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Abstract

The formation of embryonic blood vessels, defined as vasculogenesis, is a complex
morphogenetic process ultimately related to tubulogenesis, carried out from in situ
differentiation of mesoderm-recruited or proliferated progenitor endothelial cells
(angioblasts) to endothelial cells for structuring a primary vascular plexus. Subse‐
quent events involving apoptosis versus cell survival (remodeling) in the vessel
network stabilizes the primordial microvasculature, which through the angiogenesis
process yields new capillaries by sprouting from the preexisting ones. Methylxan‐
thinic alkaloids such as caffeine (compounds present in a number of beverages
consumed worldwide) exert some well-known effects upon heart and other cardio‐
vascular structures, in part, by negatively interplaying with phosphodiesterase
(PDEs) enzymes. Once caffeine as well as Ilex paraguariensis (yerba mate) infusion
extract have shown to enhance the vessel formation (vasculogenesis and angiogene‐
sis), we discuss the impact afforded by I. paraguariensis constituents on the (PDEs-
related) quantities and stability of Protein kinase A (PKA) and Protein kinase C (PKC)
enzymes. Besides, the text reflects on a suggested dual roles displayed by PKA and
PKC enzymatic pathways in the developmental angiogenic events.
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Methylxanthinic alkaloids, Vessels remodeling, Angiogenesis and vasculogenesis

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



1. Introduction

Angiogenesis and vasculogenesis are the better studied processes of vessel formation [1].
Angiogenesis starts from preexistent vasculature, these last structures being either the
primitive vascular plexuses primordially formed by vasculogenesis in the embryo or the
postcapillary venous compartment of the mature vascular systems [2, 3].

Vasculogenesis is defined as the formation of early embryonic blood vessels from in situ
differentiation of mesoderm-recruited/proliferated progenitor endothelial cells (angioblasts)
to endothelial cells [4, 5]. This process involves endothelial precursor cell clusters organization
(blood islands), in the yolk sac membrane (YSM), laying down a primary vascular plexus [6–
8]. A subsequent remodeling of this vascular network – a process that combines events of cell
death or regression in some vessels and survival or enhancement in others – gives rise to a
more refined and effective microvasculature [9–11].

Further proliferation of capillaries sprouting from preexisting vessels is referred to as angio‐
genesis [12], a process involving coordinated endothelial cell proliferation and migration as
well as recovering of extracellular matrix (ECM), tubule formation (tubulogenesis), and
expansion of the surrounding vascular tissues [13–15]. Despite angiogenesis in adults being a
rare event, it plays a fundamental role in physiological processes, such as the reproductive
cycle of fertile women and the wound healing process [16, 17].

There are evidences that the vasculogenesis process that works in the early embryo forming
primary vessels at high rates to keep pace with the growth of the body has been adapt‐
ed, under certain situations, in the adult [4, 18, 19], since bone marrow–derived endothe‐
lial progenitor cells in the peripheral blood of adult animals and humans have been shown
to be incorporated into neovascularization [3, 20]. Under such conditions, cytokines can be
produced to induce the formation of vascular networks alluding to vasculogenic mimicry
[13,  21].  Thus,  in  accordance  with  this  concept,  the  embryonic  cellular  mechanisms
(proliferation  and differentiation)  underlying  vasculogenesis  process  would  be,  in  some
level, recapitulated in adult life [21–23].

The cardiovascular system is susceptible to positive chronotropic and inotropic actions
afforded by a class of compounds like xanthines which cause dilatation in a number of blood
vessels (on lung and kidney, e.g.) and constriction in some others, such as the one occurring
in brain vessels, revealing their controversial pharmacological features and biological targets
diversity [24]. Methylxanthinic alkaloids, such as caffeine and theophylline are majoritarian
compounds present in the coffee and cola beverages as well as in various tea extracts [25, 26].
Thus, in particular, caffeine may possibly be one of the most consumed substances all over the
world. Its tropism on the cardiovascular structures and other organ systems is already
reasonably known [27], as the specific-tissue mechanisms of action in some processes waits
for further elucidation. Otherwise, methylxanthinic alkaloid interaction with protein kinase A
(PKA) pathway has a remarkable effect on several vessel-related events. For example, Shafer
et al. has verified that the treatment with caffeine and other methylxanthines increases cAMP
level by inhibiting cAMP phosphodiesterase (PDE) [28]. As cAMP activates PKA, glycolysis
is elevated which increases the amount of ATP available for muscle contraction and relaxation.

New Discoveries in Embryology170



Caffeine, as well as Ilex paraguariensis  St.  Hill.,  Aquifoliaceae (e.g.,  mate) infusion extract
(1.03–4.12 μM), have been shown to increase the microvessels number, due to the enhance‐
ment on vasculogenesis and angiogenesis rates, in the model of yolk sac and chorioallanto‐
ic  membranes  of  chick  embryos  [29].  Moreover,  an  additional  stimulant  property  on
embryonic metabolism was evidenced by the increase in the body growth (defined by the
body length). The pharmacological effects of caffeine and theophylline present in the mate
drinks on the cardiovascular system are mainly addressed to PDEs inhibition, which directly
impacts the quantity, stability, and cell activities of PKA and Protein kinase C (PKC) [30].
In fact, the relaxant effect in the smooth muscle is attributed to PDE inhibition, with the
consequent  increase  in  cyclic  adenosine  monophosphate  (cAMP)  concentration  [27,  31].
Moreover, the heart muscle stimulation and the bronchial muscle relaxation are mediated
by  beta-adrenoceptors  stimulation  and  adenylate  cyclase  (AC)  stimulation.  It  is  also
suggested that  the  competitive  antagonism exhibited by methylxanthines  on the  adeno‐
sine receptors (A1 and A2) determines some of its complex effects [32, 33].

The action mechanism of caffeine and mate extract/tea upon the processes of vessel formation
remains unclear despite the important evidences of xanthine involvement-related biological
targets (PDE–AC) on the cardiovascular physiology. Thus, it seems important to pay attention
to the suggested dual roles of PKA and PKC enzymatic pathways in the angiogenesis.

2. Distinct roles of PKC and PKA in angiogenesis

PKC isoforms are key mediators in hormone, growth factor, and neurotransmitter-triggered
pathways of cell activation [34]. Proteomic technologies (gel-based and gel-free analyses
methods) and metabolomics have been successfully used in the study of protein kinases. The
application of these novel tools and strategies in the field of kinase signaling has been focused
on the role of PKC in the heart (for review, see [35]). Another recent review provides, with
particular attention, information on the role of PKC isoforms in the cardiovascular complica‐
tions [36]. A scheme of endothelial signaling pathways is displayed in Figure 1. As reported
by Wright and co-workers, the DAG–PKC pathway activated by vascular endothelial growth
factors (VEGFs) contributes to the vascular function in many ways, such as the regulation of
endothelial permeability, vasoconstriction, extracellular matrix (ECM) synthesis/turnover,
leukocyte adhesion, cytokine activation, cell growth, and ultimately, angiogenesis (Figure
1-1) [37]. In fact, such role of PKC on the angiogenesis activation was confirmed by in vitro and
in ovo experiments.

An interesting study related with the PKA versus PKC actions on angiogenesis was performed
by DeFouw and DeFouw [38]. These researchers showed that whereas the exogenous activa‐
tion of cAMP by PKA pathway signaling acts decreases the macromolecules extravasation in
the chick chorioallantoic membrane (CAM) during early angiogenesis (4.5-day CAM, i.e., 4.5
days of embryonic development; stage 24-HH) [39], the PKC activity contributes, at least in
part, to CAM endothelial hyper permeability (a crucial pro-angiogenic event) at the 4.5-day
chick embryo. Nevertheless, it was already reported [40] that the cyclooxygenase (COX-2)
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Figure 1. Schemas of endothelial signaling pathways. Basic fibroblast growth factor (bFGF) has been shown to acti‐
vate a number of intracellular signaling pathways. Some well characterized processes that have been reported in endo‐
thelial cells and other cell types are shown. Many details in the steps of the processes were omitted for the sake of
clearness and the numbers are included to enable the signals/effectors identification (then numbers not necessarily rep‐
resent a sequence on transduction pathways, which are often non-exclusive). The autophosphorylation is activated by
several tyrosine residues of FGFR and VEGFR. Some of the phosphotyrosine residues are binding sites for proteins
with phosphotyrosine-binding domains such as FGF receptor substrate 2 (FRS2) that functions as docking protein and
binds to the GRB2 which then can activate RAS. RAS may recruit RAF-1, a kinase whose action results in activation of
a mitogen-activated protein kinases (MAPK) cascade. MAPK translocation to the nucleus proceeds activating tran‐
scription factors. PLC activation also plays a relevant role by causing the hydrolysis of phosphatidylinositol (PIP2) to
inositol-3-phosphate and diacylglycerol (DAG) leading to calcium release and activation of protein kinase C (PKC).
These kinase/eicosanoid-mediated signal transduction pathways can lead to a number of biological responses on the
cell housekeeping that involve cell proliferation, migration, and the other mechanisms related to the endothelial cell
phenotype (1–4). Guanylyl cyclase (GC) mediated survival promotion by means of AKT-NOS activation (5–8) and gua‐
niline triphosphate/cyclic guaniline monophosphate (GC-cGMP)-PKC, as well as PKG activation pathways (5–9). Phos‐
phodiesterase (PDE) inactivation, as attained by xanthines (caffeine, for example), with the consequent up-regulation
of cAMP-PKA signaling and the down-regulation of cGMP-PKG (6-7). A PDE compensatory role on the cAMP/PKA
probable anti-proliferative (and/or anti-EC migration) effects afforded, as suggested, by a potent stimulus (from PIP2,
for example) on the PKC mitogenic pathway, with subsequent COX-2 activation (10), or also by pro-vascular signals
transmission contributions (11).
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pathway, as well the AC–PKA signaling, enhances angiogenesis in vivo through induction by
VEGF. Other studies have also indicated PKA as a positive angiogenesis regulator [41–45]. In
this sense, PKA inhibition with H89 (PKA inhibitor) blocks vasoactive intestinal peptide-
induced VEGF production and inhibits brain vascular endothelial cells proliferation [41], while
PKA stimulation via Forskolin increases angiogenesis through PKA-dependent VEGF
expression [42]. Also, Zhang et al. have demonstrated that the proinflammatory prostaglandin
E2 (PGE2) promotes angiogenesis through activation of endothelial cell-expressed EP4 and
PKA catalytic γ subunits. Furthermore, suppressing the expression of PKA activated sub‐
strates (i.e., Rap1A, HSPB6, or endothelial NO synthase) inhibits the tube formation, while the
knockdown of RhoA or glycogen synthase kinase 3β, that are inactivated after PKA phos‐
phorylation, increases the tube formation of human microvascular endothelial cells [43].

In opposition to the concept of PKA-activated angiogenic events, some evidences have
established a profile of angiogenesis inhibition and an endothelial cell survival decrease
mediated by PKA [46]. However, these authors have also demonstrated that basic fibroblast
growth factor (bFGF)-stimulated blood vessel branch points were non-abolished by concom‐
itant treatments with cAMP or PKAcat. A subsequent study [47] demonstrated, in human
granulosa cells, the PKA-mediated negative regulation of vessel formation (as well as the
modulation of endothelial cell survival) related to the increase on mRNA levels of angiopoie‐
tin-2 (ANG-2; a pro-apoptotic agent) by both PKA and PKC activators (8-Cl-cAMP and
ADMB), whereas the respective inhibitors (GÖ 6983 and Rp-cAMP) markedly decreased the
levels of ANG-2 mRNA. Concurrently, VEGF-induced human umbilical vein endothelial cells
(HUVECs) migration and proliferation were decreased by PDE2 and PDE4 inhibitors [48].
Additionally, Jin et. al. have shown that PKA activation blocks pp60Src-dependent vascular
endothelial–cadherin phosphorylation which stimulates cell–cell adhesion and inhibits
endothelial cell polarization and migration, which consequently blocks sprouting in newly
forming embryonic blood vessels [49]. In prostate tumor epithelial cells, the cAMP derivative
8-pCPT-2’-O-Me-cAMP, a weak agonist of PKA, acts via stimulation of that kinase that, in its
turn, antagonizes Rap1 and hypoxic induction of 1α protein expression, VEGF production and,
ultimately, angiogenesis [50]. More recently, Liu et al. have proposed that the major PKA
function in physiological condition may be to inhibit angiogenesis through REGγ–proteasome
mediated regulation. It has been shown that REGγ interacts with protein kinase A catalytic
subunit-α (PKAca reducing its intracellular stability) in HUVECs and mouse embryonic
fibroblast cells (MEFs). The study has evidenced that REGγ antagonizes PKA pathway and
facilitates VEGF-induced expression of pro-angiogenic genes (e.g., vascular cell adhesion
molecule-1 gene [VCAM-1] and endothelial-Selectin gene [E-Selectin]) through PKA-FoxO1
pathway. Nevertheless, authors empathize that the role of PKA on angiogenesis can vary
depending upon different cell context and various signal cascades in physiological or patho‐
logical environments [51]. The anti-angiogenic role of PKA through different mechanisms
represents useful tools to inhibit pathologic angiogenesis. Taken in the whole, the above cited
results show contrasting actions upon angiogenesis, not only between PKA and PKC actions,
but also involving each enzymatic pathway, per se.
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3. How can xanthines interplay with vascular mediators?

As referred earlier [29], the treatments performed by 1.03–4.12 μM caffeine and mate extract,
besides increasing vasculogenesis and angiogenesis concomitantly, have promoted embryonic
growth as featured by increase in body total length of treated 4-day chick embryos. These
findings may be better understood taking into consideration the findings previously reported
by Shibley and Pennington [52]. These researchers have demonstrated that non-acute in vivo
treatment of cultured 5-day-old chick embryo cells with 1 μM phorbol ester leads to down-
regulation (instead of up-regulation as afforded by acute treatments) of PKC activity, signifi‐
cantly increasing the insulin-dependent amino acid intake/uptake and transport that are
crucial processes for embryonic growth.

On the other hand, PKC has also been shown to be involved in the regulation of glucose (a
well-known angiogenic activator and fetal weight and length-increasing factor) transport in
adipocytes [53] and that this transportation activity was blocked by PKC inhibition. Indeed,
hyperglycemia (15 mM glucose), as well as VEGF, are able, via VEGFR-2, to up-regulate PlGF
(placental growth factor; a member of the VEGF family), which also acts as a survival factor
for microvascular endothelial cells by preventing apoptosis [54, 55]. These evidences are
concurrent with a time-dependent diacylglycerol (DAG)-mediated PKC activation event
(Figure 1-2) in response to insulin and insulin-like growth factors activation [56].

Even though the impairment on nutrient transport related to PKC inhibition has been already
demonstrated by Christensen et al. [53], possible remarkable compensatory responses exerted,
for example, by insulin-like growth factor interaction with AC on the body length of the
caffeine-treated embryos should be considered (Figure 1-3) [27].

4. What about phosphodiesterases?

Bearing in mind that the evidences of vasculogenesis and angiogenesis inhibition are related
to PKC/PKA pathways, one could yet ponder that those effects not necessarily point to PDE-
related action or additional AC-cAMP inhibitors, as the progesterone hormone, for example,
It is plausible to assume that caffeine and mate effects might, at least in part, involve other
angiogenic pathways than AC-cAMP-PKA inhibition, such as those related to phosphatidyl
inositol-2-kinase (PI2K) and calcium/DAG-PKC activation, or its collateral induction by bFGF
[57], which is a crucial angiogenic growth factor (Figure 1-4). Besides, the tumor necrosis factor-
alpha (TNF-α) and/or the guanylyl cyclase-cyclic guaniline monophosphate (GC-cGMP-PKC/
PKG), pro-angiogenic activating pathways are also worth mentioning (Figure 1-5). Notwith‐
standing, the relevance of PDE involvement in vasculature development is evidenced by the
concept which the differentiation of a restrictive angiogenic–endothelial barrier function in
vivo would include inactivation of PDE III and PDE IV. This implies in up-regulation of cAMP-
PKA signaling (Figure 1-6) and down-regulation on cGMP-PKG pathway [38]. Moreover, (1)
PDE2, PDE3, PDE4, and PDE5 are expressed in HUVEC; (2) both EHNA (20 μM), a PDE2
selective inhibitor, and RP73401 (10 μM), a PDE4 selective inhibitor, are able to enhance the
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cAMP intracellular levels in HUVECs; (3) EHNA and RP73401 are able to inhibit cell prolif‐
eration, mitotic cycle progression and migration on HUVECs stimulated by VEGF; (4) HUVEC
treatments with the cAMP analogue 8-Br-cAMP (600 μM) mimicry the cAMP in vitro inhibitory
effects; and (5) only the association of EHNA and RP73401 (co-treatment by PDE2 and PDE4
selective inhibitors) blocks angiogenesis in vivo, indicating that to start antiangiogenic activity
both migration and cell proliferation must be conjointly abolished [48].

In addition, the relevant study published by Netherton and Maurice [58] punctuates that
human vascular endothelial cells (VECs) express variants of PDE2, PDE3, PDE4, and PDE5
families and demonstrate that the levels of these enzymes differ among VECs derived from
aorta, umbilical vein, and micro vascular structures as those present in the yolk sac/chorioal‐
lantoic membrane (YSM/CAM) of chick embryos. As stated by those investigators, it is
noteworthy that the selective inhibition of PDE2 does not only fail to increase cAMP in any
VECs lineage, but also it did not inhibit migration in the VECs studied.

Otherwise, the inhibition of PDE4 activity decreased cell migration but, in association with
forskolin (an AC/GC activator), increased cAMP in all VECs studied [58]. PDE3 inhibition
potentiated forskolin-induced increases in cAMP and also inhibited migration in VECs derived
from aorta and umbilical vein, but not on microvascular VECs. From these data, one should
expect that methylxanthines had reduced vessel number in the early extra-embryonic mem‐
branes (YSM and CAM) in response to PDE inhibition (Figure 1-7), by antagonizing adenosine,
or indeed by protecting cAMP from degradation. However, there are some evidences con‐
cerning the process of microvessels development where the opposite has just been found. The
cAMP pathway truly “rivals” with the angiogenic microenvironment in complexity (for
inhibiting inflammatory cytokines) and constitutes a kind of cross-junction to which converges
a significant number of cell signaling ways. Then, during vessel formation, cAMP (and its
distinct cellular roles) is surely under influence of factors as diverse as different time–space
conditions, distinct main regulative pathways, and a number of second messengers/effectors
in various signaling routs/cascades. Moreover, these events are dependent on each vascular
endothelial cell lineage and the biological system or study model considered.

5. Focusing on the environment of developmental microvessels

Embryonic microvessels (such as those growing in the 4-day chick YSMs/CAMs) are structures
physiologically under one primordial choice: that is potentially “life or death” [10]. Therefore,
despite the proinflammatory cytokines blockade due to cAMP increase mediated by PDE
inhibition in response to methylxanthines action, and also the presence of eventual apoptotic
stimulus (such as insulin/IGFs-PKA interaction-mediated cell death), the embryonic endothe‐
lial cells may be concomitantly exposed to powerful survival stimuli, for example, vascular
growth factors; survival factors (i.e., ANG-1), guanylyl cyclase (GC)-Akt (i.e., GC-PKB) [59]
(Figure 1-8), pericyte-support; blood flow; and others. Besides, specific pro-angiogenic signals/
conditions (NO-synthase/NO-GC, intermittent hypoxia, and GC-PKC, e.g.) would be prepon‐
derant to protect the ECs (Figure 1-9) [60, 61]. In the light of these evidences, it is still plausible
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to suggest that both caffeine and the I. paraguariensis extract may exert a compensatory role on
the cAMP/PKA probable anti-EC proliferative effect and/or anti-EC migration effect, by means
of potent stimuli (from PIP2, Ca2+, e.g.) to the PKC mitogenic pathway, with supplementary
COX-2 prostaglandin-E (PGE1, 2) activation (Figure 1-10). Additionally, pro-vascular integrins/
cytokines contributions and GC-Akt-P70SK-related c-fos and c-jun activation (Figure 1-11)
should be considered. In the context of the dual effect between the AC-cAMP and GC-cGMP
functions in the ECs (concerning the up-regulation of cAMP-PKA signaling against the down-
regulation on cGMP-PKG pathway), it is possible to ponder on a non-improbable straightfor‐
ward antagonist action of PKC on the PKA pathway. In fact, this idea is in part supported by
evidences that PKC is able to phosphorylate also PKA-specific consensus sites of Tnl (troponin
1), a cardiac myofilament [62].

As an alternative hypothesis concerning a compensatory mechanism on angiogenesis,
negative modulation by cAMP, we suggest the improvement of glucose (an angiogenic
activator) uptake by ECs, possibly mediated by insulin/IGF-AC activation in response to
methylxanthine administration. As support for this idea, data provided by Hashimoto et al.
[63] have shown that inhibitors of PKA and PI3K completely attenuated the NO-induced in
vitro endothelial tube formation (from human aortic endothelial cells). These findings strongly
suggest that PKA (Figure 1-12) and PI3K might both be mediating the angiogenesis process.

6. Conclusion

In conclusion, we should not rescind from the importance of considering some apoptotic level
per se on the endothelial cells lineages (anoikis) during the transition events from immature
vasculature, yielded by vasculogenesis, to a more stable and sophisticated one attained by
angiogenesis. In the context of angiogenic remodeling [64], some microvessels “have to die for
others to survive” becoming stable/quiescent vascular structures [9]. Many “puzzle pieces” of
kinases pathways appear to be, up to date, lacking. For example, how to begin solving the
metabolome matter related to PKA versus PKC pathways in the angiogenesis? In accordance
with Agnetti et al. [36], the “one protein at a time” approach is unlikely to provide a compre‐
hensive picture of the cellular signaling due to the concerted action of “several molecular
players at the same time.” Thus, the activities of both PKC and PKA should not be considered
so mutually exclusive characters in the scenery of developmental microvessel formation.
However, the remarkable evidences on phosphodiesterases as possible pivotal target mole‐
cules for the angiogenic effects of caffeine and Ilex paraguariensis extract strongly suggest an
antagonistic role of the protein kinases A and C in the same events.
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