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1. Introduction

1. 1. Inflammation

Inflammation is a complex of responses of the innate immune system to pathological stimuli
such as microbes, pathogens or damage-associated molecular patterns (DAMPs). Local
inflammation includes the following classical symptoms: dolor (pain), calor (heat), rubor
(redness), tumor (swelling) and functio laesa (loss of function). Systemic inflammation occurs
in different contexts like massive trauma, chronic disease, or as a response to an infection, in
which case it is designated as sepsis. Clinical responses during systemic inflammation
(systemic inflammatory response syndrome, SIRS) include altered body temperature, elevated
pulse rate, elevated respiratory rate, abnormal white blood cell count and other symptoms. [1]
The inflammatory response includes (but is not limited to) recruitment of immune cells, such
as neutrophils and monocytes, by the vessel wall, followed by their extravasation to tissues.
Although inflammation involves multiple mechanisms beyond this process (e. g. , involving
complement and kinin systems as well as changes in vascular tonus), we will concentrate
herein on the platelet role in vascular endothelial activation and interactions with leukocytes,
with a special focus on in vivo data.

2. Platelet-derived mediators regulating inflammation

Platelets have multiple roles beyond hemostasis and thrombosis and were described as
inflammatory cells several decades ago. [2] Platelets contain a number of inflammatory peptide
and protein mediators, some of which they retain the capability of synthesizing de novo,
whereas others are stored and secreted from granules (dense granules, α-granules or lyso‐
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somes). [3] The release of these cytokines and chemokines, as well as eicosanoids, upon
activation enables platelets to recruit leukocytes to the site of inflammation or injury. The table
below lists some of the platelet-derived inflammatory mediators:

Molecule Family Location

IL-1β Cytokine Synthesized

Thromboxane A2 Eicosanoid Synthesized

PF4/CXCL4 Chemokine α- granules

β-thromboglobulin (CXCL7/ NAP-2) Chemokine α- granules

RANTES (CCL5) Chemokine α- granules

CD40L Cytokine α- granules

PDGF Growth factor α- granules

TGF-β Growth factor α- granules

TNF-α Cytokine α- granules

IL-1α Cytokine α- granules

GRO-α (CXCL1) Cytokine α- granules

ENA-78 (CXCL5) Cytokine α- granules

SDF-1 (CXCL12) Cytokine α- granules

MIP-1α (CCL3) Chemokine α- granules

MCP-3 (CCL7) Chemokine α- granules

NAP-2 (CXCL7) Chemokine α- granules

TARC (CCL17) Chemokine α- granules

Interleukin-8 (CXCL8) Chemokine α- granules

Polyphosphates Phosphates Dense granules

ATP Nucleotide Dense granules

Serotonin Monoamine Dense granules

Glutamate Amino Acid Dense granules

Table 1. Inflammatory mediators synthesized by and stored in platelets

Platelet α-granules contain large proteins, many of which are involved in regulation of the
inflammatory response. [4, 5] Among them, Platelet Factor 4 (PF4) is the most abundant protein
secreted by activated platelets (accounting for ~25% of α-granule content). [6] It functions as
a chemoattractant for monocytes. PF4 accelerates atherogenesis by causing vascular inflam‐
mation and promoting retention of lipoproteins in the vascular wall, which contributes to
atherosclerosis. PF4 prevents full interaction of LDL with its receptor, causing lipoproteins to
be retained on the cell surface rather than being catabolized. [7]
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Platelet-originating thromboxane A2 (TxA2), which is made de novo from arachidonic acid
upon activation, induces platelet activation and aggregation. [8] This may form a positive
feedback loop facilitating further release of stored cytokines.

Platelet-derived IL-1α has been shown to mediate cerebral inflammation in vivo. [9] IL-1α
secreted from platelets promotes expression of the adhesion molecules ICAM-1 and VCAM-1
on endothelial cells. It also accelerates transendothelial migration of neutrophils and contrib‐
utes to chronic inflammatory diseases, such as multiple sclerosis. [9] Platelet IL-1α and IL-1β
have proinflammatory roles in rheumatoid arthritis; it has been shown that platelet depletion
attenuates the disease in mice. [10]

Besides storage, platelets can also synthesize biologically active proteins. For example,
thrombin activation results in synthesis of pro-IL-1β. [11] Interestingly, synthesis of pro-
IL-1β was inhibited by neutralization of the beta-3 integrin, which implies that direct anti-
platelet therapy could have an anti-inflammatory effect. Platelets contain the splicing
machinery allowing for cytokine mRNA maturation. [12] IL-1β potentiates its own synthesis
in platelets by an autocrine loop, and its production by activated platelets occurs in vivo, where
it accumulates in thrombus in the ferric chloride-treated carotid artery. [13] This represents a
link connecting sterile thrombotic process with formation of proinflammatory milieu. IL-1β
from platelets causes both up-regulation of endothelial adhesion receptors and release of
proinflammatory IL-6 and IL-8 from endothelial cells. IL-1β is also responsible for activation
of NF-κB in endothelial cells, which is required for transcription of inflammatory genes MCP-1
and ICAM-1. [7]

Platelet derived growth factor (PDGF) is able to chemoattract monocytes and eosinophils. [4]
The chemokine RANTES (Regulated on Activation, Normal T Cell Expressed and Secreted)
recruits monocytes to the inflamed endothelium in a P-selectin-dependent fashion. [14]
RANTES plays a role in many inflammatory disorders including asthma, atherosclerosis and
delayed-type hypersensitivity reactions. [15]

Among other platelet-derived chemokines, Macrophage Inflammatory Protein (MIP)-1α
induces leukocyte chemotaxis in vivo. [8, 16] MIP-1α is a chemoattractant for monocytes,
macrophages, T-cells and neutrophils and is involved in transendothelial migration at sites of
inflammation. [17] MIP-1α is required for a normal inflammatory response to certain types of
viruses. MIP-1α-null mice develop a reduced inflammatory response to influenza virus and
coxsackievirus-induced myocarditis. [17]

Platelets store large amounts of the pro-inflammatory molecule CD40 ligand (CD40L).
Interaction of CD40L with CD40 on endothelial cells and macrophages causes release of IL-8
and MCP-1, which attract neutrophils and monocytes. [18] Similarly to IL-1β, CD40L induces
adhesion receptor expression on endothelium and release of chemokines thus mediating
leukocyte recruitment.

Platelets contain Polyphosphate (polyP) in their dense granules. [19] Proinflammatory and
procoagulant functions of polyP have recently been demonstrated. [20] PolyP, released upon
platelet stimulation, binds to factor XII activating the FXII-driven contact activation system.
The resulting release of the inflammatory mediator bradykinin culminates in the accumulation
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of neutrophils and increased vascular permeability through binding its receptor BR2. Target‐
ing polyP, for example, with phosphatases may be of potential therapeutic benefit for treating
such diseases as rheumatoid arthritis and atherosclerosis. [20] However, the role of polyP in
activating the contact phase system has recently been questioned. [21]

Thus, platelets store and release a substantial repertoire of inflammatory mediators. These
molecules may contribute to multiple inflammation-related diseases, which make platelets
important players in the field of inflammation.

3. Platelet-endothelium interactions

Under physiological (non-inflammatory) conditions, production of platelet inhibitors (such as
prostacyclin and nitric oxide) by endothelial cells limits platelet interaction with intact
endothelium. Adhesion of activated platelets to intact Human Umbilical Vein Endothelial Cells
(HUVEC) was demonstrated in vitro. [22] Mechanisms of this involved αIIbβ3 integrin (glyco‐
protein (GP) IIb/IIIa) on platelets, ICAM-1 and αvβ3 integrin on the endothelium and von
Willebrand Factor (VWF), fibrinogen and fibronectin as bridging molecules. Platelet GPIbα,
which is constitutively expressed and does not require activation, was reported to be a receptor
to endothelial P-selectin. [23] There is a report demonstrating that platelets contain P-selectin
glycoprotein ligand (PSGL)-1 (although 25-100-fold fewer than leukocytes). [24] Blocking
PSGL-1 down-regulates the number of rolling and captured platelets on stimulated venule
endothelium suggesting that this route can also be implicated in platelet-vessel wall interaction
under inflammatory conditions. Integrin αvβ3, a vitronectin receptor on the endothelial cells,
was shown to participate in platelet recruitment to stimulated endothelium. [25]

In vivo, platelets do not spontaneously interact with intact endothelium in murine mesenteric
venules. [26] Stimulation of murine vessels with Weibel-Palade body secretagogues calcium
ionophore or histamine results in rapid platelet adhesion followed by rolling, peaking 1 min
after stimulation. This "stop-and-go" platelet translocation on stimulated endothelium was
absent in VWF-null mice. Cleavage of GPIbα from platelet surface also prevented platelet
binding to the vessel wall. Therefore, interaction of platelets with activated endothelium in
vivo is mediated by binding of platelet GPIbα to endothelium-expressed VWF. [26]

Another pathway of platelet binding to the vascular wall involves the glycoprotein VI (GPVI),
a major platelet receptor for collagen. This route is most important in platelet interactions with
atherosclerotic plaques. Inhibition of GPVI by infusion of GPVI-Fc, a dimeric soluble form of
GPVI fused with human Fc fragment, to ApoE-/- mice decreased transient platelet interactions
with atherosclerotic artery wall by about half. [27] Long-term administration of a GPVI-
blocking antibody also improved endothelial function and prevented propagation of athero‐
sclerosis. [27] GPVI binds activated endothelium through vitronectin and improves cardiac
function in a mouse model of heart ischemia-reperfusion by reducing inflammation in the
infarcted myocardium. [28] Infusion of soluble GPVI-Fc in either ischemia or reperfusion phase
substantially decreased infarct size.
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In a model of cerebral ischemia-reperfusion, platelet tumbling on and adhesion to the brain
vascular endothelium has been demonstrated. [29] This was specific to veins and no platelet-
vessel wall interactions were observed in arteries of different diameter. This interaction was
almost entirely dependent on P-selectin as administration of anti-P-selectin antibody abolished
it. Neutralization of αIIbβ3 had certain inhibitory effect too, though less manifested than
blocking P-selectin. Rolling and adhesion of platelets was reported also during reperfusion
period after retinal ischemia. This process was dependent on endothelial P-selectin, and the
time course of P-selectin de novo synthesis in the endothelium corresponded to the kinetics of
platelet-endothelial interactions. [30]

Platelet adhesion to endothelium of atherosclerotic plaques can also be mediated by the
glycoprotein αIIb. [31] Platelet adhesion to the atherosclerotic plaque in apoE-/- αIIb-double
deficient mice was virtually abolished as compared with apoE-/- αIIb

+/+ controls. Formation of
atherosclerotic lesions was reduced in the absence of αIIb. Platelet-vessel wall interactions
through αIIb are also implicated in the pathogenesis of such thromboinflammatory disease as
ischemic stroke as shown in a model of cerebral ischemia-reperfusion in mice. The exact
mechanism of αIIb involvement in interactions with inflamed but non-denuded endothelium
remains to be clarified. It is known that ischemia promotes fibrinogen deposition on the vessel
wall, which leads to platelets recruitment. [32] Local hypoxia and pro-inflammatory shift (like
generation of reactive oxygen species (ROS)) result in VWF expression on the endothelium
mediating platelet accrual. [33, 34] Thus, two major ligands for αIIbβ3, fibrinogen and VWF, can
appear on the endothelial surface during inflammation and recruit platelets via this integrin.

Platelet accumulation in lung and cerebral vasculature was described in a murine model of
malaria[35] as well as in patients. [36] Platelets might damage endothelium and support
leukocyte accumulation in the brain vessels thus promoting cerebral inflammation as a part
of malaria pathogenesis. [37] Platelet depletion protects mice from disease progression. [38]
The role of platelets in malaria may be complex depending on the stage of the disease: platelets
could attenuate parasite growth at the early stages whereas at later stages platelets support
disease-related inflammation. [39]

Activated platelets can be found in circulation in patients with various inflammatory diseases,
such as sepsis, cerebrovascular ischemia and diabetes. [40-42] Besides posing a danger for
excessive thrombosis, circulating activated platelets confer a proinflammatory signal. Acti‐
vated platelets infused into mice stimulate release of Weibel-Palade body constituents and
form complexes with leukocytes, leading to elevated recruitment of leukocytes to the vessel
wall. [43] Thrombin-activated platelets accumulate at the atherosclerotic carotid artery wall.
This process is dramatically inhibited when platelets lack CD40L. [44]

Interaction of platelets with endothelium mediates accumulation of monocytes and deposition
of proinflammatory cytokines (e.g. , RANTES) at the vessel wall (Figure 1). It was directly
demonstrated in mice using repeated infusions of activated platelets or bone marrow trans‐
plantation techniques, that platelets promote the development of larger atherosclerotic
plaques. [45, 46] This effect is predominantly mediated by platelet P-selectin.

Thus, platelets bind to the activated/inflamed vascular wall by a set of receptors including P-
selectin, glycoproteins Ibα, αIIb and VI as well as CD40L. Activated platelets are able to induce
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a pro-inflammatory shift in the endothelium. Platelet-mediated endothelial activation plays a
role in the development of various diseases that have an inflammatory component in their
pathogenesis.

Figure 1. Platelet cross-talk with endothelium and leukocytes.

4. Platelet-leukocyte interactions

Under physiological conditions, platelets and leukocytes do not bind to each other. Such
interaction becomes possible in prothrombotic or proinflammatory state with increased
number of blood platelet-leukocyte aggregates (PLA) (Figure 1) observed in such diseases as
diabetes mellitus, stroke and others. [47-49]

Binding of platelets to leukocytes can mediate recruitment of the latter to the vessel wall and
render leukocytes more prothrombotic promoting synthesis of tissue factor by monocytes. [50]
This interaction starts by binding of P-selectin on activated platelets to PSGL-1 on leukocytes
initiating a signaling cascade inside leukocytes, which leads to activation of integrins, in
particular, Mac-1 and LFA-1 on leukocyte membrane. [51-53] Mac1 can bind platelet receptor
GPIbα directly or αIIbβ3 through fibrinogen bound to the integrin on platelets. [54, 55] Platelet-
leukocyte binding is an active process as pre-activation of leukocytes potentiates this interac‐
tion whereas tyrosine kinase inhibitors down-regulate it. Full activation of the integrins
triggers outside-in signaling regulating multiple leukocyte functions such as transmigration,
production of ROS and phagocytosis. [56] Platelet-mediated activation of Mac-1 can lead to
sequestration and activation of coagulation Factor X resulting in thrombin generation. [57]
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This phenomenon suggests that platelet-leukocyte interaction triggers also the coagulation
cascade.

In vivo, interactions between platelets and leukocytes occur in various thrombo-inflammatory
conditions. For example, blood stasis in the carotid artery induces P-selectin-dependent
accumulation of leukocytes surrounded by platelets in the vicinity of the vessel wall. [58]
Platelet depletion almost completely abrogates leukocyte recruitment suggesting that devel‐
opment of the inflammatory response in this model is platelet-dependent. Platelet P-selectin
is implicated in recruiting leukocytes not only to the inflammation site but also in pure
thrombosis. Thrombi in ferric chloride-challenged carotid arteries of P-selectin-deficient mice
contained less leukocytes than in control animals. [59] This confirms the central role of P-
selectin in platelet interactions with leukocytes.

Formation of platelet-leukocyte rosettes in vivo depends on platelet activation. It has been
reported that plasma level of circulating PLA more specifically reflects platelet activation than
platelet P-selectin expression. [60] Resting platelets infused into mice do not associate with
leukocytes. [61] Intravenous injection of collagen together with αIIbβ3 antagonist to prevent
formation of platelet aggregates, results in rapid development of platelet-leukocyte conjugates.
These conjugates roll on the vascular wall both in C57BL/6 and aged ApoE-deficient mice prone
to atherosclerosis. In both cases, this rolling was mediated by P-selectin. Binding of activated
platelets to leukocytes supported leukocyte recruitment by the endothelium through VCAM-1,
and elevated leukocyte interactions with vessel wall in inflammation and atherosclerosis. [45]
Infusion of activated P-selectin positive but not P-selectin deficient platelets elevated monocyte
binding to atherosclerotic endothelium in mice. Formation of PLA resulted in deposition of
chemokines, such as RANTES and PF4, on the endothelium thus supporting development of
atherosclerosis. Besides leukocytes, activated platelets mediate lymphocyte homing in
peripheral lymph nodes. [62] Again, all these phenomena were dependent on platelet surface
P-selectin.

Cell activation in leukocyte-platelet interaction is bi-directional, i. e. , not only platelets activate
leukocytes but also vice versa. [56] In particular, various leukocyte-derived molecules can
activate platelets and promote platelet-mediated fibrin deposition. Activated platelets
stimulate neutrophils to release their chromatin designated as Neutrophil Extracellular Traps
(NETs), [63] at least in part by presenting High Mobility Group Box 1 (HMGB1). [64] NETs can
recruit and activate platelets. [65] Histones, an integral part of NETs, directly activate platelets
and induce platelet aggregation. [66]

In conclusion, platelets interact with both endothelium and leukocytes mediating accumula‐
tion of the latter at the inflammatory site, thus supporting the central step in the inflammatory
response.

5. Platelet Toll-like receptors

Toll-like receptors (TLRs) are a family of innate immunity pattern-recognition receptors that
trigger inflammation in response to microbial products or products of inflamed tissues. TLRs
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function as front-line sensors of infection, as they recognize conserved structures in pathogens
designated as pathogen-associated molecular patterns (PAMPs). [67] TLRs can also sense
DAMPs, released by activated or necrotic host cells and upregulated following tissue damage.
[68] Human and murine platelets express TLR2, TLR4, TLR7 and TLR9. [69-76] TLR6 has been
detected in human platelets. [69] Expression of TLR1 has been reported in one[69] but not in
another[77] study.

Platelet TLR2. Pam3CSK4, a synthetic agonist of the TLR2/1 complex, triggers platelet
activation including integrin αIIbβ3 transition to an active state, aggregation, alpha- and dense
granule release and CD40L expression. [78-80] These responses are inhibited in TLR2-deficient
murine platelets and in human platelets by pretreatment with TLR2-blocking antibody. [79]
Pam3CSK4 also triggers formation of platelet–neutrophil aggregates (PNA). [79, 80]

In periodontitis, a chronic inflammatory disease of the supportive dental tissues, the gram-
negative periodontopathogens directly induce TLR2- and TLR4-dependent surface expression
of CD40L in human platelets. [81] In vivo challenge with live Porphyromonas gingivalis induced
formation of PNA in wild-type but not TLR2-deficient mice. [79] Ex vivo experiments showed
that platelet TLR2 mediated formation of PNA and enhanced phagocytosis of periodonto‐
pathogens. [81]

Human cytomegalovirus (HCMV), a widespread pathogen that correlates with various
diseases including atherosclerosis, binds TLR2-positive platelet subpopulation. This results in
platelet degranulation, release of proinflammatory CD40L and IL-1β and proangiogenic
vascular endothelial–derived growth factor (VEGF). Murine CMV activates wild-type but not
TLR2-deficient mouse platelets. HCMV-activated platelets bind to and activate neutrophils,
supporting their adhesion and transmigration through endothelial monolayers. [82] In an in
vivo model, CMV increased the number of PLA and plasma VEGF levels and demonstrated a
trend to enhance neutrophil extravasation in a TLR2-dependent fashion. [82]

Platelet TLR4. Platelet activation with thrombin causes increase of TLR4 surface expression
in one [83] but not another [72] study. Lipopolysaccharide (LPS), a cell wall component of
gram-negative bacteria, is a natural ligand for TLR4. In vitro, some studies have reported no
[77, 84] or even inhibitory effect[85] of LPS on platelet aggregation whereas others have shown
that LPS can potentiate platelet aggregation induced by low doses of other agonists. [86, 87]
In vivo, intravenous injection of LPS in mice induces formation of platelet aggregates mainly
in lung and liver microvasculature. [88, 89] Platelet TLR4 mediated microvascular LPS-
induced thrombosis in murine cremaster muscle venules. [84, 90]

LPS present on platelets and leukocytes from patients with hemolytic uremic syndrome (HUS)
caused PLA formation. [91] LPS binds human platelets through a complex of TLR4 and CD62,
leading to platelet activation. The specificity of LPS binding to platelet TLR4 was confirmed
in vivo using TLR4 deficient mice. [92]

Platelet TLR4 contributes to LPS-induced thrombocytopenia in vivo. [71, 72] In one study, LPS
induced thrombocytopenia in wild-type but not TLR4-deficient mice. [71] TLR4-positive but
not TLR4-negative platelets accumulated in the murine lungs in response to LPS in a neutro‐
phil-dependent fashion. In another study, LPS produced thrombocytopenia and increased
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serum levels of TNFα in LPS-sensitive mice but not in mice carrying mutated TLR4. [72] LPS-
induced TNFα production in LPS-sensitive mice was reduced by platelet depletion and could
be restored by platelet transfusion. [72]

In mouse endotoxemia, TLR4-positive but not TLR4-negative platelets accumulate in the
lungs. [71] LPS induces platelet binding to sequestered neutrophils primarily in the liver
sinusoids and pulmonary capillaries leading to formation of NETs, [93] which are able to trap
and kill microbes. [63]

Platelet TLR7. A recent study showed that platelet TLR7 mediates platelet activation in
response to the single stranded RNA encephalomyocarditis virus (EMCV). [74] This interac‐
tion led to platelet granule release, P-selectin surface expression, and increase in PNA, both in
mouse and human blood, but did not induce platelet aggregation. There were, however,
implications to the host immune response and survival. TLR7 expressed on platelets is
implicated in protection against EMCV-induced mortality. Transfusion of TLR7-positive
platelets into TLR7-null mice prolonged survival after infection with EMCV whereas transfu‐
sion of platelets lacking TLR7 into wild-type mice did not affect the survival rate. [74]

Platelet TLR9. In platelets, TLR9 is located in intracellular compartments. [75] TLR9 responds
to carboxy(alkylpyrrole) protein adducts, an altered-self ligand generated in oxidative stress,
in both human and mouse platelets. This interaction results in aggregation in vitro and
thrombosis in vivo. [76] Physiological platelet agonists synergize with TLR9 ligands by
increasing TLR9 expression on the platelet membrane. [76]

6. Platelets in sepsis

Sepsis is an uncontrolled systemic reaction to an infection. It can progress into severe sepsis
with multiple organ dysfunction and cognitive impairment. Septic shock, in which patients
suffer vascular collapse and often are irresponsive to fluid resuscitation and vasopressor
therapy, is often the terminal event of severe sepsis. [1] Sepsis is a complex process presenting
with multiple pathogenic features, such as dysregulation of the immune and coagulation
systems, thrombosis, disruption of endothelial barrier function, increased vascular permea‐
bility, microvascular sequestration, tissue damage, etc. [94] This complexity is likely to be
responsible for the failure to find new treatments for sepsis, [95] and for the lack of good animal
models. [96, 97]

Platelets are both cellular effectors and cellular targets in the pathophysiology of sepsis.
Regardless of the initiating events in sepsis, platelets play an important role in the development
of multiple organ failure via their haemostatic and thrombotic potential, resulting in throm‐
botic microangiopathy and disseminated intravascular coagulation. [98, 99, 100] Evidence for
an important role of platelets is provided by clinical studies and animal model data demon‐
strating beneficial effect of antiplatelet agents in sepsis (reviewed in [101]).

Sepsis is frequently accompanied by thrombocytopenia, which is closely associated with
disease severity and mortality rate. [98, 99] Multiple mechanisms may contribute to thrombo‐
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cytopenia in sepsis: disseminated intravascular coagulation with peripheral consumption and
destruction of platelets, impaired thrombopoiesis, direct activation by bacteria or their
products, phagocytosis, etc. [102-104] Thrombocytopenia is also detected after injection of LPS
in mice (a common model for sepsis) [88, 89] through a TLR4-dependent mechanism. [71, 72]

Alterations in circulating platelets occur in septic patients. CD62P expression was elevated in
septic platelets in some studies[105, 106] but not in the others[107, 108] Other platelet activation
markers found in sepsis include membrane expression of thrombospondin (TSP)[109, 110] and
CD63, [106] elevated soluble CD40L level[108] and an increase in beta-thromboglobulin and
the beta-thromboglobulin-to-PF4 ratio. [111] Increased VEGF release by agonist-stimulated
platelets from septic samples has been reported. [107] Moreover, triggering receptor expressed
on myeloid cells (TREM)-like transcript-1 (TLT-1), secreted upon platelet activation, is found
in the plasma of patients with sepsis in levels that correlate with disseminated intravascular
coagulation. [112, 113]. Animal studies suggest that TLT-1 dampens inflammation and
augments platelet aggregation, reducing local hemorrhage. [112] Furthermore, soluble TLT-1
increases platelet adherence to the endothelium[114] and is involved in the regulation of
inflammation in the course of sepsis by suppressing leukocyte activation and affecting platelet-
neutrophil crosstalk. [115]

An in vitro study showed that platelets from septic patients are hyper-adhesive to cultured
endothelium. [110] Alterations in platelet aggregation [107, 116] and increase in PLA level,
which both might contribute to inflammation and vascular injury, have also been found in
sepsis. [105, 109]

Changes in platelet transcriptome have also been reported in sepsis. [117] Expression of spliced
tissue factor mRNA in platelets from septic subjects was associated with tissue factor-
dependent procoagulant activity. [118] This may be one of the mechanisms by which platelets
contribute to microvascular thrombosis in sepsis. [119, 118]

It is likely that different platelet-activating pathways cooperate during sepsis. Platelets are
activated by some (but not all) bacteria or their products, and by NETs. [65, 103, 104] This could
have beneficial roles in fighting infection (i. e. , pathogen capture within thrombus, pathogen
killing, etc). However, uncontrolled thrombus formation in response to bacteria or NETs could
have detrimental effects in sepsis. Other processes, such as imbalance between plasma level
of high molecular weight VWF and its cleavage protease ADAMTS-13, imbalanced coagula‐
tion, systemic endothelial activation, and leukocyte activation, might contribute to potentiat‐
ing platelet activation in sepsis. [99, 100]

7. Platelets and neurovascular inflammation

The central nervous system (CNS) is an immune-privileged site, separated from blood by the
blood brain barrier (BBB). Under pathological conditions, BBB may be disrupted. This lets cells
from blood into the cerebral tissue and facilitates innate and adaptive immune responses in
the CNS. [120, 121]
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Platelets are present in the inflamed CNS microvasculature in mice and are capable of
activating brain endothelial cells via IL-1α release. Platelets, as inflammatory cells, participate
in neural diseases associated with pathogen-induced and sterile inflammation. [122-124]

Sterile neurovascular inflammation accompanies such neural disorders as stroke, multiple
sclerosis, and Alzheimer's disease (summarized in [125]). Ischemic stroke elicits a strong
inflammatory response. [126] Inhibition of platelet adhesion to the injured vessel wall by
blocking surface receptors GPIbα or GPVI protected mice from ischemic injury, implying that
platelets are involved in stroke-related cerebral inflammation. [127] The lack of ADAMTS13,
an enzyme cleaving VWF rendering it less proadhesive, promoted brain damage whereas
infusion of ADAMTS13 ameliorated the defect, [128] further suggesting that platelet adhesion
is an important pathogenetic step in ischemic stroke.

Interestingly, limiting platelet aggregation with αIIbβ3 inhibitors did not protect from stroke in
mice[127] and humans. [129] Altogether there are several candidates on the platelet surface or
inside platelet granules, including GPIb, GPVI, and VWF that could be potential targets for
stroke treatment through reducing thrombo-inflammation without inducing bleeding
complications[126, 130-133]

Neuronal loss is accompanied by BBB breakdown and vascular inflammation in age-related
Alzheimer’s disease (AD). [134] Platelet function in AD is altered, and platelet activation state
(determined by plasma soluble GPVI levels) is considered a potential biomarker for the disease
progression. [135-138] Platelets contain substantial amounts of amyloid precursor protein[139]
and various forms of tau protein that could have diagnostic value as biomarkers and/or play
a role in disease pathogenesis. [140]

Multiple sclerosis (MS) is a devastating T-cell mediated autoimmune neuroinflammatory
disease. [141] High levels of platelet activation markers (surface expression of P-selectin)
and increased plasma content of platelet-derived microparticles (PMP) were detected in MS
patients. [142] Chronic lesions of MS patients contain tissue factor, as has been demonstrat‐
ed  by  proteomics  approach,  [143]  and  elevated  levels  of  platelet-specific  αIIb  and  β3

transcripts were detected by microarray. [144] These findings are in concert with platelet
presence  in  human  MS  lesions  and  in  the  murine  brain  in  experimental  autoimmune
encephalomyelitis (EAE), rodent model of MS. [145] Platelet depletion as well as blocking
GPIbα or αIIbβ3 by antibody Fab fragments in the inflammatory rather than immunization
phase of the disease resulted in decreased EAE severity. Intravital microscopy revealed that
platelets  directly  contributed  to  leukocyte  rolling  and  adhesion  to  endothelium  of  the
inflamed postcapillary venules via GPIb-Mac-1 interaction. [145]

Platelet activation in neuroinflammation may result from direct recognition of specific
structures of damaged tissue. For instance, massive platelet activation and degranulation was
induced upon systemic administration in mice of sialated glycosphingolipids (gangliosides),
components of astroglial and neuronal lipid rafts of BBB. The cerebral gangliosides GT1b and
GQ1b are specifically recognized by platelets with P-selectin playing the central role. [146]

The pathogenesis of migraine, the third most frequent disease worldwide, [147] involves
sterile inflammation and hypersensitization of pain pathways. [148] Spontaneous platelet

Role of Platelets in Inflammation
http://dx.doi.org/10. 5772/60536

47



activation and aggregation in migraine patients have been known for years [149, 150] and
expression of platelet receptors to fibrinogen and serotonin are altered in migraine patients.
[151] PLA accumulating in the blood of patients with migraine[152] may link severe headaches
and stroke. [152, 153] Preliminary observations suggest that antiplatelet therapies may be
effective to reduce the severity of migraine. [154]

8. Platelets in allergic inflammation

Allergic diseases include a variety of conditions (atopic dermatitis, asthma, etc) that are caused
by immune responses to environmental antigens. The hallmarks of allergy are the activation
of TH2 lymphocytes and the production of allergen-specific IgE antibodies, with the latter
causing excessive activation of mast cells, eosinophils and basophils. This may become fatal
when hypersensitivity results in systemic response designated as anaphylaxis. In chronic
allergic inflammation, large numbers of immune cells accumulate at the affected site, causing
substantial tissue damage. [155] The link between platelet activation and allergy has been
studied for many years. [156, 157]

Independent studies report elevated plasma levels of platelet activation blood markers (β-
thromboglobulin (β-TG), PF4, P-selectin, and PMPs) in patients with atopic dermatitis (AD)
and psoriasis. [158-160] as well as in a mouse model of AD. [161] Plasma β-TG and PF4 may
be markers for the severity of AD and psoriasis. [158]

In AD, it is possible that platelets contribute to an itch–scratch–hemorrhage cycle via release
of pruritogenic factors such as histamine, 5-HT, acid proteases, IL-1β, TGF-β, PAF, and
prostaglandin E2. [157]

While studies on platelet activation markers in asthmatic patients are inconclusive likely due
to differences in experimental design, [162-167] the role of platelets in lung allergic inflamma‐
tion has been established in mouse models. [168-171] There is a significant association between
activation of platelets and eosinophils in the airways of individuals with asthma. [164]
Moreover, circulating PLA are detected in the blood of allergen-challenged asthmatic patients
and mice. [168] Platelets are essential for leukocyte recruitment to human and murine lungs
in allergic inflammation [168, 170] and to the skin in chronic hapten-induced dermatitis,
another mouse model of AD. [172] PLA circulate in the blood of asthmatic patients and in
allergen-challenged mice. [165, 168] In all cases, the role of platelets was P-selectin-dependent.

Platelets express functional low (FcεRII) and high affinity (FcεRI) receptors for IgE at low
level [173-175] Murine platelets can chemotactically respond to the sensitizing allergen via
FcεR in vitro and in vivo, with platelet influx preceding the influx of leukocytes. [171] Upon
engagement  of  IgE  receptors,  platelets  release  a  variety  of  biologically  active  media‐
tors[175, 176] including RANTES, a potent eosinophil chemoattractant. [177] IgE is stored
in  platelet  α-granules  and released  upon activation,  which  may potentially  amplify  the
allergic response. [178]
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Multiple products released by activated platelets are able to exacerbate the allergic response,
e. g. , thromboxanes, histamine, and serotonin. [179, 180, 181] PAF is a potent mediator of
allergic inflammation that is both released by and activates immune and inflammatory cells,
including platelets [55, 182, 183]. In mice, platelets, and not mast cells, are the main source of
serotonin released during allergic inflammatory response. [184] Besides allergic mediators
platelets also contain substances limiting inflammation, for example, lipoxins, produced
during platelet-leukocyte interactions. [185-188]

In asthma, platelets have been found to actively participate in most of its main features,
including bronchial hyperresponsiveness, bronchoconstriction, airway inflammation and
airway remodelling. [169, 189]

In conclusion, delineation of platelet contribution to the allergic response may be beneficial in
developing more effective therapies, [190] as well as diagnostic and prognostic tools to evaluate
efficacy of treatment of various allergic diseases. [191]

9. Concluding remarks

Platelets are important players in the development of inflammation. They store multiple
inflammatory molecules that, upon release, chemoattract key innate immune cells leukocytes
and stimulate endothelium. Platelets interact with leukocytes and support their interaction
with vessel wall and egression to tissues. Platelets play a pivotal role in various inflammation-
related diseases and targeting platelets could be a promising approach to manipulate the
inflammatory response.
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