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1. Introduction

Global reaction on very localized but intensive disturbances is a problem of interest for
diverse physical media and systems. In devices for magnetic nuclear fusion such conditions
arise, e.g., if a significant inflow of neutral particles, either of the working hydrogen isotopes
or of impurities, enter the plasma. These inflows can occur both spontaneously and be
created deliberately. Even particles enter the plasma through spots with dimensions much
smaller than those of the plasma boundary their density is so high that the local plasma can
be perturbed very substantially. One of the most important channels for perturbations is
the local cooling of the plasma through the energy losses on the excitation and ionization
of inflowing neutral particles. Although such distortions are triggered very locally, they can
spread in the plasma far from the position of their origin. Thus, the heat conduction along
magnetic surfaces towards the region, where the plasma is directly cooled down by intruding
particles, may decrease the temperature in remote plasma. The drop of the pressure, induced
by cooling in the neutral cloud, triggers plasma flow resulting in a reduction of the plasma
density far away from the perturbation source. If neutral particles are injected for diagnostic
purposes [1] it is desirable to keep distortions in the plasma as small as possible, to get
trustful information about the original plasma state. In other cases, e.g., by a massive
gas injection (MGI) [2], used to mitigate plasma disruptions in Tokamak devices [3], the
impact has to be maximized. Generally, the changes induced in the plasma parameters are
determined both by the duration of the injection and by the number of injected particles.
Depending on the application type these characteristics change in extremely broad ranges.
Thus by laser-induced ablation spectroscopy, LIAS [4], an intense laser pulse irradiates a
small part of the device wall during an extremely short time in the nanosecond-range. By
measuring the intensity of impurity line emission in the plasma one can assess the amount
of particles emitted by the radiation, normally of the order of 101617 "and judge about the
wall composition. This diagnostics is designed as a passive non-invasive one and negligible
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modifications in the background plasma are expected by LIAS. In MGI experiments up to
102324 impurity neutral particles are injected through valves if special magnetic coils record
precursors of a disruption. This results in a strong cooling of the whole plasma through
radiation during several ms and the generation of relativistic electrons, being extremely
dangerous for the wall, can be avoided. Besides a deliberate injection strong localized sources
of neutrals can arise in fusion plasmas spontaneously, often if some critical phenomena,
limiting the discharge performance, develop. For example at the so called “density limit”
where the confinement of energy in the plasma deteriorates suddenly by approaching to
some critical density [5], inflows of neutrals from certain wall spots increase tremendously.
Multifaceted asymmetric radiation from the edge (MAREFE) is a prominent example of such
phenomena [6].

Understanding, modelling and prediction of the behaviour of plasmas affected by intense
localized inflows of neutral particles is of importance for designing of injection systems and
for controlling of conditions critical for performance. This is, however, a very demanding
task, including a self-consistent description of non-linear processes of extremely different
scales in time and space, from ns and mm till s and km, respectively. A consistent
approach has to be based on time-dependent three-dimensional simulations. Presently there
are, however, principal limitations to perform such calculations, mostly because various
physical mechanisms are non-linearly interrelated and parallelization of time-dependent
calculations is impracticable. Estimates [7] show that a realization of such a comprehensive
approach to obtain reasonably accurate solutions during a time shorter than a year is
still out of possibilities even of the most modern computers. To overcome technical
problems outlined and to obtain an approximate but accurate enough model for the
phenomena in question a new reduced approach has been elaborated [7-9]. It is based on
reduction of three-dimensional fluid transport equations for particle, parallel momentum
and energy transfer for all neutral and charged components of the plasma to a set of
one-dimensional equations describing the time variation of the radial profiles for several
parameters characterizing 3-D solutions although crudely but exhaustively enough.

For impurity spreading from a localized source it takes into account that the cross-sections
by magnetic surfaces of the regions occupied by different neutral and charged species
represent nested shells with dimensions increasing with the particle charge. This approach,
named “shell model” [7, 8], allows assessing the characteristic density of the species and
dimensions of their shells along and across magnetic field lines. By comparing with
direct numerical solutions [8, 9], the approximations done in the “shell model” have been
proven to be sufficiently accurate. By describing the main plasma components, a two zone
approximation (TZA) has been elaborated presuming the separation of magnetic surfaces
into cooled and hot zones. In the former one the energy is dissipated in direct interactions
with injected particles, and the latter one is cooled down by the transfer, predominantly
with the parallel heat conduction, to the cooled zone [9]. The radial profiles of the
temperatures of plasma components in both zones are governed by one-dimensional heat
balance equations interrelated non-linearly through the heat and particle fluxes between
zones. A firm determination of these fluxes on the basis of two-dimensional transport
equations [10] tremendously slows down numerical calculations. Therefore an assessment
on the basis of a minimum entropy production principle [11] has been utilized in the TZA
approach [9, 12]. It allows to relate analytically the heat fluxes between cooled and hot
zones with the average temperatures in the zones. In addition to extreme savings in the
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Figure 1. One-dimensional plasma stripe with an intense heat sink llocalized in the small segment of the stripe
Ly—06. <x<L,.

CPU time, this approach allows to implement straightforwardly the so called heat flux limit
[13], restricting the heat flux to a fraction of the free-streaming one if the temperature decay
length becomes small compared to the mean free path length of electrons. The present
paper is mostly devoted to a sophisticated test of the models being on the ground of the
TZA, by comparing its predictions with the results of direct numerical solutions in one-
and two-dimensional configurations. As examples for application the plasma edge cooling
by argon MGI into JET and plasma distortions by LIAS in TEXTOR are modelled and the
results of calculations are compared with the experimental data.

2. One-dimensional configuration

2.1. Numerical solution

Our consideration begins with a one-dimensional model for the transport in a plasma stripe
along the magnetic field oriented in the direction x, as it is shown in figure 1. This situation is
typical for the scrape-off layer (SOL) in a limiter tokamak like TEXTOR [14]. We consider the
reaction of the whole plasma stripe on a cooling which is suddenly initiated at time t = 0in a
small fraction of the stripe through, e.g., energy losses on the excitation of injected impurity.
The plasma is characterized by the temperature T (¢, x) and the deviation of T from its initial
homogeneous level Tj is governed by the following heat conduction equation

1.59;T — 9y (x0xT) = v, (To — T) — y,E; 1)

Here x = x/n, with n being the plasma density and x the heat conduction of plasma
electrons; the latter is assumed here in the Spitzer-Harm approximation [15], i.e. kK = A, T2
with A, = 109V ~2%cm~1s71; the former term on the right hand side (rhs) is the heat
source, maintaining T (f < 0,x) = Ty in a steady equilibrium; the latter term is the localized
energy loss activated at t > 0 in the region Ly — . < x < Ly with §; < Ly; this is assumed
dependent on the electron temperature, v; = vgexp (—E;/T), to take into account that the
excitation rate drops sharply if the electron temperature reduces below the excitation energy
E; of injected particles. The boundary condition correspond zero heat conduction through
the borders of the computation domain, 9T (t,x =0) = 0,T (t,x = Ly) = 0.

Henceforth the temperature profile is characterized by its values averaged over the hot, 0 <
x < Ly —d¢, and cooled, Ly — : < x < Ly, zones of the plasma stripe:

Ly—5. Ly

d d
(T = O/ T o (M= /5 Tt 5 @
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Figure 2. The time evolution of the temperature values averaged over the hot (a,c) and cooled (b,d) zones, computed
by solving equation (1) numerically for v, = 10*s~! (a,b) and vj, = 10%s~! (c,d), with different cooling rates vo.

Figure 2 demonstrates the time variation of (T), . computed by solving equation (1) with
numerical methods outlined in Ref.[16], for different combinations of the parameters v;, and
vp; other parameters involved into the problem are typical for the SOL plasma in TEXTOR
with injected carbon impurity: Ly = 10m, J; = 0.1m and E; = 1.26eV. The main conclusion
from these results is the existence for sufficiently large vy of phase with sudden acceleration in
the temperature drop in the cooled zone. This fact is related to a cooling instability predicted
in references [17, 18] on the basis of zero-dimensional models and discussed deeper below.

2.2. Two-zone approximation

As it was claimed above the main aim of the present study is to develop reduced models to
describe global impacts of local cooling in three-dimensional configurations. This would give a
possibility to model phenomena in question without direct 3-D non-stationary calculations,
being presently out of possibilities of even the most modern computers. An important
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Figure 3. The time evolution of the temperature values averaged over the hot (solid curves, crosses and circles) and

cooled (dashed curves, boxes and triangles) zones, computed by solving equation (1) numerically (curves) and by using
TZA equations (symbols) for v, = 10*s7! (a) and v}, = 10%s~! (b), with different cooling rates vp.

element of this complex of models is a two-zone approximation (TZA) of the transport
on magnetic surfaces.

The latter is dominated by transfer along magnetic field lines
and therefore it is instructive to start with elaborating of such an approximation in the

one-dimensional case. By integrating equation (1) over the hot and cooled zones we get
the following ODE, governing the time evolution of (T), and (T)_:

159 (T + —— s = 3)

159 (T) — 25 = vy (To = (T)e) — (). i @

Here g;,. is the density of the heat flux conducted from the hot zone to the cooled one. To
assess this approximately we apply approaches developed in reference [19] and proceed from
equation (1) in the form:

dx (x0xT) = Q ©)

with the term Q combining all other contributions in equation (1) besides the heat conduction
one. The main assumption of the two-zone approximation is: in both zones Q can be
approximated by some a priory unknown functions of time, Qy, () and Q. (), respectively,

being independent of x. Under this assumption equation (5) can be analytically integrated
for x ~ TP. By exploiting the continuity of T and 9, T at the zone interface, we get:

T(t,OSxSLx—(SC):Th(t)(ph<(;’E i )

L — o (©)
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dc

where T, = T (t,x =0), T, = T (t,x = Ly) and the functions ¢;, and ¢, of 0 < ¢ < 1 are
given by the relations:

T(t,Lx—(SCgngx)zTC(t)¢c<§ELx_x) )

1/(B+1)
op = {1— (1—913“) (1—i—c> 62} , P = [1+ (1/0ﬁ+1—1) i—cf;" 8

X X

2} 1/(B+1)

with 6 = T;/Tj,. The temperatures at the stripe edges, Tj, and T, have to be related to (T),
and (T). according to the definitions (2). With the profiles obtained above we get

Th,c = <T>h,c / <‘P>h,c

and 6 is determined from the transcendent equation

o — (D (90, (6)
(T 9). (©)

Finally, for the Stirzer-Harm formula for the heat conduction, with g = 2.5:

th 7 Lx (9)

In figure 3 we compare the time variation of (T), and (T), calculated from equations (3)
and (4) with those found by direct numerical integration of equation (1). The agreement
between two approaches is nearly perfect, both for low and for high level of the cooling.
Thus the relation (9) for the heat outflow from the hot zone to the cooled one provides a
firm basis to describe local and global heat transfer induced by a strongly localized cooling.
By concluding this subsection we discuss shortly the phenomenon of cooling instability.
It develops since the heat conduction influx into the cooled zone becomes saturated with
reducing (T) ., see equation (9), and cannot compete with the local cooling there if vy is large
enough. The existence of a threshold for cooling instability is demonstrated in figure 4 by
the time variation of (T). computed in the TZA for different magnitudes of vy: there is a
characteristic change in the behaviour of the cooled zone temperature occurring by a slight
change of vp in the range 7.2 — 7.8 x 1075~ 1.

2.3. Assessment of other approximations

Consider now the role of physical effects neglected in equation (1): heat transfer by
electron-ion coulomb collisions, particle convection caused by the pressure drop in the cooled
plasma zone, the induced change in the plasma density, etc. For this purpose we use now the
following system of equations, describing the evolution of the electron and ion temperature
T, and T;, respectively:
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Figure 4. The time evolution of the temperature value averaged over the cooled zone and computed with slightly
different cooling rates vg in the vicinity of the cooling instability threshold.

1.50¢P; + 9x (2.5TT; — x;0-T;) = nvy, (Top — T;) + Q. (11)
where P,; = nT,; are the pressures of the plasma components, Q,; = 3,2" % (T, — T;) is

collisional heat exchange between electrons and ions, with m, and m; being the electron
and ion masses, correspondingly, and T,; ~ T€1'5 /n the time between electron-ion coulomb
collisions. The plasma density n and the particle flux density I' are governed by particle
continuity and momentum conservation equations:

o + 0, = vy, (ng — n) (12)
2 )
9T + O (r_ +nM> = —yT (13)
n m;

with the terms in the rhs of equations (12) and (13) ensuring the stability of the stationary
state with n = np and I' = 0 before the initiation of the local cooling. The boundary
conditions to equations (12) and (13) correspond to the impenetrability of the stripe borders
for particles, I' (f,x =0) =T (t,x = Ly) = 0.

The TZA for the system of equations (10)-(13) follows from the averaging of them over the
hot and cooled zones:

L5, (P + 725 = v (o To— () = e (=) (19
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rwman—%“:wxmnm—uwa—&m<f«n—n»—wwmﬁz (15)

5 m \ T
159; (P)), + Lj}f"’(sc — v, ((n), To— (P)y) + 3;;1 <% (T - Ti)>h (16)
1.50; (P}), — q(’;—zl = vy ((n). Ty — (P)) + BT'ZE <% (T, — Ti)>c (17)
30 )y + 5 = i o — () (18)

0 ) = £ =, (0 — (m),) (19)

3 (T) + Fee - Pic = Fon = Pin _ _,- (T) (20)

Tl’lle

where I}, is the density of the particle outflow from hot to cooled zone and (I') =

fOL" I'(t x) ‘z—f. To relate the parameters at the zone edges, fj, .., with those averaged over
zones, (f), ., we apply an approximate approach similar to that outlined in the previous
section. We start by relating (I') and I'j. =T’ (t,x = Ly — J.). For this purpose equation (12)
is represented as d,I' = S where the source/sink term S is assumed as independent of x in
each of the zones. With zero boundary conditions at x = 0, Ly this results in:

].—‘(Lx_5CstLx>:rhC(Lx_x)/5c

and T’y = 2(T'). Equation (13) is represented as 0y [nn (T + T;)] = F. The term on the rhs is
mostly determined by the flux density I' and the x-dependence of F in the zones is the same
as in the relations above. Straightforward calculations result in the following density profile:

T, ‘ T T;
n(Ly =0 < x < Ly) = Mq)(sﬂanLfc(l—(Pc)

where ¢y, <(’§ = Lv’i&) = (1 — f—i) & and ¢ (C = Lxé—:x> = f—;éz. With relations (6) and (7)
assumed for the temperature profiles of electrons and ions we get:
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1 1
/ eh + Tzh (;: 0 __ Tec + Tic dC/
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/ eh"—Tzh Czd(: 2 _ T€C+T1'C Czdg
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Finally, for the pressures of the plasma components we obtain:

<Pez>h eh + ch) (Uf(z),ih o qg,ih) + (pec + Pic) Uez,ih'

<Pe,i>c = (Pec + Py) (772,1'(: - 773,1'(:) + (P, + Pipy) 77ez,ic
with

1 1

g g

0 0

Ne,in = / TiehPieh ’ r Mejic = / TiecPiec ”
1 + ezh(Pe ih 0 1 + Te,ic(Pe,ic

and

| 1
176,1]’[ Lx 1 + i ehqbl en 17@/1C L 1 + i ec(PI ec

Te 111472 ih e zc(}be ic

The ion heat conduction has the same temperature dependence as the electron one, x; =
A,-Ti2'5, but A; is by the factor \/m,/m; ~ 0.016 for deuterium plasmas smaller than A,.
Therefore the ion temperature, being reduced in the cooled zone by collisions with electrons
cannot drop in the hot zone so fast as the electron one. Through e — i collisions in the
hot area this may slow down the drop of (T,),. However due to smallness of the mass
ratio m,/m; coulomb collisions are very ineffective for the heat transfer between the plasma
components. This confirmed by the results of calculations presented in figure 5 and by
comparing them with those in figure 3. Again, the agreement between the time evolutions
of (T,),, and (T,). computed by direct numerical integration of equations (10)-(13) and that
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Figure 6. The tokamak geometry: x is the direction of the magnetic field whose lines of force create a closed magnetic
surface of the minor radius r. All physical quantities are periodic in the toroidal and poloidal directions, z and y,
correspondingly.

found from TZA equations (14)-(20) is nearly perfect. The results for (T;),, (Ti).,(n), and
(n), are less satisfactory, but also in this case the difference between the exact and TZA
solutions is tolerable and does not exceed 20 %.

3. Two-dimensional configuration

In this section we consider transport along closed magnetic surfaces in fusion devices to a
small cooled area on the surface and generalize the TZA on this case.

3.1. 2-D heat conduction equation for heat transport on a closed magnetic surface

In magnetic fusion devices, e.g., tokamaks, electric currents, flowing both in external
coils and inside the plasma, produce magnetic field components both in the toroidal and
poloidal directions and lines of force generate closed nested magnetic surfaces, see figure
6. The charged plasma constituents, i.e. electrons, deuterium-tritium and impurity ions, are
magnetized. This allows to confine them inside the plasma volume during times exceeding
by many orders of magnitude those spent by particles, moving with their thermal velocities,
to wrap magnetic surfaces very tightly. Due to this fact the temperatures of the plasma
components are normally very homogeneous on the surfaces. However, if there is a very
localized position where plasma is suddenly cooled down, the temperatures may become
strongly inhomogeneous and it is of interest to know how promptly the whole surface will
get cold in response to the local distortion. Even under the dominance of heat transfer
along field lines the heat conduction to the locally cooled area cannot be straightforwardly
described by a one-dimensional equation (1). This is because the majority of magnetic
surfaces is non-resonant so that a field line does not close on itself and makes infinite number
of turns around the surface before two points on the line come infinitesimally close each
other. Thus, the coordinate x along the magnetic field is not periodic and no boundary
conditions can be imposed for equation (1). Nonetheless, one can introduce two periodic
coordinates on the torus: z, aligned along the toroidal direction, and y - along the poloidal
one. The periods for this coordinates are L, = 27tR and Ly = 27tr, respectively, with r and R
being the minor and major radius of the toroidal surface. In the coordinates z and y equation
(1) has the following form:

211
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Figure 7. The time evolution after the start of MGI of the electron temperature averaged over the hot zone on the JET
separatrix, computed with Spitzer-Harm formula for heat conduction for v, = 10?s~! the solid curve has been obtained
by solving equation (21) numerically, the dashed curve and symbols - by using TZA equations (22)-(24) without and
with the correction of Sc in equation (24), respectively.

1.59;T — cos? 9. (x0-T) — sin® dy (x9,T) — (21)
—sinycos [dy (x0:T) + 0z (x9yT)] = vy, (To — T) — v, E|

where 1 < 1 is the inclination angle of the magnetic field to the toroidal direction z. The
last cooling term is localized in the area |L,/2 —z|, |L,/2 —y| < 6./2. By discretizing the
derivatives with respect of one of coordinates, e.g., y, one reduces equation (21) to a set
of one-dimensional PDE, similar to equation (1), which are solved by the same numerical
approach. To construct a TZA for equation (21) we start again from equation (1). The only
difference to the one-dimensional situation is that in the present case one does not know
a priory the length Ly of the field line connecting the cooled zone with the hot rest of the
surface. In reference [12] this is estimated by employing a principle of minimum entropy
production [11]. By neglecting viscous and friction forces, the volume density of the entropy
production rate is given as x (d; In T)? [20]. For fixed T}, . the total entropy production rate in
the parallel stripe is © =~ é.q;,, with the heat flux density from hot to the cooled zone g;,. given
by equation (9). Thus © is decreasing with increasing Ly and approaches its minimum when
Ly reaches its maximum value corresponding to a parallel stripe covering tightly the whole
magnetic surface. This corresponds to Ly = L;Ly/ (26;) = Ss/ (24/S¢), where S5 = 472rR is
the total area of the magnetic surface and S, = 4?2 the area of the cooled zone. For the time
evolution of the temperature values averaged over the hot and cooled zones on the magnetic
surface we get:

159 (1)), + — Qe

(% —50) = v, (To — (T)y) (22)
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Figure 8. The calculated two-dimensional profile of the electron temperature at t = 0.3us
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16A, S
Qe = e Oc (T,f'5 _ Tc3'5> (24)
7 Ss

As an example of applications to 2-D configurations we consider experiments with massive
gas injection into the tokamak JET to mitigate plasma disruptions [21, 22]. Calculations have
been performed for the conditions on the magnetic separatrix between the confined plasma
region and the SOL, with R = 3m and r = 1m, the initial values of the electron temperature
and density as in the shot 77808 with MGI into the H-mode plasma [22]: ny = 109m 3
and Ty = 250eV; the cooled area is a square with a side of 1m, i.e. S¢ ~ 0.01S;, where the
density of argon atoms is increased instantaneously up to 2 x 10%*m~3. Curves in figure
7 represent the computed time evolution of the electron temperature values averaged over
the hot zone found by solving 2-D equation (21) and 0-D TZA-equations (22)-(24). There
is a noticeable difference between the results of both approaches, much larger than in the
one-dimensional case discussed in the previous section. The cause of this discrepancy can be
understood by looking on the calculated two-dimensional profile of the electron temperature
displayed in figure 8. One can see that there is a very sharp gradient of the temperature at
the border of the cooled zone, corresponding to LT = |T/0,T| < .. For the heat conduction
k ~ TP the TZA approach predicts L > . (B + 1) /2 at this position, i.e. Lt > 75./4 for
the Spitzer-Harm approximation used above. This means that the area of the cooled zone is
actually reduced in the TZA compared with that following from 2-D calculations. One can
improve TZA predictions by increasing S¢ in equation (24). Indeed, the TZA results obtained
for the cooled zone enlarged by a factor of 4 are presented in figure 7 with stars and agree
with 2-D calculations very good. As a rule of thumb one can estimate the enhancement factor

for S; in equation (24) as 1+ (B + 1)2 /4.

213
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3.2. Heat flux limit

Calculations in the previous section predict that after the initiation of the localized cooling
the whole magnetic surface is cooled down during a time shorter than 10us. This is in
a striking disagreement with the experimental data showing that such a global cooling
requires at least half a millisecond. A possible cause for this discrepancy may be rooted in
the fact that the Spitzer-Harm formula xsy has been used for the electron heat conduction.
This approximation is deduced in the limit of a very small mean free path length between
coulomb collisions for thermal particles, Ay, compared to the characteristic dimension for
the temperature change Lr; it results in the heat flux density g, = qsg = —xgg0dyxT. Since
ksu ~ T°/? the heat conduction increases very fast with rising temperature. However,
Ay, ~ T2 for coulomb collisions of charged particles. Thus, the SH-approximation can be
violated in the case of strong local cooling where the temperature in the cooled zone drops
much faster than that in the hot one and a region with strong temperature gradient arises.
Actually, the SH-approximation is violated already if the free path of particles carrying heat,
Anep, exceeds L. The energy of such particles is by an order of magnitude larger than T and
Apep = 100Ay,. In a collision-less limit, Ay., > Lt, heat is transported because more hotter
particles escape from the region in question compared to colder particles entering it. This
would lead to a free-streaming heat flux with the density g, = qrg ~ nT3%/2/\/m [23, 24].
However, interpretation of laser fusion experiments [13] and experiments with heating of
magnetic islands in TEXTOR [25, 26] led to the conclusion that for electrons this heat flux
level is strongly reduced by the so called heat flux limit (HFL) factor, 0.02 < ¢y < 0.1.
Two physical mechanisms can explain such a strong reduction of g.. First, non-local effects
in collision-less plasma reduce the perturbation in the distribution function caused by the
temperature gradient and resulting in heat conduction [27]. Second, light electrons are
braked by the ambipolar electric field, arising because heavy ions lag behind electrons
and a charge separation is induced [24]. A smooth transition between collisional and
collision-less limits can be described by the formula [13], e = ¢yrr9rsqsu/ (CHELGES + GsH),
and resulting in

KsH
~ = — 2
Ke N KHFL = 7 Myep /L1 (25)

The dependence of «, in equation (25) on the temperature gradient makes the procedure of
numerical integration of equation (1) very unstable. This is extremely exaggerated by the
fact that g, becomes actually independent of the temperature gradient for A, > Lt, i.e., the
heat flow is convective and the heat conduction equation (1) becomes actually an equation
of the first order. Therefore, often the relation (25) is approximated by a simple decrease of
ksy. Here for rough estimates we assume Lt ~ Ly. For the parameters on the JET separatrix
we get Ly ~ 55m < Ape, ~ 6250m, and equation (25) provides x = x/n ~ 109m~1s1.
Thus, the characteristic time for cooling of the magnetic surface t,, ~ L2/x = 0.3ms, in
good agreement with the experiment [21, 22], especially by taking into account that the
electron temperature and x are reducing as the cooling progresses. Another argument for
the relevance of the equation (25) is the fact that for /\hcp > L it provides x ~ VT and, thus,
teoo1 depends weakly on the experimental conditions. This agrees with the experimental
observation [21, 22] showing that t.,,; is practically the same for the magnetic surfaces with
the initial temperatures of 250eV and 400eV. For k., ~ xgp this would result in ¢.,,; differing
by a factor of 3.
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Figure 9. The time evolution after the start of MGI of the electron temperature averaged over the hot zone on the JET
separatrix, computed with the heat flux limit for v, = 10%s7!; the solid curve has been obtained by solving equation
(21) numerically, the dashed curve and symbols - by using TZA equations (22)-(24) without and with the correction of
Sc in equation (24), respectively.

To generalize the TZA by including the HFL, we estimate Ay, at T = (T, + Tc) /2 and
assume 1/Ly = (T, — Tc) /Ly/T. This results in Ay, /Ly = 0.05 (T2 — T2) / (nLy), where
the temperatures are measured in electron-volts, plasma density - in 10”m =3 and Ly -
in m. Since now x ~ +/T, one would expect that a significantly smaller, compared to
the temperature dependence of kgp; ~ T°/2, increase of the cooled zone area in the TZA
approach is necessary to reproduce well the 2-D calculations. Figure 9 shows the time
evolution of the (T),, calculated for the conditions at the JET separatrix, by taking into account
the approximate assessment above for the heat flux limit. One can see that both 2-D and
corrected TZA approaches reproduce well the found experimentally [21, 22] characteristic
time of 0.5ms for the temperature drop far from the cooled area.

4. Three-dimensional configuration

4.1. Basic equations

The TZA elaborated in previous sections for 1-D and 2-D situations provides a basis for
modelling with reasonable accuracy and CPU time of the global response on a local cooling
in a three-dimensional case, e.g., by injection of impurities into a tokamak plasma. The 3-D
heat transport equation for electrons has the form:

9t (1.5n,T,) + 0 (rqr) /7 — cos? Yo (KHGZTE) — sin? oy (KHGyTe) (26)

—sinycos [ay (KHazTe) +0; (KHayTe>} = Qn — Qloss
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Here we take into account that in fusion devices the electron density 1, varies with the
third coordinate, the minor radius r of magnetic surfaces, and the parallel heat conduction
of electrons, K||s is used in this equation instead of the heat conductivity x = «x/n used in
equation (1). The heat flux density across the magnetic surfaces includes both conduction
and convection contributions:

qr - _KyarTe + 1.5rrTe

where «x, and I'; are the heat conduction and density of the electron flux in the radial
direction; Qy, is the density of heating power due to different mechanisms, such as Ohmic
dissipation of the plasma current, energetic neutral beams, radio-frequency electromagnetic
waves, etc.; henceforth the r-dependences of x,, I, and Qj are prescribed and assumed
constant in time. The localized cooling is described by the term Q),s;. Before its initiation
at t = 0 the quasi-stationary state is maintained by the balance of heating and radial
heat outflow toward the plasma edge. In the SOL region, rs < r < ry, where 75 is the
radius of the last closed magnetic surface (LCMS) and r,, that of the device wall, the heat
is additionally lost along the magnetic field lines to limiter or divertor target plates. The
boundary conditions to equation (26) are imposed at the plasma axis, r = 0, where 9,T = 0,
and at the wall, = ry, where the so called e-folding length J7 is fixed and 9, T = —T/ér.

By deducing the TZA-equations for (T), . (t,r) we have to take into account a possible
variation of the cooled and hot zone areas, S; and S, = Ss — S, respectively, with t and
r. The averaging of equation (26) over the zones results in:

0t (1.5Spme (Te)y,) + Spoy [r (—xr0y (Te)y, + 1.5T, (Te)y,)] /17 = (27)
=5, (Qn — Qsor) — Que

0t (1.5S¢ (n,Te),) + Scor [r (—xr0y (Te), + 15T, (Te) )] /7 = (28)
=S¢ (Qn — Qsor) Qne — Wipss

where Qgoy, is non-zero for r; < r and gives the heat loss to the target plates, see reference
[28]; the heat outflow to the cooled zone is computed by taking into account the heat flux
limit and the correction due to smoothing in the TZA of the temperature gradient at the
border between zones:

T}?.S - TC35
5 + 0.1

the plasma density in the hot zone is assumed unchanged, but if the local cooling is caused by
the injection of neutral particles, 1, may be modified in the cooled one due to the ionization
of these particles; W, is the integral of the loss term Q),¢; over the cooled zone.
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Figure 10. Spreading in the plasma of impurity (carbon) particles released from the wall by LIAS.

4.2. Example of application: Plasma distortion by laser-induced
ablation spectroscopy

Laser-based diagnostics have been proposed to measure and monitor in situ the composition
of layers on plasma facing components (PFC) [4]. By laser-induced ablation spectroscopy
(LIAS) a short, in nanosecond-range, intense laser pulse is directed at the PFC during a
plasma discharge. Particles of the PFC material, released into the plasma, are excited and
ionized by electrons. By measuring the intensity of impurity line radiation, one can assess
the amount of particles emitted and judge about the wall composition. To interpret LIAS
measurements local plasma parameters, especially the electron density and temperature,
have to be known. Normally the parameters, measured somewhere at the plasma edge before
the LIAS application, are used. However, processes with particles released from the wall may
lead to significant disturbances in the plasma: the energy loss on the particle excitation leads
to reduction of the electron temperature, the delivery of new electrons by the ionization -
to the increase of their density. An assessment of such perturbations is of importance for
quantitative interpretation of measurements [29].

Consider the spreading of carbon particles released by the laser pulse from the wall, see
figure 10. The penetration depth of these species is usually significantly smaller than the
radius 7, of the wall element in question. Therefore, it is convenient to use an orthogonal
coordinate system with the axes r, directed from the plasma to the injection spot, x and y,
being tangential to the magnetic surface and oriented parallel and perpendicular to field
lines, respectively, see figure 10. The velocity distribution of neutral particles is identical in
the directions x and y and the distribution function can be characterized by its dependence
on the velocity components V, and V, in a cylindrical reference system with axes r and

p = v/x% + y2. At the wall the fraction of such particles in the total density ng of neutrals is
f (Vi, V) dV,dV,, where the distribution function f (V;,V,) is assumed as a Maxwellian one
at the temperature Ty with respect to V, and a one-side Maxwellian, shifted with the drift
velocity Vi, for V; [30]:

(Vi + Vin)* + V2
2
Vih

4V,
VAL erf (Vud V)] V,

f (Vi V) = - 30)

exp

Here Vy, = +/2Ty/m, with m being the particle mass, and the form-factor arises due to the

normalization | _Ooo av, f0°° f (Vi,V,)dV, = 1. The density dng of neutrals with the velocity
components in the ranges dV;, and dV), is determined from the continuity equation:
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Figure 11. The radial profiles of the electron density (solid curve), temperature (dashed curve) and heating power
density (dash-dotted curve) used by the modelling of the spreading process of carbon particles released by LIAS.

drdng + Vidrdng + (Vo /p) x p(pdng) = —k3 nedng (31)

won

where k?on is the ionization rate coefficient. An approximate solution of equation (31) is
searched for in the form:

dng(t,r,p) = dno(t,r) X exp [—pz//\2 (t,r)] (32)

This form of the solution mimics the fact that on each magnetic surface the density of injected
neutral particles is localized in some vicinity of the ejection position and decays to zero far
from this due to ionization.

Introduce new dependent variables:
dNy(t,r) = /dn027tpdp = A%dyg (33)
0
dNo(t,7) = /dn027rp2dp = ?)\ng
0

Equations for dNy(t, r) and dAq(t,r) follow from the integration of equation (31) with respect
to p with the weights 27tp and 2702, respectively, and with dng substituted in the form (32):

9;:dNp + V,0,dNy = —k%. n.dNp (34)

won

OrdNg + Vy0rdAg = VopdNy — kY 1ed Ag

won
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Figure 12. Time evolution of the cumulative energy radiated by C* ions calculated with (solid curve) and without
(dashed curve) taking into account the plasma distortion by LIAS.

The boundary conditions at the wall take into account that no particles are released after the
irradiation pulse, i.e. dNg (f > 0,ry) = dAg (t > 0,7,) = 0, since the release occurs during
a time by orders of magnitude shorter than a typical time step T in calculations. The latter
has to be, however, chosen so that the distance s = 7|V;| covered by particles in the radial
direction during one time step is significantly smaller than their free path before collisions
with electrons. In such a case the actual initial radial profile of dng is of no importance. Here
we assume that at t = 0 all particles fill homogeneously the first sell, r,, —h < r < ry, but
practically the same results are obtained for other assumptions, e.g. for the initial density
profile decaying exponentially with s assumed as the e-folding length; along the wall the
source region is localized in the irradiated spot with the radius pg. For the variables dNy and
dAg this results in the following initial conditions:

N;l‘” f (Vi, V) dV,dVy; dAg (0,7) = gpodNo (0,7)

dNog (0,1 —h <7r) =

where Ny is the total amount of injected particles. With known dNj (¢,7) and dAg (t,r) one
can obtain the original parameters characterizing the local density of neutrals:

(dNp)® 2 dAg
CA(tr) = =220
1) = Ny

o (t,r) = (35)

The p-profile of the total density of neutral particles is approximated analogously to the
relation (32)

no(t,,p) = o(t,7) x exp [~/ A3 (t,7)] (36)
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Figure 13. Calculated time evolution of the electron temperature (solid curve) and density (dashed curve) induced by
LIAS in the cooled zone at the last closed magnetic surface.

where the maximum density o (t,7) = [dio (V;, V) and the radius of the localization
region is defined by conserving the total number of particles on the magnetic surface,

No (t,T) = deo (Vr, Vp)l
Ao (1) = | /% 37)

The area of the cooled zone is assumed henceforth to be equal to:

Sc (t,r) = A3 (t,7) (38)

The characteristic time for LIAS is of 10us. According to figures 5b,c it is too short for
a noticeable reaction of the main ions and their density n; is considered as unperturbed.
The electron density n, may be, however, significantly distorted by the generation of new
electrons through the ionization of impurity neutrals; due to the plasma quasi-neutrality one
has n, = n; + ny. Here n; is the density of singly charged impurity ions assessed by solving
fluid transport equations:

0inq + 0, 1, + 0xT1y = kO 1eng — kb nemy (39)

won won

0T x + 0r(T1,T1x/11) + 0x (T3 1y /11 + 11Ty /m) = (40)

= —k}on”erl,x +eni1Ey/my

where I'1, and I'y, are the components of the impurity ion flux density along the magnetic
field and in the radial direction, respectively, m is the ion mass and the parallel electric field
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E. is determined from the electron force balance

eneEx - _ax (ﬂng)

In this study, by solving equations (39) and (40), we apply the ‘shell” approximation, see
references [7, 8], to find the profiles of n; and I'; , along the magnetic field. Due to the rapid
decay of the plasma distortion induced by the outburst of impurity neutrals the temperatures
of the main and impurity ions do not change noticeably, and only the change of the electron
temperature is modelled by solving the TZA equations (27)-(29). The energy losses due to
inelastic collisions with impurity species is assessed as

Wigss = <n€>c 2 Nj (L]C + kzonEgon>
=01

where Nj(t,r) is the total numbers of impurity singly charged species on the magnetic
surface per unit length in the direction r, provided by the “shell” model for impurity

spreading; L. and E{. are the cooling rate and the ionization energy of the species,
respectively [31]. Calculations have been performed for the conditions of LIAS in Ohmic
TEXTOR discharges, see reference [4] and the radial profiles of the plasma parameters before
the LIAS application are presented in figure 11. The laser radiation has been concentrated on
a wall spot with fine grain graphite bulk material of 0.15c¢m? area and pg ~ 0.22cm; typically
Niot ~ 1017 carbon atoms were released per pulse. Time of flight measurements are well
interpreted by the velocity distribution (30) with Tp ~ 1.5eV and V};, = 8.7km s~L. The results
of LIAS are normally quantified by measuring the total radiation emitted by C* species with
a particular wave length [4]. To calculate this one has to apply a firm collision-radiation
model that is out of scope of the present study. In figure 12 we display the cumulative
energy radiated till time f by singly charged carbon ions, W,,;, calculated without and with
the plasma reaction taken into account. One can see that in the latter case the rise of W,,; is
significantly delayed but the overall emitted energy is much higher. The delay is explained
by the plasma cooling through losses on radiation and ionization of impurity neutrals and
significant decrease of the ion excitation rate; the larger cumulative ion radiation - by the
increased electron density and growth of the ion cooling rate L! as the temperature in the
cold zone recovers due to the heat transfer from the hot zone. The time variation of (r,), and
(Te), at r = rs = 0.465 is shown in figire 13. The results presented show that by interpreting
the LIAS measurements one has to take into account distortions in the plasma parameters
induced by the diagnostic itself.

5. Conclusion

Very localized injection of neutral particles of the working gas and impurities routinely
happens in fusion devices, both in deliberate and accident ways. For example, by using
laser-based diagnostics the particles resided in thin surface layer on the wall are released
within a short intense bunch. In the plasma they are excited by electrons, emit light
and, by measuring this, one can assess the total number of particles ejected and, thus,
judge about the wall composition. Puffing of the working gas for the plasma density
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control is also done through inlets of much smaller dimensions than that of the wall.
The time variation and three-dimensionality of the problem in question requires normally
the application of extremely time demanding modelling tools. In the present paper we
elaborate a two zone approximation, an approach which allows to reduce the problem to
solving of one-dimensional equations, describing the time evolution of the radial profiles
of the electron temperature values averaged over the cooled and hot zone, where energy
is dissipated in direct interactions with injected particles and transferred to the cooled
zone with parallel heat conduction, respectively. The elaborated TZA approach is tested
by comparing its predictions with numerical solution of heat conduction equation in one-
and two-dimensional configurations. In the latter case both numerical solutions and TZA
demonstrate the importance of the heat flux limit by interpreting the edge plasma cooling
caused by a massive gas injection in the JET tokamak. As an example of applications for
realistic three-dimensional configurations the penetration of carbon atoms released into a
TEXTOR deuterium plasma by a short laser pulse is modelled. It is demonstrated that for a
firm interpretation of measurements with the laser-based LIAS diagnostics one has to take
into account the modifications induced in the plasma by impurity particles released.
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