 = 50 µg/m3
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(a) x4 = 78 µg/m3 (b) x4 = 78 µg/m3

(c) x5 = 98 µg/m3 (d) x5 = 98 µg/m3

(e) x6 = 108 µg/m3 (f) x6 = 108 µg/m3

Figure 8. Indicator maps of PM10 daily concentrations and their sample indicator variograms with the fitted models,
for three threshold values. (a) Indicator map and b) variogram for the threshold x4 = 78 µg/m3. (c) Indicator map and
(d) variogram for the threshold x5 = 98 µg/m3. (e) Indicator map and (f) variogram for the threshold x6 = 108 µg/m3

PM10 Time Series Analysis Through Geostatistical Techniques
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In particular the following models have been fitted

• γI1
(ht; 22) = 0.185 Exp(|ht|; 10) + 0.023 Cos(|ht|; 365),

• γI2
(ht; 35) = 0.15 Exp(|ht|; 10) + 0.07 Cos(|ht|; 365),

• γI3
(ht; 50) = 0.102 Exp(|ht|; 10) + 0.036 Cos(|ht|; 365),

• γI4
(ht; 78) = 0.039 Exp(|ht|; 10) + 0.0004 Cos(|ht|; 365),

• γI5
(ht; 98) = 0.013 Exp(|ht|; 10) + 0.001 Cos(|ht|; 365),

• γI6
(ht; 108) = 0.007 Exp(|ht|; 10) + 0.0004 Cos(|ht|; 365).

Thus, the c.d.f.s corresponding to six different unsampled time points, i.e. the days 1-6 of
January 2014, have been estimated by using the “KT3DP” routine.

For each day of interest, the c.d.f. has been estimated by solving as many kriging systems as
the number of threshold values considered. For each threshold, the corresponding indicator
variogram model has been used for the kriging procedure.

Figure 9 shows the c.d.f.s estimated at days 1-6 of January 2014. It is clear that the probability
of not exceeding a fixed threshold increases gradually from the 1st to the 6th of January 2014.
For example, the estimated probability that PM10 concentrations, on the 1st of January 2014,
do not exceed 22 µg/m3 is lower than the estimated probability on the 3rd or the 6th of the
considered month.

Figure 9. C.d.f.s estimated for PM10 daily concentrations (µg/m3) at days 1-6 of January 2014
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January 2014
Thresholds 1st 2nd 3rd 4th 5th 6th

22 0.095 0.047 0.100 0.150 0.200 0.200
35 0.285 0.286 0.400 0.450 0.350 0.450
50 0.429 0.429 0.500 0.550 0.550 0.600
78 0.714 0.810 0.750 0.850 0.900 0.900
98 0.857 0.857 0.850 0.900 0.950 1
108 1 1 1 1 1 1

Table 4. Estimated values for c.d.f. at days 1-6 of January 2014, for fixed thresholds

Moreover, note that it is almost sure that PM10 concentrations do not exceed the cutoff 78
µg/m3 at days the 5th and 6th (Table 4).

The probability that the variable under study doesn’t exceed the threshold fixed by the
National Law (50 µg/m3) is high (equal to 60%) for the last day of interest. In fact, the 6th
of January is a non-working day (Epiphany) characterized by low traffic and low industrial
emissions.

The local government could use these results in order to carry out environmental policies
for the control of high levels of PM10, since it is well known that high concentrations of this
pollutant are dangerous for the human health.

Indeed, the estimation of the c.d.f. is a very powerful tool since any action of environmental
protection might be adopted in advance by taking into account the actual likelihood of
dangerous PM10 exceeding. For example, decisions about traffic limitation in high traffic
urban area might be supported by the knowledge of the probability that a hazardous
pollutant exceeds the level of attention.

8. Conclusions

In this paper, PM10 time series analysis, by using geostatistical techniques, has been
discussed and the importance of appropriate tools of Geostatistics to study the temporal
evolution of this environmental phenomena has been highlighted.

The seasonal behavior of PM10 levels has been evaluated through the variogram, that is the
basic tool of Geostatistics. Moreover, estimation and prediction problems in the analysis
of the time series of this pollutant, characterized by a periodic behavior, have been solved
through kriging geostatistical techniques.

The computational aspects have been performed through the use of “KT3D” for the observed
values and “KT3DP” for the residuals obtained after removing the periodic component.

Finally, the indicator approach and its capability for assessing the probability that PM10

exceeds the specific threshold values have been demonstrated.

The results obtained in this paper by applying geostatistical techniques to analyze PM10 time
series could be useful to support national policies for environmental and health protection.
Governments’ activity must be oriented to control that the concentrations of the analyzed
pollutant don’t exceed specific thresholds according to national or international directives,
since it has been demonstrated that particulate matter is dangerous for the human health.
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