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Abstract

The concern regarding the safety of nanomaterials for the human body is constantly
raising. On one hand, there is an increase in the production of nanomaterials for
technological applications, which raises the risk of accidental exposure of the workers
during the technological manipulation. On the other hand, nanomaterials can be
designed for medical applications and their faith in the human body, along with their
interactions with different tissues, becomes of vital importance.

The mechanisms involved in nanomaterials toxicity are discussed, including
oxidative stress and inflammation. In vivo toxicity evaluation includes different routes
of administration or interaction between the nanomaterial and the organism, as well
as a short-term or a long-term exposure or evaluation. Also, the characteristics of
nanomaterials, including size, shape, impurities, function, surface coating in relation
to their toxicity, were discussed. A particular attention has been given to the evalua-
tion of the toxicity of dendrimers, silver nanoparticles, gold nanoparticles and carbon

nanotubes.

Keywords: toxicity, oxidative stress, nanoparticles, carbon nanotubes

1. Introduction

Research in the field of nanomaterials and nanotechnology has seen exponential growth in
recent years due to multiple applications in different areas such as molecular imaging, drug
delivery, engineering technology, and development of materials and medical devices for
diagnosis and treatment. Generally, the biological effects of nanomaterials depend on their
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electronic, magnetic, optical, and mechanical properties and also on their size, composition,
and shape.

However, the impact of these nanomaterials on human and environmental health is still
limited. Most studies have investigated only the effects of unintended exposure (inhalation,
medical procedures or accidental ingestion) and evaluated especially local effects, at the access
site [1, 2]. Nevertheless, due to the development of various biomedical procedures using
nanomaterials it is necessary to understand their potential toxic effects at systemic level.

An increasing number of studies published in the last decade have tried to decipher the
complexity of interactions between different types of nanomaterials and cells. Nanomaterials
usually get into the body either by inhalation and ingestion or transcutaneous [3, 4], most often
accidentally in the process of synthesis, through their usage, after wearing gold and silver
jewelry or by eating food containing gold. Nevertheless, the behavior of nanoparticles inside
the cells is still an enigma, and not all the metabolic and immunological responses induced by
these particles are completely understood. In addition, the conclusions obtained have been
variable and contradictory according to the type of nanomaterials used, their size, shape, and
surface chemistry. Based on the multitude of uses in pharmaceutical and medical applications,
a thorough understanding of associated systemic and local toxicity is critically necessary.

2. Nanomaterial design considerations

Generally, the nanomaterials toxicity has been thought to originate in size and surface area,
composition, and shape. Size influences the cellular uptake and response to nanomaterials,
their distribution and elimination from the body. It has been shown that nanomaterials with
small size have an exponential increase in surface area relative to volume, making the surface
more reactive in itself and to biological components from surrounding environment. Several
in vitro studies have shown that the latex nanospheres uptake into the nonphagocytic cells is
higher at small sizes (50 - 100 nm) and decrease with the increase of the diameter (over 200
nm) [5]. Usually, nanomaterials with small sizes accumulate mainly in certain tissues (spleen,
liver, lung, and kidneys) where they interfere with their biological functions [6, 7].

Chemical composition at the surface influences the chemical interactions of nanomaterials with
biomolecules. Most nanomaterials are functionalized on the surface in order to increase blood
circulation and to be more biocompatible for use in targeted therapy. Therefore, different
functional groups were added to the outside to allow a better interaction with biological
components and to aid the passage of nanomaterials in certain cells.

The phytochemical synthesis of nanoparticles using polyphenols from plants or fruits plays
an important role in the field of nanomedicine as it offers a safe alternative therapeutic
option. David et al. [8] synthesized silver nanoparticles using European black elderberry
fruits extract (Sambucus nigra - SN, Adoxaceae family). The new materials were tested in
vitro on spontaneously immortalized, human keratinocytes (HaCaT) exposed to UVB
radiation, in vivo on acute inflammation model, and in humans on psoriasis lesions. The
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results obtained demonstrated the anti-inflammatory effects of functionalized silver
nanoparticles both in vitro as well as in vivo. Thus, the bionanocomposites reduced cytokine
production induced by UVB irradiation and diminished the edema and cytokines levels in
the paw tissues, early after the induction of inflammation and presented long-term
protective effect. Silver nanoparticles functionalized with natural extracts applied on
psoriasis lesions exhibited anti-inflammatory effect [8]. Materials based on gold nanoparti-
cles and natural compounds extracted from native plants of the Adoxaceae family (Europe-
an cranberrybush — Viburnum opulus L. and European black elderberry — Sambucus nigra L.)
possessed anti-inflammatory activity, both in vitro as well as on psoriasis lesions, mainly
due to their high content of anthocyanins and other polyphenols [9].

The degradability of the material is also an important factor for acute and long-term toxicity.
Thus, the nondegradable nanomaterials can accumulate in cells, where they can cause
detrimental effects similar to those of lysosomal storage diseases. By contrast, the biodegrad-
able nanomaterials can undergo changes in cells and may lead to unpredicted toxicity due to
unexpected toxic degradation products. They can release toxic products in the biological milieu
leading to free radical formation and consequently to cellular damage. Recently, Champion et
al. have shown that phagocytosis of nanomaterials depends on the contact with materials and
consequently on their shape [10]. Thus, nanorods particles are less internalized in cells
compared to spherical materials [11]. Wang et al. suggested that the difference between cellular
uptake and cytotoxicity of spherical particles and nanorods depends on chemical compounds
used to stabilize the nanomaterials [12]. For example, cetyltrimethylammonium bromide
(CTAB), a cationic surfactant used to stabilize gold nanorods, can induce intracellular aggre-
gation and explain nanorods cytotoxicity compared to spherical particles [12, 13]. In order to
reduce nanorods toxicity other substances may be used: PEG, citric acid, and transferrin [11].

3. Mechanisms of nanomaterials toxicity

The most important mechanism of in vitro and in vivo nanotoxicity is related to the induction
of oxidative stress by free radical formation, directly into the acidic environment of lysosomes
[14]. Free radicals are released from phagocytic cells as a response to foreign material,
insufficient amounts of anti-oxidants, presence of transition metals, or environmental factors
[15]. The most exposed organs to nanomaterials are the liver and the spleen, especially due to
the prevalence of phagocytic cells in their reticulo-endothelial system. In addition, the organs
with high blood flow such as kidneys and lungs can be affected.

Hydrogen peroxide generated in vivo can react with silver nanoparticles and lead to releasing
of Ag"ions [16]. In excess, free radicals cause the damage of cellular macromolecules through
the oxidation of lipids, proteins, and DNA. Injury of cell membranes results in leakage of
cytoplasmic contents and necrosis, whereas rupture of lysosomal membranes can induce
apoptosis. In addition, the reactive oxygen species (ROS) can stimulate the inflammation
through up-regulation of redox-sensitive transcription factors (nuclear factor kB — NF-kB,
activator protein-1 — AP-1), and mitogen-activated protein kinases (MAPK) [15].
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Intracellular, nanomaterials may interact with different components, especially with mito-
chondria and nucleus, considered as main sources of their toxicity. Nanomaterials such as
metal nanoparticles, fullerenes, and carbon nanotubes are located in mitochondria and induce
apoptosis and ROS formation [15]. The effect on nuclear DNA leads to nuclear damage, cell-
cycle arrest, mutagenesis, and apoptosis. The action is due to the diffusion of nanomaterials
into the nucleus and formation of ROS, which directly trigger DNA damage and induce
chromosomal abnormalities [3]. Silver nanomaterials significantly up-regulate the gene
encoding thiore-doxin-interacting protein (Txnip) and determine mitochondria-dependent
apoptosis [17]. On the other hand, the oral silver administration did not induce micronucleus
formation in rats following 28 days of treatment [18], suggesting lack of short-term toxicity.

It was demonstrated that silver nanoparticles were able to bind to thiol (-SH) groups within
proteins and promoted their denaturation [19] including antioxidant enzymes such as
superoxide dismutase and glutathione peroxidase. In blood, silver binds to albumin and
decreases its ability to transport [20]. Gold nanoparticles can induce genotoxicity and block
the transcription due to their ability to bind to DNA [21]. Some nanomaterials can stimulate
the up-regulation of nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) and
xanthine oxidase in macrophages and neutrophils and generate free radicals. After absorption
into the systemic circulation, the nanomaterials interact either with blood components and can
lead to hemolysis and thrombosis or with the immune system and produce immunotoxicity.

Cho et al. [22] have shown that PEG-coated gold nanoparticles caused a transient inflamma-
tion and induced acute liver influx of neutrophils in parallel with increase of adhesion
molecule levels (ICAM-1, E-selectin, and VCAMS-1), chemokines, and inflammatory
cytokines (IL-1f3, IL-6, IL-10, IL-123, and TNF-a) in liver up to 24 hours. Moreover, Lanone
et al. suggested that intermediate metabolites of nanomaterials generated in the liver can
contribute to hepatotoxicity [6]. Abdelhalim and Jarrar have shown that gold nanoparti-
cles (10, 20, and 50 nm) administered for 3 or 7 days induced alterations in the hepato-
cytes, portal triads, and sinusoids. The changes were size-dependent and related with time
exposure of nanoparticles and were explained by interaction with proteins, hepatic enzymes,
and local antioxidant defense system [23].

4. Assessment of nanomaterials toxicity

As current studies show conflicting results on safety and the biocompatibility of nanomaterials,
itis recognized that the validation of analytical methods used to determine toxicity is of major
importance. A complete evaluation of nanoparticles for therapeutic use includes thorough
physicochemical property characterization, biodistribution, and toxicity evaluation, both in
vitro and in vivo [24]. Transmission electron microscopy (TEM) and dynamic light scattering
(DLS) are commonly used techniques to measure the size and shape of nanomaterials in
biological systems and to evaluate their aggregation into cells [24, 25]. In vitro toxicity will
follow the cellular viability, apoptosis and oxidative stress markers, and genotoxicity.
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In order to evaluate the acute in vivo toxicity of nanomaterials, the Organization for Economic
Cooperation and Development (OECD) guidelines recommend oral toxicity test, eye irritation,
corrosion and dermal toxicity, and lethal Dose 50 (LD50).

For acute oral toxicity test, the mice receive orally colloidal nanomaterials at the limited dose
of 5000 mg/kg body weight (LDs;). The animals are observed for toxic symptoms for the first
3 hours and after 24 hours the number of survivors is noted. The animals are maintained and
observed daily over 14 days for skin symptoms (edema, erythema, ulcers, bloody scabs,
discoloration, and scars) and toxic signs (weight loss, water and food consumption, behavior).
At 1,7, and 10 days after exposure, skin biopsies are performed for histopathological evalua-
tions and blood is taken for biochemical (triglyceride, cholesterol, glucose, glutamic oxaloacetic
transaminase (GOT) and glutamic pyruvic transaminase (GPT)) and hematological investiga-
tions. All animals are sacrificed after 14 days and skin and liver are collected for routine
histopathological examination.

For acute eye irritation and corrosion test the animals are treated with 1.50 ppm and 2.5000
ppm colloidal nanoparticles, respectively [26]. Briefly, 0.1 ml of colloidal suspension was
placed in the conjunctival sac of one eye/animal and the other eye serves as a control and is
treated with the same volume of distilled water. The animals are observed for toxic symptoms
at1,12,24,48, and 72 hours after administration. The eye reactions of conjunctivae respectively
cornea and chemosis are graded as recommended the grading system of OECD 405 guidelines.
The animals are maintained and observed daily over 14 days for toxic symptomes.

For acute dermal toxicity test the animals are randomly divided in three groups (n=3) as
follows: group 1 receives vehicle (distilled water) and groups 2 and 3, receive 50 and 100.000
ppm of colloidal suspension, respectively. All treated groups received the preceding chemicals
at 300pl/cm? All animal experiments were performed according to the Organization for
Economic Cooperation and Development (OECD) 434 guidelines (acute dermal toxicity-fixed
dose procedure) [27]. Briefly, colloidal suspensions are applied to a shaved area of skin, an
approximately 4 x 3 cm rectangle, then the area is covered with a dressing and non-irritating
tape for 24 hours. After 24 hours of exposure, the dressing is removed and the treated area is
gently washed with physiological saline and the number of survivors is noted. The animals
are maintained and observed daily over 14 days for skin symptoms (edema, erythema, ulcers,
bloody scabs, discoloration, and scars) and toxic signs (weight loss, water and food consump-
tion, behavior). At 1, 3, and 7 days after exposure, skin biopsies are performed for histopatho-
logical investigations. All animals were sacrificed after a 14 days observation period and skin
is collected for routine histopathological examination.

Maneewatttanapinyo et al. observed in an acute toxicity study of colloidal silver nanoparticles
that the oral administration of particles at a limited dose of 5.000 mg/kg produced neither
mortality nor acute toxic signs during 14 days. All the hematological and biochemical analysis
and the histopathological investigations did not show any differences between the groups
examined. The instillation of silver nanoparticles at 5.000 ppm determined a transient eye
irritation for 24 hours. The skin application of tested substances did not induce toxicity at the
macroscopical and microscopical level [28]. Another study showed that gold nanoparticles
functionalized with natural compounds extracted from native plants of the Adoxaceae family
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(European cranberrybush — Viburnum opulus L. and European black elderberry — Sambucus
nigra L.) had no toxic effects at the dermal toxicity test [9]. All the parameters evaluated showed
no significant changes in hematological, biochemical, and histopathological analyzes.

In addition, it is crucial to appreciate the biodistribution of nanomaterials. For this purpose,
the materials are conjugated with a label or organic dye that can be tracked in blood and tissue
at different time points. The methods have the disadvantage that the dye can be degraded in
time and limits its detection in long-term toxicity studies. In addition, it may interfere with the
metabolism of nanomaterials and transformation in intermediate compounds.

Moreover, the analysis of biomarkers of inflammation and oxidative stress would enhance
mechanistic studies into nanomaterial toxicity. For the evaluation of chronic toxicity and
carcinogenic potential of nanomaterials, the OECD guidelines recommend the administration
of substances for 12 and 24 months, respectively. After this period, the survival rate, the clinical
toxicity signs, animal behavior, tumor incidences, and histopathological findings in the liver,
spleen, kidneys, brain, ovary, and testis will be assessed.

5. In vivo toxicity of nanomaterials

5.1. Dendrimers

Dendrimers or cascade polymers represent a heterogenic class of compounds consisting of
linear or random-coil polymers such as polyethylene glycol, polylactic acid, polyglycolic acid,
dextrin, hyaluronic acid, chitosans, polyglutamic acid, etc. [29]. They have different chain
length and molecular weight, different chemical structures, and consequently different in
vivo behavior (biodistribution, pharmacokinetics, stability, and toxicity). Dendrimers offer
many advantages including spherical size, low viscosity, narrow polydispersity, and high
density, qualities for which they were used as good vehicles for drug or gene delivery.
However, their toxicity has not been systematically investigated.

In systemic circulation, positively charged dendrimers and cationic macromolecules can
interact with blood components leading to hemolysis [30], which may induce nephrotoxicity
and hepatotoxicity [31]. In fact, dendrimer toxicity is dose and generation dependent and is
related to the surface charge, the cationic dendrimers being more toxic than anionic com-
pounds. The toxicity of dendrimers is influenced by the nature of the terminal groups, and the
addition of inert polyethylene glycol (PEG) or fatty acids can reduce their toxicity and improve
biocompatibility [15].

5.2. Silver nanoparticles

Nanoparticles are defined as particles sized between 1 and 100 nanometers (107m) [32]. Silver
has been widely used in biomedical applications such as preservatives in cosmetics, textiles,
water purification systems, coatings in catheters and wound dressings. In the Woodrow
Wilson database of nanotechnology-based products, the most common nanomaterial descri-
bed is silver [33], thus suggesting an increased risk of its exposure [34].
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The properties of silver nanoparticles such as size, shape, surface charge and coating, agglom-
eration, and dissolution rate are particularly important for their biological interactions. Smaller
particles have a larger surface area and, therefore, have a greater toxic potential [34]. The rate
of particle dissolution depends on its chemical and surface properties as well as on its size and
is further affected by the surrounding media [35]. This process leads to surface oxidation and
releasing of cytotoxic silver ions.

Experimental data assigned silver nanostructures remarkably antimicrobial [36, 37], antiviral
properties [17] and also antitumor effect [38]. The antimicrobian activity led over the years to
the development of silver nanoparticles-based products, including textiles, food storage
containers, antiseptic sprays, catheters, and bandages. Therefore, it is necessary to evaluate the
adverse reactions associated with multiple ways of exposure to silver nanostructures. Recent
in vivo studies have shown a reproductive toxicity of silver structures on Caenorhabditis
elegans and thus draw attention to the toxicity of these compounds [17, 39]. In mice treated
orally with different sizes of silver nanoparticles 1 mg/kg body weight for 14 days, small
particles in brain, lung, liver, kidneys, and testis were found while large particles were not
identified in these tissues [40]. In parallel, the transforming growth factor beta (TGF-) levels
were significantly increased in serum in the same groups. In serum of mice treated repeatedly
for 28 days, with different doses of silver nanoparticles, increased levels of IL-1, IL-6, IL-4,
IL-10, IL-12, and TGF- in a dose-dependent manner were found, suggesting that frequent
administration may cause organ toxicity and inflammation in mice [40].

Several studies have revealed that silver nanoparticles might induce cytotoxicity in phagocytic
cells, macrophages, and monocytic cells, a process mediated by the generation of free radicals
and induction of apoptosis. These effects are mediated by the release of silver ions, the liver
being the major target organ, followed by the spleen, lungs, and kidneys [17]. In addition, silver
nanoparticles can alter the mitochondrial membrane and reduce mitochondrial potential,
determine glutathione (GSH) depletion, bind to DNA, and thus cause DNA strand breaks and
consequently affect DNA replication [41].

Also, silver nanoparticles induced cytotoxicity and apoptosis on HeLa cells [42], determined
cytotoxicty on Raw 264.7 cells [43], HepG2 (human hepatoma cells) [44], and human lung cell
line [45]. Cytotoxicity and harmful effects on fish cell lines, embryos, and adult fishes were
also induced [46]. On microorganisms as S. typhimurium and E. coli and cultured mammalian
cells (CHO-k1) silver nanoparticles exerted cytotoxic effect without to induce genotoxicity [47].

The effects of silver materials on inflammation have not been fully understood and are rather
contradictory. Some studies report an anti-inflammatory effect by suppressing cytokine
production while others notice the induction of pro-inflammatory cytokines in different
biological systems [48]. Several studies attested that exposure to silver induced the release of
proinflammatory markers such as TNF-a, macrophage inflammatory proteins (MIPs) and G-
CSF from macrophages [48, 49]. The persistence of cytokine production and signaling as
response to nanoparticles may lead to inflammatory diseases. Park et al. [40] suggested that
silver nanomaterials upon phagocytosis and internalization of silver in lysosomes released
silver cytotoxic ions.
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Figure 1. Mechanism of silver nanoparticles toxicity

The increased generation and utilization of silver nanoparticles in clinical practice facilitates
the human exposure via inhalation and consequently lung toxicity. Takenaka et al. [50] have
studied the biodistribution of different concentrations of inhaled silver particles. The particles
were identified in the alveolar macrophages and alveolar walls, in the nasal cavity and regional
lymph nodes even 7 days after their administration. Low concentrations of silver ions can be
measured in the liver, kidneys, spleen, brain, and heart, suggesting translocation from the lung
to other tissues. The authors concluded that nanoparticles were rapidly cleared from the lungs
as a consequence of their solubilization, especially less agglomerated forms, those with small
size.

Hyun et al. [41] have shown that chronic, repeated exposure to small size silver particles
increased the mucins production in nasal respiratory mucosa suggesting the importance of
mucus in defense against air pollutants. The respiratory exposure for 90 days to silver particles
[52] induced an inflammatory response in alveoli and alteration in lung function, independ-
ently of the dose used. Sung et al. suggested that nanoparticles were transferred into the blood
from the lung and then to the liver, olfactory bulb, brain, and kidneys. However, the data are
contradictory because similar studies have not identified toxicities in tissues after exposure to
silver nanostructures. Moreover, they could not specify if the silver was identified in tissues
as ions or particles. Another study showed that silver nanomaterials had negligible impact on
the nasal cavity and lungs [53]. The different results obtained can be explained by the varia-
bility of the synthesis methods, their various sizes, concentrations, and time exposures, the
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presence or absence of capping agents, and type of experimental design used. Hence, their
risks should be assessed on a case-by-case basis and require more extensive investigations.

Extensive use of silver nanoparticles in textiles and wound dressings allows the particle to
come into direct contact with the skin and can alter the structure and function of the skin. Most
research on dermal exposure to silver were focused on the study of clinical effects and less on
systemic toxicity. Therefore, the real consequences of silver nanostructure penetration in skin
need to be assessed. Tian et al. [54] have demonstrated, within an experimental model in
vivo, a better wound-healing ability of silver nanoparticles compared to silver sulfadiazine,
standard burn treatment, and compared the combination between amoxicillin and metroni-
dazole. The effects were superior, both from the cosmetic and functionality point of view. In
addition, the results suggested that silver nanoparticles exhibited more potent antibacterial
activity than other treatments.

According to some studies, silver nanomaterials can induce apoptosis and reduce the level of
matrix metalloproteinase in wounds [55], inhibit angiogenesis [56] and vascular permeability
through vascular endothelial growth factor (VEGF) and also interleukin (IL)-1(3 [38].

In patients with burns, treated with Acticoat wound dressings impregnated with silver
nanoparticles, biochemical and hematological changes related to silver absorption were not
found and so the authors considered these dressings safe to use in clinical practice [57].
Probably, the permeability of silver nanoparticles within normal skin may be influenced by
the quality of the skin barrier. Thus, the nanosilver particles get faster deep into the dermis
through hair follicles and sweat ducts if the skin barrier is altered [58].

Rahman et al. [59] studied the effect of nanoparticles on gene expression in mouse brain after
intraperitoneal injection. They noticed that high doses of silver nanoparticles exerted neuro-
toxicity in the caudate nucleus, frontal cortex, and hippocampus by inducing oxidative stress
and apoptosis. The mechanism involved was related to silver ions released into the brain or
indirectly by neural and humoral mediators.

Silver nanomaterials administered orally are converted into their ionic form due to the low pH
of the stomach and induce inflammation evidenced by lymphocyte influx and changes in
expression of proinflammatory genes. It is not known whether toxicity is due to the accumu-
lation of particles or it is mediated by humoral or neural mediators [60]. After oral ingestion
silver was identified in glial cells and neurons, in brain regions such as the hippocampus and
pons. The localization in some regions can be explained by local differences in the permeability
of the blood-brain barrier and special turnover in brain cells [61].

In conclusion, the successful translation of silver nanotechnology to the clinic requires the
development of safe and eco-friendly synthesis of nanomaterials and understanding the
mechanisms of their toxicity and safety control.

5.3. Gold nanoparticles

Gold has long been considered a noble metal, bio-inert, stable with some therapeutic values,
being used as anti-inflammatory and anti-rheumatic agent in rheumatoid arthritis treatment.
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These qualities were observed particularly in the bulk gold. When the size decreases to
nanoscale, the material exhibits different properties due to its surface plasmon resonance
excitation characteristics [15, 62, 63]. Besides, the gold nanomaterials can become toxic due to
the oxidation of elemental gold or solubilization by cyanidation.

There is a great variety of sizes and shapes of synthesized gold nanoparticles: rods, spheres,
tubes, wires, ribbons, plate, cubic, hexagonal, triangular, tetrapods, etc. [64, 65]. Generally,
gold nanoparticles are synthesized by the chemical reduction of chloroauric acid (HAuCl4)
using various reducing agents [66, 67]: citrate ions, hydroquinone, sodium boron tetrahydride
(NaBH4), hydroxyl and sugar pyrolysis radicals, microbial enzymes, plant phytochemicals, or
microorganisms such as bacteria and yeast cells [68, 69]. It seems that, on one hand, the
biological synthesis of gold nanomaterials is more environmentally friendly than chemical
synthesis [70, 71]. On the other hand, the green synthesis of nanomaterials has many disad-
vantages compared to chemical synthesis: poor mono-dispersity, aggregation, and non-
uniform shape. These limits can be overcome through diversification and optimization of the
synthesis methods. Thus, there are a lot of natural reducing agents and organic ligands such
as peptides, proteins, fungus [72] or polymers (PEG) [73], poly-L- lysine (PLL), poly- D- L-
lactic-co- glycolic acid (PLGA), and their co- polymers [74] used to prepare nanomaterials in
order to stabilize them.

PEG has gained popularity due to amphiphilic and solubility properties [75]. Polysaccharides,
such as glycosaminoglycans (GAGs) began to be incorporated onto nanomaterials. Thus, some
researchers synthesized hybrid nanospheres using low molecular weight chitosan as reducing
and stabilizing agents [76], chitosan and heparin [77], or hyaluronan [78].

However, the results from literature about gold toxicity are quite contradictory and insuffi-
ciently documented. Investigation of toxicity mechanismsis important because in the last years
gold nanoparticles were extensively used in various medical applications including drug and
protein delivery, gene therapy, in vivo delivery and targeting, etc.

Generally, the exposure to gold nanomaterials can occur during synthesis and applications by
injection or ingestion [79, 80], inhalation, absorption through skin contact, and release from
implants [81]. Another source of exposure is their accumulation in the soil or in organisms
such as algae and fish consumed by animals and humans [17].

A very much discussed issue is the relationship between the size of nanoparticles and their
toxicity. Small size particles are widely used in medical applications because they have the
ability to penetrate into cells and transport various drugs without cell injury. These findings
were confirmed by Conner et al.’s studies [82] which found that gold nanoparticles of 18 mm
in diameter did not induce damage after penetration into the cell. Moreover, Tsoli et al. [83]
demonstrated that very small particles (1 mm diameter) could penetrate into nucleus the
without inducing DNA injury. Particles with a large ratio between surface area and volume
are not able to be internalized within cells and therefore they cannot be used in biomedical
applications. These statements are consistent with the results obtained in vitro on four cellular
lines (fibroblasts, epithelial cells (HeLa), macrophages (J774A1), and melanoma cells (SK-
Mel-28) [21] treated with triphenylphosphine stabilized gold nanoparticles. The cellular
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response is size-dependent, suggesting that the “larger” particles are non-toxic in vitro.
Goodman et al. demonstrated the ability of gold nanoparticles to inhibit RNA polymerase
activity and block DNA transcription [84].

The influence of gold nanomaterials toxicity is related to their shape. Thus, the rod shape has
been reported to be more toxic than its spherical counterparts, both on human keratinocyte
cells (HaCaT) [11] as well as human breast adenocarcinoma cell line (MCEF- 7). The cells treated
with nanorods lose the mitochondrial integrity [85], generate free radicals, and stimulate up-
regulation of antioxidants, stress response genes, and protein expression [86].

Several reports have noticed that gold nanoparticles caused nephrotoxicity, hemolysis,
cytotoxicity and genotoxicity, and size-dependent effects, the smaller size being less toxic than
thelarger size. Moreover, it has been shown that small particles (10 - 50 nm) dispersed in almost
all tissues, mainly in the liver, lungs, spleen, and kidneys, 24 hours post i.v. administration
compared to large particles. It has been shown that smaller gold nanoparticles can selectively
and irreversibly bind to DNA and cause genotoxicity compared to larger particles [15]. This
property can be exploited in cancer therapy because their interaction with DNA tumor cells
may lead to cellular death. Thus, Pan et al. have demonstrated that nanoclusters of 0.8, 1.2,
and 1.8 nm were four-to six-fold less toxic than nanoclusters of 1.4 nm while larger sizes were
not toxic even at high concentrations [21]. Biodistribution of small particles was noticed in
almost all tissues 24 hours post i.v. injection compared to larger nanomaterials.

It is possible that gold nanostructures are genotoxic without being cytotoxic and cause
alteration of transcription without phenotypic changes [86, 87]. Some reports have revealed
that gold nanoparticles with a diameter between 2 and 40 nm are non-toxic on fetal lung
tibroblast-like (MRC)-cells while the particles >10 ppm can induce apoptosis and up-regulate
the expression of proinflammatory cytokines [88]. Another toxicity mechanism involves
oxidative attack on DNA and down-regulation of DNA repair [87]. Inductively coupled
plasma mass spectrometry (ICP-MS) studies have shown that lungs, olfactory bulb, spleen,
esophagus, tongue, kidney, aorta, heart, septum, and blood are the main tissues that accumu-
late the gold materials between 30 and 110 nm [89]. The mechanisms of biodistribution are via
endocytotic-exocytotic activity and paracellular transport [90]. According to some authors a
single nanoparticle has a greater health effect than the agglomerates particles [91]. However
this statement was not confirmed in other experiments. The small size facilitates the crossing
of the blood-brain barrier and accumulation of gold nanostructures in the brain, placenta, and
fetus [92].

Overall, the cellular uptake and toxicity of gold nanoparticles depends not only on the size but
also on the surface, functional attachments, and shape [85]. Cationic gold particles were
moderately toxic and anionic particles were nontoxic, suggesting the electrostatic binding of
the particles to the negatively charged cell membrane and interaction with membrane
components as a probable mechanism of toxicity. Kim et al. examined the toxicity of gold
nanoparticles (1.3 nm) functionalized with a monolayer of the cationic ligand, N,N,N-
trimethylammoniumethanethiol on zebrafish embryos and noticed the occurrence of mor-
phological abnormalities and embryo lethality [93]. The cause of these abnormalities was
apoptosis of eye cells and aberrant expression of transcript factors that regulate eye pigmen-
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tation development. Other studies showed that 1.4 nm gold nanoparticles capped with
triphenylphosphine monosulfonate cause necrosis via the oxidative stress and mitochondrial
damage [21], while PEG used to functionalize the 3.7 nm nanoparticles were non toxic on
human cervical cancer (HeLa) [92]. The chitosan conjugated gold nanoparticles can transverse
the cell membrane of Chinese hamster ovary cells by endocytosis without inducing cell death.
Moreover, the authors revealed that >85% of the cells were viable after a long period of
exposure [93] suggesting that these nanostructures can be used in cellular imaging and
photothermal therapy.

To prevent this problem, researchers have conjugated these nanoparticles with various
biomolecules and ligands. Thus, gold nanorods conjugated with PEG or citric acid ligands
were less toxic than spherical particles. Surface charges measured by zeta potential determine
the properties and functions of nanoparticles. Thus, the gold nanoparticles can promote
protein refolding through electrostatic interactions, a mechanism used to refold proteins in a
chemical denatured state [94]. In contrast to the silver nanoparticles, silver - gold nanoparticles
induced the activation of cells due to the release of ions in the medium [95]. However, more
studies are critically needed to establish exactly the potential toxicity of gold nanoparticles to
fully evaluate gold nanoparticles for in vivo use.

5.4. Carbon nanotubes

5.4.1. The importance of studying carbon nanotube toxicity

An important class of nanomaterials is represented by carbon nanotubes (CNTs). They are
cylindrical structures composed of a variable number of layers, each layer being formed of
carbon atoms. Their diameter and length are variable, but, according to the number of layers,
CNTs can be classified as single-walled (SWCNTs) and multi-walled (MWCNTs). SWCNTs
have unique properties, including electrical, mechanical, and thermal particularities, which
recommend them for particular applications in the field of electronics, as well as in the
biomedical industries. In the meantime, MWCNTs, with a larger diameter, have a great
potential to be used as targeted carriers for different substances into cells in medical applica-
tions. However, the concern regarding the safety of CNTs for the human body is constantly
rising, because of at least two reasons. First of all, there is an increase in the production of CNTs
for technological applications, which raises the risk of accidental exposure of the workers
during the technological manipulation of the nanomaterial. CNT-based products are already
being used in textiles, sport products, microelectronics, and energy storage [98]. On the other
hand, for the medical applications, the administration of CNTs is required, and their faith in
the human body, along with their interactions with different tissues, become of vital impor-
tance, for example, CNTs conjugated to siRNA for cancer therapy or CNTs for the imaging of
colorectal cancer that may enter clinical trials in the next years [98].

Also, the environmental risk of CNTs, including even their interactions with some classical
contaminants, such as pesticides, must be taken into consideration. There are studies indicating
that CNTs could act as pesticide carriers, enhancing pesticide ecotoxicity, and affecting fish
behavior, metabolism, and survival [99].
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In the meantime, CNTs released into the aquatic medium, in high concentration, exert
developmental toxicity, with increased mortality and malformation. The exposure to func-
tionalized SWCNTs in the early stages of the life of rare minnow (Gobiocypris rarus) altered the
activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and
glutathione S-transferase and determined reactive oxygen species (ROS) generation and DNA
damage [100].

5.4.2. Mechanisms of CNTs’ toxicity

Until today, the environmental effects and the toxicity of nanomaterials to organisms are not
entirely understood. In order to evaluate these effects, the methods should be cost-effective,
rapid toxicity assays should be available, and the tests should be performed with minimal
amounts of materials. Drosophila could be such an efficient and cost-effective model organism,
which allows tissue-specific nanomaterial assessment through direct microtransfer into target
tissues. SWCNTs and MWCNTs were evaluated for their toxicity using this new method of
assessment [101].

To date, the studies performed in vitro and in vivo in order to evaluate the toxicological effects
of CNTs have pointed out oxidative stress and inflammation as major mechanisms involved
in their toxicity. These two mechanisms influence each other [102]. ROS generation produces
lipid peroxidation, protein alteration, and intracellular GSH depletion [103]. Oxidized proteins
gain chemically reactive groups and become new agents that can prolong the initial effects of
ROS [104]. The next step is NF-kB activation, which in return, will regulate the expression of
pro-inflammatory cytokines, such as TNF-a and IL-1f [103]. Also, NF-kB up-regulates the
activation of superoxide dismutase [105].

MWCNTs can activate NADPH oxidase, as demonstrated in human macrophages [106] and
in the spleen [107]. In the meantime, it was proven that carboxylated MWCNTs can bind to
Cu/Zn SOD and the microenvironment of the amino acid residues in the enzyme was slightly
changed [108]. MWCNTs inhibit the activity of catalase (CAT). They contribute both to the
conformational changes of CAT and to enzyme dysfunction. Also, both in animals and cell
cultures, a single-dose exposure to CNTs determines elevated levels of DNA damage [109].

In the past years, a few steps were made in order to understand the deep mechanisms involved
in CNT toxicity. For example, for the biological functions, the protein-protein interactions or
the protein-protein recognition are essential. It was proven that a graphene sheet can interrupt
the hydrophobic interaction between two functional proteins and can disrupt the metabolism
of the cell, leading to cell death [110].

For a typical type of CNT, the carbon nanohorns (CNHs), it was proven that they can accu-
mulate in the lysosomes and can induce lysosomal membrane permeabilization. The conse-
quence was the release of lysosomal enzymes, such as cathepsins, with the subsequent
mitochondrial dysfunction and generation of ROS in the mitochondria. In return, ROS
amplified the mitochondrial dysfunction and led to the activation of caspases followed by cell
apoptosis [111].
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Unmodified SWCNT aggregates are capable of suppressing the antigen-induced signaling
pathways and pro-inflammatory degranulation responses in mast cells. The capacity of
SWCNTs to suppress mast cells pro-inflammatory function is explained by remodeling the
plasma membrane, with the disaggregation of the cortical actin cytoskeleton and the relocal-
ization of clathrin [112].

In the meantime, embedded SWCNTSs nanoparticles in plasma membrane induce cellular
calcium outflow alteration [113].

The toxicity of MWCNTSs has been evaluated lately at gene level. MWCNTs have microRNA
(miRNA) targets, as shown in an in vivo Caenorhabditis elegans assay system [114].

CNTs can also determine the perturbation of immune functions in animal models. Different
studies had contradictory results, showing that CNTs have, by themselves, either pro-
inflammatory or immunosuppressive functions, locally and systematically. When exposed to
CNTs, the immortalized airway epithelial cells showed reduced viability, impaired prolifera-
tion, and elevated ROS generation and lack of internalization of targets in macrophage cell
lines [115].

CNTs can produce anomalies in multicellular behavior, due to ROS generation. In fact this
effect is produced by the loss of multicellular chirality, including a decreased migration rate
and loss of directional alignment on micropatterned surfaces. The cell chirality is in fact a
cellular property important for embriogenic morphogenesis [116].

5.4.3. The impact of different parameters upon CNT cytotoxicity

CNT toxicity is influenced by a variety of parameters, depending both on the physicochemical
properties of the material itself and on the environmental variables. The shape, length,
diameter, number of layers, surface coating and functionalization, impurities content, the dose,
route of administration, and type of dispersion media are just a few of these variables.

CNTs diameter and length influence cell aggregation, ROS generation, and injury extent, the
effects depending on the cell type too [117]. For example, long and thick rather than short and
thin MWCNTs can induce inflammatory effects [118] as well as those with a larger diameter
[119]. When comparing the effects of long and rigid versus shorter and agglomerated
MWCNTs at pulmonary level, the long MWCNTs induced a more pronounced pro-fibrotic,
inflammatory, and apoptotic response [120].

When comparing the type of functionalization, MWCNTs functionalized with carboxylation
and raw MWCNTs can induce oxidative stress and inflammation in macrophages, with the
activation of MAPK and NF-kB signaling pathways, up-regulation of IL-1(, IL-6, TNF-a, and
iNOs and subsequent cell death. MWCNTs functionalized with polyethylene glycol did not
exert the same toxic effects [121].

When testing pristine MWCNTs and MWCNTs functionalized by hydroxylation-oxygenation,
amination or carboxylation on human bronchial epithelial cells or on the nematode Caeno-
rhabditis elegans, the results showed that carboxylated MWCNTs were the most cytotoxic and
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genotoxic, but with no differences in survival following exposure, proving that surface
functionalization can influence the bioactivity of MWCNTs [122].

The exposure of human monocyte-derived macrophages to long rigid MWCNTs elicited a
response similar to the exposure to asbestos, in contrast to long-tangled MWCNTs, which
induced a weaker protein secretion. The exposure determined lysosomal damage, but only
long rigid MWCNTs determined apoptosis [123].

There are results sustaining that the contaminating metals for CNTs are responsible for their
toxicity. However, long needle-like MWCNTs without metal impurities are capable of
inducing the production of major proinflammatory cytokine IL-1$3 via the Nod-like receptor
pyrin domain containing 3 (NLRP3) flammasome-mediated mechanisms [124].

Also, the dispersion medium can influence the ability of CNTs to bind to proteins and to exert
specific biologic effects. For example, SWCNTs and double-walled nanotubes were dispersed
in phosphate-buffered saline (PBS) or in bovine serum albumin (BSA). In BSA, CNTs were
more stable, the aggregation was reduced, and the levels of IL-6 were increased, while the
TNF-a production was decreased, as compared to the same samples, but without BSA [125].

In the meantime, the biotransformation of CNTs in organism is important when evaluating
their toxicity. It seems that manganese peroxidase is capable of transforming the SWCNTs, but
not oxidized SWCNTs, making the biodegradation of these compounds difficult [126].

5.4.4. Animal models for toxicity evaluation

CNTs from the environment can be a challenge for the respiratory and gastrointestinal mucosa
as well as for the dermal system. For medical applications, the systemic administration of
CNTs, s.c., i.p., or i.v., is important. Taking these possibilities into consideration, different
models for the assessment of CNT toxicity in vivo were used. In the meantime, a short-term or
a long-term exposure to CNTs can be evaluated.

5.4.4.1. Short-term evaluation

Pharyngeal aspiration of purified SWCNTs in mice determined, in a dose-dependent
manner, inflammation, fibrosis, granulomatous pneumonia, and decrease in pulmonary
function. The inhalation of nonpurified SWCNTs for 4 days also determined inflammato-
ry response, oxidative stress, collagen deposition, and mutations of k-ras gene locus in the
lung of mice [127].

Twenty-four hours after the intratracheal administration of pristine SWCNTs, acute inflam-
mation was present in the lungs of mice, along with apoptosis through mitochondrial dys-
function and ROS generation [128]. When comparing the effects of MWCNTSs on male Sprague-
Dawley rats after intratracheal instillation or inhalation administered in different doses, for
different periods of time and with different physicochemical characteristics, including
functionalization, the results showed that MWCNTs produce inflammation in the lung, but
transitory, despite the persistence of CNTs in the lung. The functionalization and the suspen-
sion media influenced the pulmonary response after MWCNTs administration [129].
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When female mice were exposed to MWCNTs by pharyngeal aspiration technique 4 weeks
after the previous exposure to cigarette smoke, it was proven that MWCNTs induced pulmo-
nary toxicity, with a minor role in cigarette smoke exposure [130].

For a follow-up of 6 days after a single dose i.p. administration, transient oxidative stress and
inflammation in blood and liver were obtained both for SWCNTs and MWCNTs functional-
ized with single-stranded DNA [102, 131]. Also, after i.p. administration, MWCNTs translocate
in the spleen and determine oxidative stress, inflammation, lymphoid hyperplasia, and
increase in the number of cells that undergo apoptosis [132].

5.4.4.2. Long-term evaluation

MWCNTs with different length and iron content were administered by intratracheal instilla-
tion to spontaneously hypertensive rats. Seven days and 30 days post exposure, lung inflam-
mation was found, along with increased blood pressure, lesions in abdominal arteries,and
accumulation of CNTs in liver, kidneys, and spleen [133].

SWCNTs administered through single intratracheal instillation in rats determined up-
regulation of the genes involved in the inflammatory response, with a pattern that is time-
dependent, until 180 days, 365 days, and 754 days post-exposure [134].

MWCNTs administered through transtracheal intrapulmonary spraying for 24 weeks trans-
located into the pleural cavity and induced inflammatory reactions, fibrosis and parietal
mesothelial proliferation lesions, the effects being more important for the larger-sized
MWCNTs, than for the smaller-sized [135].

Thirteen weeks exposure of rats to MWCNTs by whole-body inhalation, in different doses,
determined increased expression of inflammatory cytokines in splenic macrophages, includ-
ing IL-13, IL-6, and IL-10. The expression of IL-2 in T lymphocytes was decreased, being a
possible cause of reduction in the rats” anti-tumor responses [136]. In the meantime, in a similar
experimental model, 0.2 mg MWCNTs/m® was established as the lowest dose for the occur-
rence of lung adverse effects, including inflammation and granulomatous changes [137].
Inhalation exposure of rats to MWCNTs for 28 days determined lung deposits even 90 days
post-exposure, especially for short-length MWCNTs, emphasizing their potential to induce
genotoxicity [138].

Ma Hock et al. (2009) proved that long-term (13 weeks) exposure of rats to SWCNTs or
MWCNTs by inhalation did not produce systemic organ toxicity, for a follow-up period of 90

days post-exposure, even though local pulmonary effects were present. Fibrosis changes were
absent [139].

5.4.5. Means to reduce toxicity

A few ways to reduce CNT toxicity are represented by the functionalization, surface coating,
and stimulation of the autophagic flux. For example, the amino functionalization can reduce
the CNT toxicity to the cells [140], as well as albumin coating for SWCNTs [141]. Also, the
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toxicity of carboxylated MWCNTs can be reduced by the stimulation of the autophagic flux,
with the extracellular release of the nanomaterial in autophagic microvesicles [142].

6. Perspectives

The extent of use of nanomaterials is currently growing and thus efficient screening methods
for toxicity are needed to lower the expenses of testing and to reduce the cost of using.
Nanomaterial size, shape, surface chemistry, and degree of aggregation are key factors that
influence the toxicity. Generally, the in vivo toxicity studies can provide sufficient data in order
to understand the absorption, distribution, metabolism, and excretion of nanomaterials. In
order to fully evaluate their toxicity, acute and long-term toxicity studies are needed along
with the examination of chronic exposure. In vitro studies may contribute in addition to explain
the mechanisms involved in their toxic effects. However, not all the aspects involved in the
use of nanomaterials are fully understood. Therefore, finding the appropriate methods for
analysis and carefully designed experiments will contribute to the better understanding of the
mechanisms of toxicity, so that nanomaterials could be safely used in biology and medicine.
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