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1. Introduction

Synthetic and medicinal chemistry intersect at the production of compounds. However there
are  stark  contracts  in  approach  with  synthetic  chemistry  typically  producing  complex
molecules and developing synthetic  approaches.  In medicinal  chemistry,  the focus is  on
compound access to facilitate compound screening and structure activity data acquisition to
enable the synthesis of more active compounds. Medicinal chemistry relies on a small range
of highly robust and reliable reactions to gain access to a wide array of potentially bioofi‐
cal reactions.[1, 2]

This reliance on rebust chemistries has been significantly enhanced through the development
of efficient C-C coupling protocols, in particular the coupling of aryl halides with α,β-
unsaturated building block. The power of these new coupling technologies has been reflected
in the recent Nobel prizes in this area to Heck,[3] Suzuki,[4] Grubb and their co-workers.[5]

While the development of new methodologies is of paramount importance across all areas of
synthetic chemistry, simple developments and increased understanding of reaction conditions
and reaction media often enhance these new methodologies. In this latter regard the growth
of knowledge in and around room temperature ionic liquids and and their ability to moderate
reaction outcomes through their tuneable nature and ability to act as solvents for a wide range
of chemical compounds has proved, arguably, equally important. Importantly, the combina‐
tion of developments in C-C coupling technology and RTILs has allowed enhancement in the
overall process efficiency. That is, these processes are becoming more environmentally
sustainable.

Our group’s primary focus requires rapid access to focused compound libraries of bioactive
molecules spanning multiple potential therapeutic targets: the inhibition of dynamin GTPase,
protein phosphatases 1A and 2A and the development of anti-cancer lead compounds.[6-12]
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Where possible we are keen to apply green chemistry principles around reagent, solvent and
synthetic pathway choice.[13-16] Within our own research efforts we have routinely tolerated
low yields and difficult purifications to gain access to the desired compounds.[17, 18] We have
thus invested considerable resources in the examination, and application, of RTILs and other
emerging technologies to the synthesis of bioactive focused compound libraries.[19-23] A
current program focus within our team is the development of robust flow and microwave
approaches to Pd-mediated C-C coulpling reactions, especially the Heck-Mizoroki (Heck
reaction).

1.1. The Heck–Mizoroki reaction (the Heck reaction)

The cross-coupling of organic halides with alkenes in the presence of catalytic quantities of
Pd(0) and a base was first reported by Mizoroki and Heck in 1971.[24, 25] Over the next four
decades this has become known as “the Heck reaction” and has been the subject of a number
of synthetic and mechanistic studies. It is now generally accepted that there are four key
requirements / conditions to a successful Heck coupling reaction: 1) Solvent: The Heck reaction
generally requires a polar solvent such as dimethyl formamide (DMF) and dimethyl sulfoxide
(DMSO); 2) Base: The Heck reaction bases are usually selected from Et3N, NaOAc or aqueous
Na2CO3 or NaHCO3;[26] 3) Catalyst: The Heck reaction uses 1-5 mol% catalytic palladium (0)
or palladium (II) complexes. Most commonly in the form of Pd(0)-phosphine complexes such
as tetrakis(triphenylphosphine)palladium(0) [Pd(PPh3)4] or dibenzylidene-acetone complexes
of Pd(0) such as Pd2(dba)3(dba).[27] Simple palladium salts such as PdCl2 or Pd(OAc)2 in the
absence of stabilizing phosphine ligands have also been widely used.[28]-[30] 4) Halide: The
reactivity of the halide precursor effects the time and temperature required to effect the desired
coupling reaction (Figure 1).

 

Figure 1. General reaction scheme of a Heck cross coupling between an aryl and an olefin indicating the four key varia‐
bles: base, solvent, catalyst and temperature.

2. Heck reaction in Room Temperature Ionic Liquids (RTILs)

The emergence of room temperature ionic liquids (RTILs) has allowed the investigation of the
Heck reaction in a wide range of novel and tuneable solvents systems.

These novel solvents cover a wide range of structural moiefs from the now well established
methylimidazolium and pyridinium salts through ammonium and phosphonium based
systems. RTILs now comprise a wide arry of sub classes including protic (PILs), basic (BILs),
chiral (CILs), solid supported (SLIPs) and functionalised (FIL).[31, 32] Key examples of these
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systems are shown in Figure 2. The custom design nature of these RTILs modifies their ability
to solubulise materials and affects the outcome of a wide range of chemical transformations.
Herein our focus is the Heck reaction. In addition to the variable nature of the RTIL, a number
of novel Pd-catalysts have been developed to enhance the Heck coupling outcomes, especially
with the use of deactivated aryl halides and olefins. Selected examples of these Pd-catalysts
are also shown in Figure 2.

 

Figure 2. Selected examples of ionic liquids and Pd-catalysts used in the Heck reaction.

2.1. Imidazolium and pyridinium RTILs

The coupling efficiency of ethyl acrylate with iodobenzene mediated by Pd(OAc)2 was
examined in the presence of N-hexylpyridinium [N-C6H13Py][X], where X=Cl, PF6 and BF4, and
with [bmim][PF6] and 1-pentyl-3-methylimidazolium chloride ([pmim]Cl) RTILs (Scheme 1).
The N-C6H13Py systems afforded higher yields of the coupled product, E-ethyl cinnamate, than
the equivalent [bmim]Cl. Similarly, a higher coupling yield was obtained with [N-C6H13Py]
[BF4] than [N-C6H13Py][PF6], but required higher reactions temperatures 80 °C and extended
reaction durations of 72 h to attain the efficiency of the chloride analogues (Table 1).[33]
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Sheme 1. Reagents and conditions: 2 mol % Pd(OAc)2, a RTIL (see Table 1 for detail), Et3N or NaHCO3, 40-100 °C,
24-72 h.

RTIL Base Temp. °C Time (h) Yield %

[N-C6H13Py]Cl Et3N 40 24 99

[N-C6H13Py]Cl NaHCO3 40 24 98

[N-C6H13Py][PF6] NaHCO3 80 72 42

[N-C6H13Py][BF4] NaHCO3 80 72 99

[N-C6H13Py]Cl NaHCO3 40 24 82

[N-C6H13Py]Cl NaHCO3 100 24 99

[pmim]Cl Et3N 80 72 10

[pmim]Cl NaHCO3 100 24 19

[pmim]Cl NaHCO3 40 24 77

Table 1. Heck coupling of iodobenzene and ethyl acrylate to give E-ethyl cinnamate in N-hexylpyridinium and
methylimidazolium RTILs and 2 mol% Pd(OAc)2.

The imidazolium RTILs gave low coupling yield in the absence of phosphine ligands. Addition
of Ph3P to [bmim][PF6] saw a significant rise in E-ethyl cinnamate yield to 99%, and this system
could be re-used six times with no observable loss in catalyst activity. Pure product was
obtained directly via hexane extraction. This approach was also suitable for coupling of the
less reactive 4-bromoanisole where the effect of group 15 ligands was also explored and
showed enhanced yields relative to the classical approach. The RTILs [N-C6H13Py][Cl] and
[bmim][BF4] allowed the facile coupling of benzoic anhydride (as the aryl moiety source) and
butyl acrylate giving trans-butyl cinnamate in 90-95%. This coupling was conducted at 160 °C
with [N-C6H13Py][Cl] and PdCl2, and 200 °C with [bmim][BF4] and Pd(OAc)2 and P(o-tol)3.[33]
Xiao et al noted that [bmim][BF4] promoted the ionic pathway in the arylation of electron-rich
olefins affording high α-regioselectivity (Table 2).[34]

Yokoyama showed that heating an aryl substrate, olefin and 3 mol% of 10% Pd/C dispersed
in [bmim][PF6] afforded good yields of the Heck coupling product (Scheme 2). Product
isolation was by extraction allowing direct reuse of the RTIL and catalyst without loss of
coupling efficiency.[35]
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Sheme 2. Reagents and conditions: 3 mol % Pd/C (10%) / [bmim][PF6], Et3N, Δ.

Arene diazonium salts in RTILs have proved to be viable alternatives to aryl bromides and
iodides in Pd-mediated couplings.[36, 37] In [bmim][PF6], arene diazonium BF4 salts were
readily coupled with acrylonitrile, but vinyl ethers and esters were less reactive requiring more
forcing conditions of higher temperature and longer reaction duration (Scheme 3).[38]





 

Sheme 3. Reagents and conditions: 2 mol % Pd(OAc)2, [bmim][PF6] at 50 °C, 2-4 h.

The Pd(OAc)2 mediated intramolecular Heck reaction of o-iodoarylallyl ethers present an
attractive route to benzofurans, but typically requires extended reaction times in traditional
solvents (80 °C, 2 days).[39] However, in [bmim][BF4] treatment of o-iodobenzyl allyl ether
with 5 mol % PdCl2, 1.5 eq. (n-Bu)3N and 1 eq. NH4OOCH at 60 °C for 24 h gave 3-methyl‐
benzofuran in a 71% yield (Scheme 4).[40]

 

Sheme 4. Reagents and conditions: 5% PdCl2, (n-Bu)3N, [bmim][BF4], 60 °C, 24 h.

ILs Aryl halide Temp. °C Halide conversion %

[bmim][Br]
iodobenzenea 90 94

4-bromobenzaldehydeb 100 71

[bmim][BF4]
iodobenzenea 90 35

4-bromobenzaldehydeb 100 3

a reaction with ethyl acrylate, b reaction with butyl acrylate.

Table 2. Selected results for Heck reaction between the listed arylhalides and ethyl acrylate or butyl acrylate in
[Bmim]Br and [Bmim]BF4.
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The use of more substituted o-iodoaryl allyl ethers using the above approach allowed rapid
access to 3-substituted benzofurans (Scheme 5). The isolated yields varied from modest to
good.[40]

 

Sheme 5. Reagents and conditions: 5% PdCl2, (n-Bu)3N, [bmim][BF4], 60 °C, 24 h.

Specialty highly recyclable Pd-complexes, such as Alper’s Pd(II)-bisimidazole (Scheme 6),
have proved effective recyclable (five cycles with no loss of activity) Heck coupling catalysts.
[4][1][4][5]

 

Sheme 6. Reagents and conditions: 2 mol % Pd-catalyst, [BMIM]BF4, 60 °C, 24 h.

2.2. Phosphonium RTILs

A wide range of phosphonium based RTILs have been explored for use in the Heck reaction.
[46] Of particular note was the use of salts such as [P6,6,6,14][Cl] in the Heck coupling of
deactivated and sterically demanding aryl halides (Scheme 7).[47-50] Even with deactivated
aryl halides these reactions required mild conditions and short reaction duration (50 °C and 2
h). The reaction requires only 50 °C within 2 h. The solvent and catalyst could be reused.
Furthermore, the phosphonium RTIL anion influenced reaction outcome chloride and
decanoate anions giving superior outcomes than with BF4 and PF6.[47]

 

Sheme 7. Reagents and conditions: [P6,6,6,14][Cl], Pd(OAc)2, 100 °C, 18-24 h.

The phosphine free Pd(OAC)2 / or PdCl2 mediated Heck coupling has been conducted in
[P6,6,6,14][Br],  which  also  represented  the  first  report  of  a  Pd-couling  reaction  in  a  RTIL
(Scheme 8).[46]
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Sheme 8. Reagents and conditions: [P6,6,6,14][Br], Pd(OAc)2, 100 °C, 124 h.

It was noted with Pd(OAc)2, that the addition of 1.5 eq. of NaOAc, improved the coupling rate,
but decreased selectivity with 5% of the (Z)-isomer detected under these conditions. Also of
note with this reaction sequence was the slow precipitation of Pd-clusters on use of PdCl2, but
not with Pd(OAc)2. With Pd(OAc)2 the catalyst remained soluble and viable, able to catalyse
subsequent couplings on removal of the product from the previous catalytic cycle. It was
proposed that the RTIL phosphonium salt stabilised the Pd(0) species obtained by in situ
reduction of the Pd(II) catalyst precursors. This ligand free approach has attracted considerable
interest and has purification benefits on reaction scale up.[51]

2.3. Ammonium RTILs

Tetraammonium salts are the archetypal ammonium based RTILs used in the Heck coupling,
with the simplest being the tetrabutylammonium salts ([Bu4N][X]). Coupling of iodobenzene
with arylacrylates gave an expedient synthesis of 3,3-diarylacrylates. This coupling was
accomplished in good yield and regioselectivity in molten n-Bu4NOAc/n-Bu4NBr with
Pd(OAc)2 (Scheme 9).[52]

 

β

Sheme 9. Reagents and conditions: Pd(OAc)2, n-Bu4NOAc/n-Bu4NBr, 100 °C.

Others have noted the increased stability of the Pd-catalytic species in RTILs and have
exploited this in the PdCl2 mediated synthesis of β-arylcarbonyl compounds from allylic
alcohols in [Bu4N]Br, affording (Scheme 10).[53] Extension of this simple procedure afforded
a one-step synthesis of the nonsteroidal antiinflammatory drug (nabumethone), (Scheme 11)
and allowed catalyst reuse.[53]

β

 

Sheme 10. Reagents and conditions: PdCl2, NaHCO3, Bu4NBr, 120 °C, 24 h.
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β

 

Sheme 11. Reagents and conditions: PdCl2, NaHCO3 (1.2 equiv.), Bu4NBr, 120 °C, 24 h.

The Pd-benzothiazole carbene complex has been successfully used as the Pd-source (1.5 mol
%), and easily recycled, in the coupling of both electron rich and electron deficient trans-
cinnamates in [Bu4N][Br] at 130 °C with added sodium formate and NaHCO3 (Scheme 12).[54,
55] The best yields were observed with NaOH and DBU and in these instances the reactions
were complete in < 30 min.

β

 

Sheme 12. Reagents and conditions: [Bu4N]Br, NaOAc, NaHCO3, 130 °C, Pd-cat.

Motevalli’s N-(diphenylphosphino)triethylammonium chloride (IL1) and N-(diphenylphos‐
phino)tributylammonium chloride (IL2), have been used successfully in Heck couplings of
iodobenzene and styrene (Figure 3 and Table 3).[56]

Figure 3. Structures of N-(diphenylphosphino)triethylammonium chloride (IL1) and N-(diphenylphosphino)tributy‐
lammonium chloride (IL2).

2.4. Studies using imidazolium, pyridinium, phosphonium and ammonium RTILs

The coupling of electron poor chloroarenes with mono and di-substituted olefins across a range
of RTILs and Pd-sources has been examined.[57] The model system, resulting in the synthesis
of  stilbene from chlorobenzene and styrene was best  conducted with simple,  e.g.  PdCl2,
phospha-based Pd-sources (Scheme 13). RTILs examined included: imidazolium, ammonium
and phosphonium salts. The tetraalkylammonium salts, in particular [Bu4N][Br], were superior
permitting the coupling of chloroarenes in the presence of less active catalysts such as PdCl2

and Pd(Ph3P)4. Regardless of the conditions used, all imidazolium based RTILs gave poor results,
e.g. 22 % for [bmim][BF4] and 13 % for [bmim][Br] whereas TBAB gave 72 % of the desired
stilbene. With [bmim][BF4] there was clear evidence of the formation of Pd black.[57]
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Sheme 13. Reagents and conditions: PdCl2 or Pd(Ph3P)4, 150 °C, [bmim][BF4] or [bmim]Br or Bu4NBr reaction of mono
and di-substituted olefins in a diversity of RTILs.

Heck couplings have also been conducted in the thermally and chemically stable [P6,6,6,14][X]
quaternary phosphonium salts, where X=Br-, Cl-, I-, BF4

-and CH2(CH2)8CO2
-and the resulting

FILs used in the coupling of iodobenzene with methylacrylate.[58] The effect of anion on the
coupling outcome was determined by screening using Pd2dba3.CHCl3 and each of the phos‐
phonium FILs in turn. High coupling efficiency was observed [P6,6,6,14][CH2(CH2)8CO2] (75%)
and [P6,6,6,14][Cl] (78%), with [P6,6,6,14][Cl] also providing a simpler work up.

The coupling of bromobenzene and butyl acrylate was examined in a range of what were
designated, non-aqueous ionic liquids (NAILs), with trans-di(μ-acetato)-bis[o-(di-o-tolylphos‐
phino)benzyl] dipalladium(II) as catalyst (Scheme 14).[59, 60] These NAILs were drawn from
Bu4NBr, Bu4NOAc, 1-methyl-3-propylimidazolium bromide ([MPIM]Br), tri-n-butyl-n-
hexadecylphosphonium bromide (TBHDP), triphenylmethylphosphonium chloride (TPMPC)
and triphenylmethylphosphonium bromide (TPMPB), all of which gave homogeneous
reaction media and permitted facile catalyst recycling.

Sheme 14. Reagents and conditions: 0.5% Pd-cat, NAIL.

Entry Base Time (h) Yield %

1 Na2CO3 24 -

2 CaCO3 24 -

3 DBU 25 min 90

4 NaOH 8 min 93

5 Et3N 24 60

6 Bu3N 24 50

Table 3. Effect of different bases on Heck reaction of bromobenzene and styrene in N-
(diphenylphosphino)triethylammonium chloride (IL1).
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3. Functionalized Ionic Liquids (FILs)

Functionalised (FILs) or, as they are sometimes know, task specific ionic liquids, incorporate
additional functional moieties within the cation or anion.[61] FILs can be discrete liquids or be
supported reagents and have applications as reagents and catalysts.[62]-[66] FILs have been
examined as novel media for the Pd(OAc)2 mediated Heck reaction of 2-methylprop-2-en-1-ol
and 4-tert-butyliodobenzene in [iPr2N(CH2)2.mim][NTf2] and [iPr2N(CH2)2O(CH2)2N112][NTf2].
In [Pr2N(CH2)2.mim][NTf2] only 32 % of 3-(4-tert-butylphenyl)-2-methylpropanal (β-Lilial®)
was present after 10 h; this increased to 84% on using [iPr2N(CH2)2O(CH2)2N112][NTf2]. These
outcomes correlate well with the relative basicity of these two FILs. The equivalent coupling
in neat Hünig’s base showed a conversion of 39%, supporting a catalytic role for the PILs.[67]
The selectivity between 3-(4-tert-butylphenyl)-2-methylpropanal and 2-(4-tert-butylphenyl)-3-
methylpropanal was found to be >95% respect to β-Lilial® and independent of the PIL basicity
(Scheme 15).

Sheme 15. Reagents and conditions: Pd(OAc)2, 95 °C, time, base tethered-RTIL.

RTILs based on dialkylimidazolium salts have attracted particular attention, as they are easy
to prepare and handle, having good solubility for many substrates and molecular catalyst and
are readily synthesised through a variety of green chemistry approaches.[68]-[70] 1-Octyl-3-
methylimidazolium nonafluorobutanesulfonate [omim][FNBS] represents a novel dialkylimi‐
dazolium based hydrophobic ionic liquid which is effective in ligand-free Heck couplings with
electron deficient olefins (Scheme 16).[71]

Sheme 16. Reagents and conditions: Pd(OAc)2, Et3N, [omim][NFBS], 100 °C, 3-12 h.

Nitrile modified imidazolium and pyridinium salts have been used in Pd-catalysed cross-
coupling reactions (Scheme 17).[72, 73] These FILs are highly effective solvents for the Heck
reaction with excellent yields observed (Table 4).[74]

Sheme 17. Reagents and conditions: 5 mol % Pd, [C3CNmim][Tf2N], 80 °C, 12 h.
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No. Cat. Base Time (h) Additive Yield %

1 PdCl2 [cholinium][OAc] 12 HCOONH4 99

2 (C3CNdmim)2[PdCl4] [cholinium][OAc] 12 HCOONH4 96

Table 4. Selected examples of the Heck Coupling of Iodobenzene with ethyl acrylate in [C3CNmim][Tf2N] at 80 °C.

Numerous studies have highlighted the deprotonation of imidazolium RTILs to yield an
imidazol-2-ylidene N-heterocyclic carbene (NHC) as a crucial step in subsequent reactions
complex generated by deprotonation of the ionic liquid cation.[75-78] Many transition-metal
carbene complexes have been prepared and their catalytic applications described.[79, 80] This
has led to the evaluation of novel RTILs as catalysts in Pd-coupling reactions.[81, 82] Metal-
NHC complexes have been generated and examined in RTILs, with the metal-NHC complex
reactivity examined for Heck coupling efficacy in DMF and [bmim][NTf2] based of an NHC
located from an ionic liquid cation and investigate the catalytic activity in both molecular and
ionic liquid solvents in the Heck coupling of butyl acrylate and bromobenzene (Scheme 18).
[83-86]

Sheme 18. Reagents and conditions: 5 mol% Pd-cat, Cs2CO3, [Bmim][NTf2], 150 °C, 18 h.

Fructose has been used as a renewable resource in the synthesis of novel hydroxymethylimi‐
dazolium based protic ionic liquids (PILs) (Scheme 19).[86-91]

Sheme 19. Reagents and conditions: (i) NH2, CH2O, CuCO3; (ii) BuBr, KOtBu, EtOH; (iii) MeI, CH2Cl2; Metal-X.

Use of these fructose derived PILs in the Pd(OAc)2 mediated Heck coupling of methyl acrylate
with iodobenzene afforded rapid conversion (1 h) to methyl cinnamate in > 95% yield at 100
°C (Scheme 20). Both the PIL and catalyst were readily recycled with no loss of activity.

Sheme 20. Reagents and conditions: 2 mol % Pd(OAc)2, Et3N, RTIL, 100 °C.
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Shreev, et al, synthesized the new RTIL, shown in (Scheme 21), which contain the dication 1,1’-
methylene-3,3’-dialkylbis(imidazolium) or 1,1’-methylene-4,’-dialkylbis(1,2,4-triazolium)
with NTf2 as the anion, and evaluated its efficacy in the Heck reaction (Table 5).[92]

Sheme 21. Reagents and conditions: (i) CH2Cl2 or CH2Br2, KOH, Bu4NBr; (ii) RI, 110-130 °C, 20; (iii) LiN(SO2CF3)2,
CH3OH/H2O (10:1), RT, 2 h.

Entry Pd source R X Time (h) Yield %

1 PdCl2 H I 6 92

2 PdCl2 H Br 18 71

3 PdCl2 H Cl 24 3

4 PdCl2 NO2 Br 18 69

5 PdCl2 CF3 Br 18 57

6 PdCl2 CH3 Br 12 76

Table 5. Heck cross-coupling reactions in the ionic liquid-3 and different anions (X) with selected aryl halides and
butyl acrylate.

In a related study Shreeve et al, also examined the use of a range basic RTILs as both the base
and solvent for the Heck coupling of iodobenzene and butyl acrylate (see Figure 3 for chemical
structutures of the BILs). With BILs, BIL-1, BIL-2 and BIL-3 quantitative conversion and
regioselectivity was observed. All other BILs (BIL-4-BIL-8) displayed low to no reactivity
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under the conditions examined (Table 6). In this study, these results suggest that RTILs with
pendant aliphatic tertiary amines are superior to the pyridinium salts.[93]

Figure 4. Chemical structures of Basic ionic liquid cations.

ILs BIL-1 BIL-2 BIL-3 BIL-4 BIL-5 BIL-6 BIL-7 BIL-8

Conv.[%] 100 100 100 0 41 0 5 0

Table 6. Heck reactions between butyl acrylate and iodobenzene in the presence of basic ionic liquid (BIL1-BIL8) (Fig.
3).

The novel imidazolium RTIL tagged Pd-Schiff base complex was active in both Heck and
Suzuki couplings in aqueous media. Relative to other Pd-catalysted reactions in aqueous
media, this catalyst was effective in the coupling of water insoluble aryl halides without the
aid of a phase transfer catalyst or organic solvents (Scheme 22).[94] Optimised Heck coupling
conditions required the use of 1 mol % catalyst, K2CO3 and with iodobenznene and cyclohexyl
acrylate gave benzyl cinnamate in 96% yield, (Scheme 23).

Chitosan supported Pd(OAc)2 nanoparticles (Pd-NP) in TBAB with added tetrabutyl ammo‐
nium acetate (TBAA) gave rise to very rapid Heck couplings of aryl bromides, iodides and
activated chlorides (Scheme 23).[95] The supported catalyst was amenable to multiple recycles,
whereas the free nano particles rapidly lost activity.
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Sheme 23. Reagents and conditions: Pd-NP /chitosan, [Bu4N][Br]/[Bu4N][OAc], 15 min to 1.5 h, 130 °C.

With Pd-NP in a mixture of [Bu4N][Br]/[Bu4N][OAc] it was possible to couple 1-bromo-4-
chlorobenzene with two different olefins in a one-pot sequential manner by activating the C-
Br and C-Cl bonds on the aromatic ring at two different temperatures of 100 and 120 °C (Scheme
24).[96]

Sheme 24. Reagents and conditions: (i) butyl acrylate, Pd-NP, [Bu4N][Br]/[Bu4N][OAc], 100 °C, 30 min; (ii) styrene, Pd-
NP, [Bu4N][Br]/[Bu4N][OAc], 120 °C, 30 min.

There have been multiple reports on the use of nitrile-functionalized RTILs, such as the
imidazolium and pyridinium based systems, in Pd-catalysed reactions, including the Heck
reaction. Heck coupling in these FILs typically afforded a 90% isolated yield of the desired
product (Scheme 25).[97, 98]

Sheme 22. Reagents and conditions: (i) BrCH2CH2CH2Br, acetone, NaHCO3, 60 °C, 60 h; N-methylimidazole, 80 °C, 48
h; (iii) aniline, EtOH, reflux, 4 h; Pd(OAc)2; (iv) H2O, imidazolium ILs, 80 °C and 4 h; (v) RTIL, 80 °C, K2CO3.
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Sheme 25. Reagents and Conditions: 5 mol % Pd-cat; IL, 80 °C, 12 h.

3.1. Chiral Ionic Liquids (CIL)

To date the use of chiral RTILs (CILs) in Heck couplings has met with limited success. The
arylation of 2,3-dihydrofuran with iodobenzene catalysed by a chiral pyridinium ILs with
[PdCl4

2-] (Figure 4), (used as a co-solvent with [bmim][PF6]), (Scheme 26).[99]

Sheme 26. Reagents and conditions: 2,3-dihydrofuran with iodobenzene catalysed by CILs with [PdCl4
2-], Et3N,

[bmim]PF6, 100 °C.

However, the use of the chiral [bmim][PF6], did give rise to the desired 7-benzyloxy-2H-
chromene in good yield and modest e.e. (15%) (Scheme 27).[100]

Sheme 27. Reagents and conditions: The oxyarylation of 7-benzyloxy-2H-chromene in CILs, Pd(OAc)2, Ag2CO3, 100 °C
and 4 h.

3.2. Supported ionic liquid phase (SILP) catalyst system

Immobilisation of the Pd-catalyst and the RTIL onto high surface area porous solids such as
silica yields a supported ionic liquid phase (SILP) catalyst system. SLIPs are considered, while
being solids, to contain the active species comprise solubilized in the IL phase behaving as
a homogeneous catalyst,  and as such offer the potential  for novel reactivity.  Suzuki has
examined this reactivity with a range of Pd(OAc)2/silica based SLIP catalyst systems. The
SLIPs were air and thermally stable, provided simple storage conditions, easily recyclable
and highly effective in the Heck coupling of substituted arylhalides with vinyl esters (Scheme
28).[101, 102]
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Sheme 28. Reagents and conditions: Pd(OAc)2, SILP, Na[(Ph)2P-(m-PhSO3)], 150 °C, 7-17 h.

In a related study, Pd(OAc)2 and [bmim][PF6] were immobilized on reversed phase silica gels
such as aminopropylated or N,N-diethylaminopropylated silica.[103] The Heck reaction
between iodobenzene and cyclohexyl acrylate was carried out as shown in (Scheme 29). The
catalyst was reused five times with no loss of catalytic activity.

Sheme 29. Reagents and conditions: Pd(OAc)2, [bmim][PF6]-SiO2, 30 °C, 1.5-3 h.

Yokoyama et al, has been reported the use of a SiO2 supported Pd(II)/[bmim][PF6] as a highly
active and reusable SLIP for the phosphine free Heck reaction of iodobenzene and ethyl
acrylate (Scheme 30).[104] The addition of low levels of Et3N increased the [bmim][PF6]
decomposition temperature in this system from 130 to 160 °C.

Sheme 30. Reagents and conditions: Pd(II)-SiO/[bmim][PF6], Pd/SiO2, Et3N, [bmim][PF6], 130-160 °C, 24 h.

3.3. Ultrasonic synthesis approaches

In the RTILs, 1,3-di-n-butylimidazolium bromide [bbim][Br] and 1,3-di-n-butylimidazolium
tetrafluoroborate [bbim][BF4], under ultrasonic irradiation significant rate enhancements were
noted for the NaOAc / PdCl2 mediated coupling of substituted iodobenzenes with alkenes/
alkynes at 120 oC (Scheme 31).[105] Isolated yields were good to excellent (up to 87%) with
only the trans product obtained. These couplings only required 1.5-3 h.

3.4. Microwave synthesis approaches

Microwave heating has been applied to the Heck reaction in RTILs significantly reducing the
time required to effect coupling, and influencing product yield and the extent of by-product
generation.[106, 110] Generally microwave approaches have focused on the use of aryl iodides
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and active aryl bromide, such as those reported by Larhed et al in [bmim][PF6] (Scheme 32).
[111] Using 4 mol % PdCl2 (4 mol %), P(o-tolyl)3 as the added Pd-ligand, reactions were
complete after 5-45 min, at 180 – 220 °C. The catalyst system and RTIL were and the time 20
minutes and 45 minutes for trans formations without the phosphine ligand. This system was
recyclable at least five times, and the volatile product was directly isolated in high yield by
rapid distillation under reduced pressure.[111]

 



μ







Sheme 32. Reagents and conditions: PdCl2, P(o-tolyl)3, Et3N, [bmim][PF6], μW, 180-220 °C, 5-45 min.

More complex Pd-catalysis such as Herman’s palladacycle, trans-di(μ-acetato)bis[o-di-o-
tolylphosphanyl)-benzyl]dipalladium, have been developed in efforts to enhance Pd-coupling
outcomes with unreactive aryl chlorides.[112] Using this Pd-catalyst (1.5 – 10 mol %), Heck
coupling in [bmim][PF6] / dioxane mixtures with aryl chlorides and butyl acrylate gave the
desired cinnamic esters.[113] High levels of phosphine ligand (3-20 %) were required depend‐
ent on the reactivity of the aryl chloride. Under microwave irradiation the yields were
moderate to excellent (Scheme 33).[114]



μ

 







Sheme 33. Reagents and conditions: Herrmann’s palladacycle, [(tBu)3PH][BF4], Cy2NMe, [bmim][PF6]/dioxane, μW,
180 °C, 30-60 min.

Microwave irradiation of [omim][BF4] with 3-5 mol % Pd/C proved effective in the phosphine
free Heck coupling of aryl iodides and aryl bromides with butyl acrylate. The reactions were
typically complete in 1.5 min affording 33-89% yield of the trans-butyl cinnamates. This

Sheme 31. Reagents and conditions: (i) 2 mol% PdCl2, [bbim][Br] or [bbim][BF4], 120 °C, 1.5-3 h.
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microwave based Pd-coupling approach was effective across a range of olefinic substrates
including styrene, 2-methylbutyl acrylate and methyl cinnamate with iodobenzene. The steric
bulk of the olefin affected reaction outcome with yields ranging from 27 – 86 % (Scheme 34).
[115]



μ



 





Sheme 34. Reagents and conditions: Pd/C, (n-Bu)3N, [omim][BF4], μW, 1.5 min at 375W.

Under conventional heating for 24 h, the Heck coupling of iodobenzene with ethyl acrylate in
1-(2-cyanoethyl)-3-(2-hydroxyethyl)-1H-imidazol-3-ium tetrafluoroborate, afforded a modest
25% yield of ethyl cinnamate with PdCl2. Using microwave irradiation (200 W, 120 °C), the
same reaction system gave 88% yields of ethyl cinnamate in 5 min (Scheme 35). The system
showed good stability and maintained the efficiency after six consecutive runs without
significant loss of activity.[116]
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Sheme 35. Reagents and conditions: PdCl2, RTIL, μW, 120 °C, 5-20 min.

Under microwave irradiation in TBAB, the {Pd[C6H2(CH2CH2NH2)-(OMe)2,3,4](μ-Br)}2,
(palladacylce A) mediated Heck coupling of aryl bromides, aryl iodides, aryl chlorides and
arene sulfonyl chlorides increased dramatically with reaction times reducing from hours to
minutes (Scheme 36).[117] μ

 





Sheme 36. Reagents and conditions: palladacycle A, [Bu4N][Br], μW, 130 °C, 1-20 min.

The scope of the Heck olefin precursor has been extended through the use of microwave
approached to 2° alcohols in a dehtdrative Heck coupling approach. The combination of
[hmim][Br], [PdCl2(PPh3)2] along with LiCl and the combination of HCO2Na and piperidine
and microwave irradiation reduced reaction times to 15 min (Scheme 37).[118]
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Sheme 37. Reagents and conditions: [hmim][Br], HCO2Na, Pd(OAc)2, PPh3, μW, 150 °C at 15-40 min.

3.5. Flow chemistry approaches

Micro reactor technology has and a significant impact on the chemical synthesis and produc‐
tion. This technology has many advantages including: 1) highly efficient material mixing; 2)
high volume to area ratio; 3) efficient heat transfers ability; 4) the avoidance of “hot spots” by
effective temperature control and mixing; and 5) high operational safety.[119] The transition
metal catalysed reactions have been reported by using a micro flow system, such as hydroge‐
nation[120] and oxidation,[121] and the Heck reaction.[122]

RTILs present a challenge for flow chemistry approaches due to their often-high viscosity. Ryu
has examined the use of a low viscosity RTIL, [bmim]NTf2 as well as a high viscosity RTIL,
[bmim][PF6].[122] The Heck coupling of iodobenzene with butyl acrylate was sluggish in
[bmim][PF6], but the use of [bmim][NTf2] in a CPC CYTOS lab system gave 10 g.h-1 of, and in
a single run with catalyst recycling, 115.3g of buyl cinnamate (Scheme 38).[123]

μ





 

Sheme 38. Reagents and conditions: 0.1-0.5 mL.h-1, [BMIM]NTf2, 130-150 °C, 10-50 min residence time.

4. Conclusions

In the last twenty years has shown an increasing interest in applying ionic liquids as green
solvents in organic synthesis. This approach has been extended to the palladium-catalysed
Heck reactions as a key synthetic protocol for C-C bond formation. Factors affecting this
approach including the type of ionic liquid used, the base and the catalyst have been investi‐
gated by many research groups. In addition, limited number of microwave-based and flow
chemistry based Heck reactions have been reported. Despite these efforts, only simple aryl
halides and olefines were used in the reported investigations. Active research in this area is
still required to increase the scope of Heck reaction in ILs to involve more complicated
substrates and larger scale.
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