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1. Introduction

Water is vital to life and thus its availability and quality has increasingly been the object of
intense concern and disputes by multiple agents that include from people directly relying on
ecological services, or simply living in impacted zones, to influential non-governmental
environmental organizations and regulatory governmental authorities. The scientific com‐
munity has increasingly intervened, particularly through the production of sound diagnostic
and mechanistic data and also prognostic models, which fundamentally rely on both chemical
and biological environmental monitoring. Despite the global increasing of pollution and its
impacts, it appears that there is an uncontrollable expansion of anthropogenic activities,
mainly in countries where there are no strict environmental policies. Therefore, pollution
continues to negatively affect the quality of water and, in consequence, the vast ecosystems
associated with it. Presently, it is estimated that hundreds of new chemicals with harmful
potential are recorded daily in the CAS® (Chemical Abstracts Service, http://www.cas.org/
cashome). Thus, the subject "Water Quality" has been the target of many reflections, particu‐
larly in Europe, where in general, all state members of the European Union (EU) have shown
their concern about the near future possibility of water shortages, for all, both in quantity and
quality [1]. Related to this aspect, it is also recognized as of major importance the need to protect
biodiversity and natural ecosystems; an example of such recognition is depicted in the 2012
European Parliament resolution on the “EU Biodiversity Strategy 2020” [2].
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In line with the referred intentions, at the beginning of the millennium the EU adopted
legislation — the EU “Water Framework Directive” (WFD) [3] — that was considered very
innovative at the time. The WFD called for a comprehensive and integrated approach of water
protection and management, having as its ultimate goal that all European waters (continental
surface waters, transitional waters, coastal waters and groundwaters) reached good chemical
and ecological status within a 15 years period, since the date of publication of that directive.
To achieve these requirements, temporal incremental goals were established amongst all EU
states to ensure the success of this program. Thus, it was decided inter alia to: (i) apply all
necessary measures to avoid the damage of superficial water bodies; (ii) impose fines on
violators responsible for deteriorating the status of surface water bodies; (iii) achieve good
ecological and chemical status for all artificial or heavily modified water bodies; (iv) progres‐
sively reduce the pollution of priority compounds, some of these focused in this Chapter, by
limiting their emissions, their discharge and/or runoff into the environment.

However, as the water situation in each EU state was different and unique, since 2000 and up
to the present, it has been necessary to make adjustments to overcome this aspect. Indeed, just
one year after the WFD 2000/60/EC publication, this directive was updated [4]. In the renovated
document (2455/2001/EC), among other measures, it was published a list containing thirty-
three harmful compounds which presence in surface waters should be limited or at least/
reduced under limit values [4]. Among these compounds stands out the persistent organic
pollutants (POPs), such as, pesticides, polycyclic aromatic hydrocarbons and alkylphenols.
Later, the number of harmful compounds were expanded up to forty five and additional
environmental quality standards were included in (2008/105/EC) [5]. Nonetheless, because
further toxicity details each pollutant are becoming known, the number of compounds in the
WFD list tends to increase. In this vein, the current directive 2013/39/EU integrates new
substances in its watch lists [6]. Among those are EDCs such as the extremely potent 17β-
oestradiol (E2) and 17α-ethinylestradiol (EE2), as discussed in this Chapter.

2. Estrogenic endocrine disrupting compounds in surface waters

Accordingly to the National Institute of Environmental Health Sciences (USA), endocrine
disrupting compounds are natural or man-made compounds that may mimic or interfere with
the function of hormones in the body, producing a variety of adverse effects over the repro‐
ductive, the neurological and the immune systems of humans and both domestic and wild
animals [7]. In the case of EDCs with oestrogenic activity, these substances can act: (i) on the
hypothalamus, inhibiting the release of gonadotropin releasing hormones [8]; (ii) on the
pituitary, inhibiting the release of gonadotropins [8]; (iii) on the gonads, interfering with the
production of steroid hormones, namely E2 [9]; (iv) on the circulation of endogenous hormones,
as these compounds have the ability to bind to the same plasmatic carriers [8]; (v) on the same
cellular receptors used by the endogenous hormones causing important structural changes
[10]. In males of various fish species, situations of ovotestis, i.e., presence of oocytes in testes,
were reported in polluted systems that include some in Portugal [11].
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Here, it is exposed the environmental concentrations of sixteen oestrogenic EDCs, which were
chosen taking in account the following features: (i) in vivo and in vitro potency, such as the
natural oestrogens and EE2 [12]; (ii) abundance in terms of incidence and concentration), such
as bisphenol A and the alkylphenols (and their ethoxylates) [13, 14], and (iii) the ubiquitous,
but paradoxically less studied, phytoestrogens [14, 15].

2.1. Oestrogens

2.1.1. Main characteristics and environmental origins

Both natural and synthetic oestrogens, including oestrone (E1), E2 and EE2 (Figure 1) may
induce, even in low (ng/L) concentrations, from mild to extremely harmful effects over the
endocrine system [16]. In particular, these compounds have been associated with the occur‐
rence of endocrine disorders such as those over the reproductive system of a wide range of
species, including molluscs, crustaceans, fish, birds and mammals [17-22]. Another disruption
effect observed in animals, collected from waters containing high levels of oestrogenic
contamination, is the decrease of their immune system responses disorders [23]; this phenom‐
enon also seems to occur when humans are exposed to the same type of EDCs [24, 25]. These
observations, together with the abovementioned facts, justified the recent incorporation of
these compounds in the WFD watching lists [6]. In this sense, and in order to be aware about
the concentrations of E1, E2 and EE2 in surface waters, studies were initiated to monitor their
presence and appraise their temporal evolution. It is known that the primary sources of these
three EDCs are their excretion by urine and faeces [26]. So, these compounds reach the rivers,
estuaries and coastlines either through the discharge of effluents coming from sewage
treatment plants (STPs) — or directly from sewages (hence untreated) that deliver their content
into waterways.

Figure 1. Natural and synthetic oestrogens included (E2 and EE2) or to be included (E1) in the watch list of compounds
under surveillance by the WFD [6].
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Although the concentrations of the referred EDCs are typically in the order of few ng/L (Table
1), it has been experimentally proven that such amounts are potentially harmful [12]. For
example, just 4 ng/L of E2 resulted in the formation of ovotestis in male Japanese medaka
(Oryzias latipes) [27]. Also the male mummichog (Fundulus heteroclitus) exposed to 100 ng/L of
EE2 showed a large increase in the gonadosomatic index, decrease in testosterone production
and liver synthesis of vitellogenin [28].

2.1.2. Oestrogens in surface waters

The highest concentrations of E1 in surface waters were reported in Japan (Tama River) [29],
Taiwan (Shui-Dan River) [30] and, China (Pearl Rivers) [31, 32] where its levels ranged
from78.7 ng/L to 85.6 ng/L. The highest amounts of E2 were measured in Italy (Venice Lagoon),
Japan (Tama River) and Taiwan (Shui-Dan River) where its levels ranged from12 ng/L to175
ng/L. Finally the highest levels of EE2 were found in Spain (Ebre River) [33], China (Pearl
Rivers) [31, 32] and Italy (Venice Lagoon) [34] where its levels ranged from 34 to 130 ng/L.
From the in vivo and in vitro experiments referred in section 3.1.1., among many other, it is
concluded that those levels are environmental conditions for the occurrence of endocrine
disrupting events. In north/central Europe, the surface water concentrations of these com‐
pounds are typically lower than those described in Asia and Brazil (Table 1). Even so, signif‐
icant biological impacts associated with pollution were detected in Europe. For example, roach
(Rutilus rutilus) and gudgeon (Gobio gobio) males caught in rivers and estuaries of the United
Kingdom showed high occurrence of ovotestis [35-38]. In Portugal, in the early 2000s, ovotes‐
tis was observed in flounder (Platichthys flesus) and mullets (Mugil cephalus) caught from Douro
estuary [11]. However, as it can be seen from Table 1, at that time no information existed about
the degree of oestrogenic contamination in Iberian western Atlantic coast surface waters - this
led to our integrated studies shown in this Chapter, which first data were published in 2009
(Table 2).

EDC Sampling area Concentration (ng/L) References

E1

Estuarine and coastal waters, The Netherlands 0.1 - 3.4 [26]

Scheldt Estuary, Belgium – The Netherlands ND - 10.0 [39]

The Netherlands (surface water) <0.30 - 7.2 [40]

Rivers in Germany 0.10 - 4.1 [41]

Coastal area of Baltic Sea, Germany 0.08 - 0.54 [42]

Seine River, France 1.0 - 3.2 [43]

Tiber River, Italy 5.0 - 12 [44]

Venice Lagoon, Italy <1.20 - 10 [34]

Ebro River, Spain ND - 4.9 [56]

Llobregat River, Spain <LOD - 22 [45]

Llobregat River, Spain 0.82 - 5.81 [46]

Thermaikos Gulf, Nothern Aegean Sea, Greece <LOD [47]

Buyukcekme watershed, Istambul, Turkey 1.40 - 5.74 [48]
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EDC Sampling area Concentration (ng/L) References

Acushnet Estuary, USA 0.73 - 1.20 [49]

South Florida, USA 0.88 - 5.20 [50]

Brazilian surface water ND - 39 [51]

Tama River, Japan 6.4 - 85.6 [29]

Dan-Shui River, Taiwan 22.4 - 66.2 [30]

Yellow River, China ND - 15.6 [52]

Pearl rivers, South China ND - 78.7 [31, 32]

Yangtze River estuary, China ND - 1.43 [53]

Songhua River, Northern China ND - 3.05 [54]

Tamagawa River, Japan 3.4 - 6.6 [55]

E2

Estuarine and coastal waters, The Netherlands 0.3 - 5.5 [26]

Scheldt Estuary, Belgium - The Netherlands ND [39]

The Netherlands (surface water) <0.8 - 1.0 [40]

Rivers in Germany 0.15 - 2.0 [41]

Coastal area of Baltic Sea, Germany ND [42]

Seine River, France 1.0 - 3.2 [43]

Tiber River, Italy 2.0 - 6.0 [44]

Ebro River, Spain ND - 1.9 [56]

Llobregat River, Spain ND [46]

Thermaikos Gulf, Nothern Aegean Sea, Greece ND [47]

Buyukcekme watershed, Istambul, Turkey 1.10 - 5.39 [48]

Acushnet Estuary, USA 0.56 - 0.83 [49]

South Florida, USA ND - 1.80 [50]

Brazilian surface water ND - 7.3 [51]

Tama River, Japan 0.5 - 12 [29]

Dan-Shui River, Taiwan 1.4 - 33.9 [30]

Yellow River, China ND - 2.3 [52]

Pearl rivers, South China ND - 7.72 [32]

Yangtze River estuary, China ND - 1.4 [53]

Songhua River, Northern China ND - 1.16 [54]

Tamagawa River, Japan 0.6 - 1.0 [55]

EE2

Estuarine and coastal waters, The Netherlands 0.1 - 4.3 [26]

Scheldt Estuary, Belgium – The Netherlands ND [39]

The Netherlands (surface water) <0.3 - 0.4 [40]

Rivers in Germany 0.1 - 5.1 [41]

Coastal area of Baltic Sea, Germany ND - 17.9 [42]

Seine River, France 1.0 - 4.0 [43]
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EDC Sampling area Concentration (ng/L) References

Ebro River, Spain 30 - 130 [33]

Ebro River, Spain ND [56]

Llobregat River, Spain ND [46]

Tiber River, Italy ND - 1.0 [44]

Venice Lagoon, Italy <1.0 34 [34]

Thermaikos Gulf, Nothern Aegean Sea, Greece ND [47]

Buyukcekme watershed, Istambul, Turkey 11.7 - 14.0 [48]

Acushnet Estuary, USA 3.01 - 4.67 [49]

South Florida, USA NA [50]

Brazilian surface water ND - 25 [51]

Tama River, Japan < 0.20 [29]

Dan-Shui River, Taiwan 7.53 - 27.4 [30]

Yellow River, China NA [52]

Pearl rivers, South China ND - 53.4 [31, 32]

Songhua River, Northern China ND [54]

Yangtze River estuary, China ND - 0.11 [53]

NA: Not Available. ND: Not Detected. LOD: Limit of Detection.

Table 1. Concentrations of oestrogens in surface waters (minimum-maximum) measured in surface waters worldwide.

2.1.3. Oestrogens in surface waters from the west Iberian coast (Portugal)

Being Portugal one of the EU members that signed the commitment with the European
Commission (EC) to accomplish the directives referred in the WFD document, systematic
efforts have been made by our research group to develop and validate methods adequate to
the measurement of EDCs in complex environmental matrices (seawater, estuarine and river
waters). Also, a complementary effort has been dedicated to both gather all monitoring data
and address their potential risk. In this sense, the evaluations done in Portuguese surface
waters warned about risks of environmental impacts of oestrogens and can assist the compe‐
tent authorities to take measures to prevent and clean up these habitats from having EDCs,
either by eliminating or at least put them at concentrations below those know to be able to
promote biological adverse effects.

The results revealed that the average amounts of oestrogens in Portuguese superficial waters
were ≈ 6 ng/L for E1 and ≈ 10 ng/L for E2 and EE2. These concentrations, accordingly with the
in vivo studies referred previously (section 3.1.1.) are not only able of causing disruptive effects
in aquatic animals, but also even induce negative impacts in human health [25, 57]. The
findings become additionally relevant in view of the fact that these habitats are commonly
used by residents and/or tourists, both for recreational and fishing purposes.

Analyzing the values of Table 2, and concerning the concentrations of all evaluated oestrogens,
it concluded that habitats we studied so far have chemical quality deficiencies. Table 2 also
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points that each analysed geographical zone had quite diverse minimum-maximal amounts.
This fact corresponds to spatial differences among sampling sites, in line with the presence/
absence of STPs effluents and domestic discharges in the sampled areas. The last inference is
directly correlated with the data obtained in the latest national census, which revealed a high
number of houses (over 17,000) without any sort of connection to sewers [58]. Beyond this,
there is also an additional factor that is the huge number of tourists that seasonally arrive to
several studied zones located in both west and south of the Iberian Peninsula [59, 60]. Due to
drastic increases of the number of inhabitants, that may rise up to 50%, mainly in summer the
concentration of oestrogens in surface waters raised significantly, causing seasonal damages
in local biota. So, it becomes clear that the physicochemical parameters typically used to assess
the quality of surface waters (i.e., temperature, pH, dissolved O2, nitrites, nitrates and phos‐
phates) are not sufficient to guarantee the protection of both environmental and human health.

Comparing the values compiled in Tables 1 and 2 it is concluded that, in general, the levels of
oestrogens tend to be higher in the west Iberian Peninsula than in the rest of central/north
Europe. In fact, in average, these substances in the current study area are almost similar to
those measured in many Asian countries. Despite this, it is exalted the positive efforts of
remediation conducted in some Portuguese environments, such as those produced in the Ave
River, considered in the past as one of the most polluted of Europe [61]. There are also
commendable the important efforts occurred in the Douro River estuary [62]. In fact, since our
first monitoring studies in the last estuary it was possible to observe that the surface waters
collected in 2005 [63] contained significantly higher amounts of oestrogens than those collected
in 2009, a fact that demonstrates an important improvement of water quality [62]. Unfortu‐
nately, because there are no other data prior to 2005, with regard to the levels of E1, E2 and
EE2 in other Portuguese aquatic systems it is not possible yet to establish with certainty, trend
lines relating to a progressive decrease in the concentrations of these EDCs in Portuguese
surface waters. In spite of this, other important data provided by our studies demonstrate that:
(i) several areas commonly seen as "pristine" (e.g., the Mira River) contain high levels of those
oestrogens (unpublished data); (ii) there is an underestimation of the efficacy of the STPs, which
at times are not adequately dimensioned, namely for coping with seasonal/touristic influxes;
(iii) currents from both Atlantic Ocean and/or estuaries can channel pollutants, such as these
oestrogens, towards protected areas (e.g., the natural reserve of the Sado River estuary) [59].
From Table 1 it is observed that also in Spain, particularly in the Ebro River for EE2 [33, 56],
there are efforts that seem to have been effective in reducing the environmental amounts of
these EDCs.

The data repertoire summarized in Table 2 for E1, E2, and EE2 is one of more systematic ones
available in the international literature about the oestrogenic status of a particular European
country. This information, which can be viewed as a benchmark for the concentrations of
oestrogens in Portuguese waters, makes it possible to everybody to monitor the effectiveness
of the implementation of measures that may lead to the reduction of environmental levels of
those EDCs along the time.
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EDC Sampling area Concentration (ng/L) References

E1

Lima River estuary and Atlantic coast of Viana-Castelo 4.6 - 36.3 [64]

Ave River estuary and Atlantic coast of Vila-Conde 0.5 - 7.2 [61]

Leça River estuary and Atlantic coast of Porto 4.9 - 10.4 [65]

Douro River estuary <15 - 113 [63]

Douro River estuary and Atlantic coast of Porto 1.5 - 4.6 [62]

Mondego River estuary <5.0 [66]

Mondego River and its estuary 1.0 - 14.6 [67]

Tagus River and its estuary ≈ 2 - ≈ 6 Unpublished

Sado River and its estuary 1.0 - 9.8 [59]

Mira River and its estuary ≈ 3 - ≈ 12 Unpublished

Ria Formosa 1.0 - 2.0 [60]

E2

Lima River estuary and Atlantic coast of Viana-Castelo 2.4 - 24.4 [64]

Ave River estuary and Atlantic coast of Vila-Conde 1.6 - 9.4 [61]

Leça River estuary and Atlantic coast of Porto 3.3 - 5.9 [65]

Douro River estuary <7.0 [63]

Douro River estuary and Atlantic coast of Porto 5.4 - 8.5 [62]

Mondego River estuary <3.0 [66]

Mondego River and its estuary 1.5 - 18.4 [67]

Tagus River and its estuary ≈ 3 - ≈ 20 Unpublished

Sado River and its estuary 1.2 - 10.8 [59]

Mira River and its estuary ≈ 4 - ≈ 62 Unpublished

Ria Formosa 1.3 - 10.1 [60]

EE2

Lima River estuary and Atlantic coast of Viana-Castelo 0.3 - 19.4 [64]

Ave River estuary and Atlantic coast of Vila-Conde 0.3 - 20.4 [61]

Leça River estuary and Atlantic coast of Porto 2.1 - 4.4 [65]

Douro River estuary 18 - 102 [63]

Douro River estuary and Atlantic coast of Porto <1.3 - 4.5 [62]

Mondego River estuary <12 [66]

Mondego River and its estuary 0.3 - 11.3 [67]

Tagus River and its estuary ≈ 4 - ≈ 20 Unpublished

Sado River and its estuary 1.1 - 3.2 [59]

Mira River and its estuary ≈ 4 - ≈ 67 Unpublished

Ria Formosa 12.1 - 25.0 [60]

Table 2. Concentrations (minimum–maximum) of natural and pharmaceutical oestrogens in Portuguese surface
waters.
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2.2. Industrial and household products

2.2.1. Main characteristics and environmental origins

There are industrial and household compounds prone to promote oestrogenic effects in
wildlife and humans [68-70]. Some of these EDCs are compounds such as phenols (bisphenol
A, BPA) and alkylphenols (APs) — viz. octylphenols (OPs) and nonylphenols (NPs) — and
their ethoxylates (APEOs) (Figure 2).

 

Class Example Chemical structure Origin 

Phenols 
Bisfenol A 

(BPA) 
 

Industrial and 

domestic usages [71]. 

Alkylphenol 

ethoxylates 

(APEOs) 

Octylphenol and 

nonylphenol 

ethoxylates 

 Industrial, domestic 

and as pesticide 

additives [14, 73]. 
Octylphenol and 

nonylphenol 

diethoxylates 

 

Alkylphenols 

(APs) 

Octylphenols 

(OPs) 

 Environmental 

Degradation of 

APEOs [73].  

Nonylphenols 

(NPs) 

 

 

Figure 2. Industrial and household products included in the list of compounds under surveillance by the WFD (Euro‐
pean 2013).

Although the disruptive activity of these compounds is much lower than that of natural and
synthetic oestrogens, as they may reach levels in the order of tens to hundreds of μg/L they
can became harmful for aquatic fauna. Because of this, and despite great controversy between
diverse agents, these compounds become subjected to strict laws that included both APs and
APEOs, in the group of "priority substances in the field of water policy 2455/2001/EC" [4].
Presently, the WFD established that the concentration of NPs in surface waters should not
exceed 2 μg/L [6].
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BPA origin in the environment comes from the fact that it is the monomer of the polycarbonate
(plastic) used in an huge variety of domestic stuffs and as an intermediate in the synthesis of
epoxy resins, flame retardants and many other products [71]. In spite of its vast usage,
controversial opinions do exist among those calling for its banning and those that devaluate
the BPA toxic effects in realistic scenarios. The February 2007 study “Toxic Baby Bottle’s”, by
the Environment California Research and Policy Center [72], showed that even small amounts
of BPA may be one cause of diseases, including breast cancer, prostatic hyperplasia, diabetes,
obesity, and hyperactivity disorders involving the immune system. Infertility and early
puberty are also among the possible effects caused by BPA, and all of them are associated with
the compound’s ability to deregulate the endocrine system.

The APEOs sources in the environment are due to their commonly usage as non-ionic
surfactant compounds and dispersants [14, 73]. Due to these properties APEOs are being used
in detergents and additives of pesticide formulations. Currently, these applications are
prohibited in the EU [4] as these compounds are known to readily degrade, in both aerobic
and anaerobic conditions, into APs that are more toxic compounds than APEOs (Figure 3). In
spite of the APs toxicity, it is known that their lifetime is not long, since they usually degrade
in about 10 to 15 hours after sunlight exposure [74]. Thus, it is concluded that the ubiquitous
presence of APs in surface waters implies the continuous entrance of APEOs in the environ‐
ment [60].

 
 



  
 

Alkylphenol Ethoxylate 

 (APnEO n= 0-20) 
Alkylphenol Monoethoxylate 

 (AP1EO) 
Alkylphenol 

 (AP) 

 

 

Figure 3. Summarized degradation mechanism of APEOs in the environment adapted from Warhurst [75].

The endocrine disrupting activity of APEOs and (especially) that of APs, whether they are
octylphenols (4-OP and 4-t-OP) or nonylphenols (4-NP and 4-n-NP) is derived from the
existence of similarities between the structure of these compounds and that of E2 (Figure 4) [76].

 
 



(a)   (b) 

 

 

 

Figure 4. Comparison between the chemical structures of E2 (a) and 4-NP (b).
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As such, APs may induce oestrogenic effects using the same paths described in Section 3. These
effects were proved, for example, after in vivo exposures of male rainbow trout (Oncorhynchus
mykiss) to 30 μg/L of 4-OP, and of male Japanese medaka (O. latipes) to 30 μg/L of 4-NP, eliciting,
respectively, an inhibition of the testicular growth and hermaphroditism [27, 77, 78]. Alas, as
it is possible to purchase in EU countries imported products containing APEOs — see an
interesting record in "APEOs Investigation Report" [79] — these EDCs continue to exist in
European surface waters.

Currently, we theorize that the most likely source of APEOs in the aquatic systems is the
discharge of wastewater effluents from STPs, nevertheless not neglecting the possible leaching
caused by the runoff of these EDCs from landfills and agricultural areas (as APEOs are
emulsifiers in some pesticide formulations).

2.2.2. BPA, APEOs and APs in surface waters

Table 3 shows an overview of BPA, APEOs and APs in estuaries and rivers worldwide. In line
with the broad use of these EDCs it is observed that, at least up to 2005, their concentrations
in surface waters were in the order of μg/L. For instance, ten years ago BPA reached concen‐
trations of 5.0 μg/L in several German rivers [80] and the alkylphenols, 4-OP and 4-NP, levels
attained 26 to 37 μg/L in several Spanish rivers and estuaries [81]. In line with these observa‐
tions, it could be hypothesized that if there was not the pressure exerted by the program set
out by the WFD, together with the directive 76/769/EEC [82] that established restrictions on
the marketing and use of NPs and NPEOs, the current environmental content of these EDCs
in European surface waters would probably be worse than that found nowadays. It is impor‐
tant to stress that the last directive advocates the banishment of NP and NPEOs in formulations
when their levels are equal or higher than 0.1% by mass. This measure leaded to a decrease in
the use of NPEOs or even their deliberate discontinuity in Europe (case of Germany) and,
consequently, the number of studies that accompanied the temporal evolution of these
compounds began decreasing. This aspect increases the difficulty to assess the actual amounts
of APEOs and APs in European surface waters, being assumed that their usage was deprecated;
a presumption that is not entirely correct, as we have been witnessing.

As shown in Table 3, the levels of APs in several EU countries continue to show potential
toxicity (<0.5-37,300 ng/L). This poses obstacles to the compliance defined by WFD, since it
seems impossible to achieve concentrations of ≤100 ng/L for the OPs and, ≤300 ng/L for NPs,
in all EU states up to 2015. However, it is possible to observe that recent studies revealed that
there is positive effort towards the reduction of the global amounts of both APs and BPA in
all European countries. So, presently, and also accordingly to the compilation in Table 3, it is
observed that in general the levels of APs and BPA are generally higher in Asia and South
America than those measured in the EU.

In opposition, and with the exception of the two works [83, 84], before 2005 there were virtually
no data about the levels of these EDCs in the west Iberian Peninsula, inc. Portuguese surface
waters. These observations leaded to the creation of regular monitoring programs for these
compounds, in order to make a general assessment of the situation in various locations and,
when possible, monitor their evolution in time. Such temporal results are central to define if

Estrogenic Compounds in Estuarine and Coastal Water Environments of the Iberian Western Atlantic Coast…
http://dx.doi.org/10.5772/59885

163



the implementation of WFD policies are being successful in the field, alone or together and
correlated with biologic outputs (e.g., biomarkers data). The efforts done in the last decade for
evaluating BPA, APEOs and APs pollution in Portuguese surface waters from estuaries, rivers
and coastal waters are compiled in Table 4.

EDC Sampling area Concentration (ng/L) References

BPA

Gulf of Gdansk, Poland 26.9 - 48.1 [85]

Estuaries and rivers, The Netherlands <8.8 - 1,000 [40]

German Rivers 0.5 - 14 [86]

Elbe River and its tributaries, Germany 3.8 - 92.0 [80]

Coastal area of Baltic Sea, Germany ND - 5.7 [42]

Baden-Württemberg Rivers, Germany <50 - 272 [87]

Glatt River, Switzerland 9.0 - 76 [88]

Sussex River, England <5.3 - 10 [89]

Ebro River, Spain 10 - 20 [33]

Ebro River, Spain ND - 61 [56]

Llobregat, Cardener, Anoia, Riera de Rubi River, Spain <90 - 2,970 [81]

Venice Lagoon, Italy <1.0 - 145 [34]

Thermaikos Gulf, Nothern Aegean Sea, Greece 10.6 - 52.3 [47]

New Orleans Waters,USA 0.9 - 158 [90]

South Florida, USA 4.8 - 32 [50]

Brazilian surface water 25 - 84 [51]

Coastal waters of Shenzhen, China 11.2 - 776.6 [91]

Dianchi Lake, China 35 - 1,081 [92]

Liao River, China 12.3 - 116.5 [52]

Songhua River, Northern China 8.24 - 263 [54]

Pearl rivers, South China 4.35 - 1,390 [31, 32]

Yangtze River estuary, China 0.98 - 43.8 [53]

River waters of South Korea and seven Asian countries 3.0 - 100 [93]

Tama River, Japan 4.8 - 76.3 [29]

Coastal waters, Singapore ND - 2,470 [94]

OPs

Gulf of Gdansk, Poland <5.0 - 65.9 [85]

Estuaries and rivers, The Netherlands <50 - 6,300 [40]

German Rivers 0.8 - 54 [86]

Baden-Württemberg River, Germany <20 - 189 [87]
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Elbe River and its tributaries, Germany <0.5 - 5.0 [80]

Ombrone River, Italy 33 - 85 [95]

Glatt River, Switzerland 6.0 - 22 [88]

Sussex River, England 2.6 - 25 [89]

Ebro River, Spain 20 - 70 [33]

Ebro River, Spain 2.9 - 5.3 [56]

Llobregat, Cardener, Anoia, Riera de Rubi Spain <90 - 21,900 [81]

Thermaikos Gulf, Nothern Aegean Sea, Greece 1.7 - 18.2 [47]

Danube River, Hungary 1.6 - 178 [96]

Back River, Chesapeake Bay, USA <0.3 [97]

Brazilian surface water ND [51]

Dianchi Lake, China 2.0 - 73 [92]

Liao River, China 2.3 - 13.2 [52]

Songhua River, Northern China 1.54 - 45.8 [54]

Yellow River, China 14.66 - 17.72 [98]

Tama River, Japan 6.9 - 81.9 [29]

NPs

Gulf of Gdansk, Poland 12.9 - 132.9 [85]

The Netherlands (surface water) <110 - 4,100 [40]

Baden-Württemberg Rivers, Germany ND - 458 [87]

Elbe River and its tributaries, Germany 0.06 - 2,970 [80]

Rivers in Germany 6.7 - 134 [41]

Glatt River, Switzerland 68 - 326 [88]

Ombrone River, Italy <2 [95]

Venice Lagoon, Italy <0.05 - 211 [34]

Ebro River, Spain ND [33]

Ebro River, Spain ND- 15 [56]

Llobregat, Cardener, Anoia, Riera de Rubi, Spain <150- 37,300 [81]

Thermaikos Gulf, Nothern Aegean Sea, Greece 22- 201 [47]

Danube River, Hungary 8.0 - 428 [96]

Brazilian surface water ND [51]

Back River, Chesapeake Bay, USA 140 - 200 [97]

Buenos Aires rivers, Argentina 100 - 7,000 [99]

Dianchi Lake, China 5 - 57 [92]
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EDC Sampling area Concentration (ng/L) References

Liao River, China 112 - 900.7 [52]

Songhua River, Northern China (4-t-NP) 106 - 344 [54]

Songhua River, Northern China (4-n-NP) 0.35 - 3.77 [54]

Area of Chongqing, China 100 - 7,300 [100]

Pearl River, China 36 - 33,000 [31]

Tama River, Japan 51.6 - 147.0 [29]

River waters of South Korea and 7 Asian Countries <LOD - 2,097 [93]

OPEOs

The Netherlands (surface water) <160 - 1,700 [40]

Elbe River and its tributaries, Germany 0.6 - 9.6 [80]

Seine River, France 55 - 63 [101]

Ombrone River, Italy (4-t-OP1EO) <94 [95]

Ombrone River, Italy (4-t-OP2EO) 6 - 34 [95]

Ebro River, Spain (OP2EO) 1.7 - 8.3 [56]

Thermaikos Gulf, Greece (OP1EO) <4 - 9.5 [47]

Thermaikos Gulf, Greece (OP2EO) <4 - 11.7 [47]

Estuaries and rivers, USA 7 - 400 [102]

NPEOs

Back River, Chesapeake Bay, USA (OP1EO) <0.2 [97]

Back River, Chesapeake Bay, USA (OP2EO) <0.02 [97]

The Netherlands (surface water) <180 - 8,700 [40]

Elbe River and its tributaries, Germany <0.5 - 124 [80]

Seine River, France (NP1EO) 9 - 11 [101]

Ombrone River, Italy (4-t-NP1EO) <122 [95]

Ombrone River, Italy (4-t-NP2EO) 9 - 35 [95]

Ebro River, Spain (NP2EO) 9.4 - 275 [56]

Thermaikos Gulf, Greece (NP1EO) 15.2 - 270 [47]

Thermaikos Gulf, Greece (NP2EO) 14.6 - 346 [47]

Estuaries and rivers, USA 220 - 1,050 [102]

Back River, Chesapeake Bay, USA (NP1EO) <0.2 - 67 [97]

Back River, Chesapeake Bay, USA (NP2EO) 12 - 57 [97]

Buenos Aires, Argentina (NP1EO) 100 - 9,200 [99]

Buenos Aires, Argentina (NP2EO) 100 - 5,400 [99]

Songhua River, Northeastern China (NP1EO) 8.9 - 385 [54]

Songhua River, Northeastern China (NP2EO) 19.6 - 321 [54]
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EDC Sampling area Concentration (ng/L) References

Dianchi Lake, China (NP1EO) 54 - 1,942 [92]

Dianchi Lake, China (NP2EO) 98 - 2,074 [92]

ND: Not Detected. LOD: Limit of Detection.

Table 3. Concentrations (minimum–maximum) of industrial and household products in surface waters worldwide.

2.2.3. BPA, APEOs and APs in west Iberian Peninsula surface waters

Recent studies revealed that surface waters taken from Portuguese aquatic environments show
average concentrations of 650 ng/L for BPA, 1,000 ng/L for APEOs and 360 ng/L for APs (Table
4). Comparing such data with those reported in other countries (Table 3) it is observed that in
Portugal the global amounts of these compounds are still quite high. Nevertheless, it is
important to note that the values measured before/during 2005 [63, 66, 83, 84], namely for BPA
and APs, are significantly higher than those measured in 2010-2011. Thus, and assuming that
these results represent the wider reality of the west Iberian Peninsula, it seems that good efforts
are being done to reduce the levels of industrial and household pollution (Table 4). In spite of
this, Table 4 shows that APEOs exist in amounts that are still approximately one hundred fold
higher than those recommended by the European legislation. These observations may be due
to the presence of several textile industries and also large agricultural fields located near the
sampling areas (Table 4); it should be noticed that several pesticide formulations use APEOs
as dispersants. However, since similar amounts of APEOs were found in the Spanish and Greek
waters [68, 69] it is possible that these EDCs are still being used, and therefore constitute a
global problem of coastal areas.

EDC Sampling area Concentration (ng/L) References

BPA

Lima River estuary and Atlantic coast of Viana-Castelo 1.9 - 35.7 [64]

Ave River estuary and Atlantic coast of Vila-Conde 7.9 - 521.8 [61]

Leça River estuary and Atlantic coast of Porto 30.6 - 62.4 [65]

Douro River estuary <80 - 10,700 [63]

Douro River estuary and Atlantic coast of Porto 20.4 - 314.0 [62]

Mondego River estuary <6.6 - 880 [66]

Mondego River and its estuary 8.5 - 184.6 [67]

Tagus River estuary ≈ 13 - ≈ 320 Unpublished

Sado River estuary 7.3 - 28 [103]

Sado River estuary 12.2 - 28.9 [59]

Mira River and its estuary ≈ 7 - ≈ 360 Unpublished

Ria Formosa 6.5 - 71.7 [60]

Portuguese rivers and estuaries 200 - 4,000 [83]

Portuguese rivers and estuaries 0.2 - 5,000 [84]

4-OP Lima River estuary and Atlantic coast of Viana-Castelo 6.2 - 86.5 [64]
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EDC Sampling area Concentration (ng/L) References

Ave River estuary and Atlantic coast of Vila-Conde 0.6 - 8.3 [61]

Leça River estuary and Atlantic coast of Porto 27.0 - 68.3 [65]

Douro River estuary and Atlantic coast of Porto < 3.5 [62]

Mondego River and its estuary 0.7 - 1,279 [67]

Tagus River and its estuary ≈ 6 - ≈ 150 Unpublished

Sado River estuary 2.8 - 27.8 [59]

Mira River and its estuary ≈ 6 - ≈ 28 Unpublished

Ria Formosa 3.5 - 8.5 [60]

Portuguese rivers and estuaries 0.1 - 30,000 [84]

4-t-OP

Lima River estuary and Atlantic coast of Viana-Castelo 5.7 - 105.0 [64]

Ave River estuary and Atlantic coast of Vila-Conde 1.3 - 25.4 [61]

Leça River estuary and Atlantic coast of Porto 7.9 - 60.0 [65]

Douro River estuary and Atlantic coast of Porto 5.1 - 30.6 [62]

Mondego River and its estuary 30 - 27,502 [67]

Tagus River and its estuary ≈ 2 - ≈ 71 Unpublished

Sado River and its estuary 11.4 - 22.0 [59]

Mira River and its estuary ≈ 4 - ≈ 27 Unpublished

Ria Formosa 4.3 - 40.9 [60]

4-n-NP

Lima River estuary and Atlantic coast of V. Castelo 3.0 - 35.4 [64]

Ave River estuary and Atlantic coast of V. Conde 0.3 - 16.8 [61]

Leça River estuary and Atlantic coast of Porto (north) 28.8 - 63.5 [65]

Douro River estuary and Atlantic coast of Porto 3.3 - 116.0 [62]

Mondego River and its estuary 20.8 - 2,770 [67]

Tagus River and its estuary ≈ 1 - ≈ 41 Unpublished

Sado River estuary 2.6 - 27.3 [59]

Mira River and its estuary ≈ 2 - ≈ 33 Unpublished

Ria Formosa 3.4 - 14.6 [60]

4-NP

Lima River estuary and Atlantic coast of Viana-Castelo 3.9 - 649.8 [64]

Ave River estuary and Atlantic coast of Vila-Conde 43.3 - 154.9 [61]

Douro River estuary and Atlantic coast of Porto 88.2 - 170.0 [62]

Mondego River and its estuary 80.6 - 1,003 [67]

Tagus River and its estuary ≈ 200 - ≈ 1,600 Unpublished

Sado River estuary 129.2 - 239.9 [59]

Mira River and its estuary ≈ 52 - ≈ 289 Unpublished

Ria Formosa 12.2 - 546.6 [60]

Portuguese rivers and estuaries 200 - 30,000 [83]

Portuguese rivers and estuaries 0.3 - 25,000 [84]
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OP1EO

Lima River estuary and Atlantic coast of Viana-Castelo 8.8 - 125.0 [64]

Ave River estuary and Atlantic coast of Vila-Conde 2.3 - 31.7 [61]

Leça River estuary and Atlantic coast of Porto 20.8 - 72.9 [65]

Douro River estuary and Atlantic coast of Porto 33.0 - 60.0 [62]

Mondego River and its estuary 10.7 - 2,337 [67]

Tagus River and its estuary ≈ 6 - ≈ 142 Unpublished

Sado River estuary 13.0 - 109.4 [59]

Mira River and its estuary ≈ 9 - ≈ 63 Unpublished

Ria Formosa 6.9 - 35.6 [60]

OP2EO

Lima River estuary and Atlantic coast of Viana-Castelo 21.5 - 374.0 [64]

Ave River estuary and Atlantic coast of Vila-Conde 44.1 - 208.7 [61]

Leça River estuary and Atlantic coast of Porto 29.7 - 213.2 [65]

Douro River estuary and Atlantic coast of Porto 100.0 - 424.0 [62]

Mondego River and its estuary 21.5 - 2,330 [67]

Tagus River and its estuary ≈ 4 - ≈ 67 Unpublished

Sado River and its estuary 60.0 - 384.2 [59]

Mira River and its estuary ≈ 4 - ≈ 43 Unpublished

Ria Formosa 46.5 - 182.1 [60]

NP1EO

Lima River estuary and Atlantic coast of Viana-Castelo 44.9 - 259.1 [64]

Ave River estuary and Atlantic coast of Vila-Conde 29.9 - 227.8 [61]

Leça River estuary and Atlantic coast of Porto 115.6 - 923.3 [65]

Douro River estuary and Atlantic coast of Porto 101.0 - 354.0 [62]

Mondego River and its estuary 95.4 - 7,794 [67]

Tagus River and its estuary ≈ 15 - ≈ 340 Unpublished

Sado River and its estuary 60.0 - 311.4 [59]

Mira River and its estuary ≈ 14 - ≈ 816 Unpublished

Ria Formosa 41.4 - 278.9 [60]

NP2EO

Lima River estuary and Atlantic coast of Viana-Castelo 47.3 - 467.0 [64]

Ave River estuary and Atlantic coast of Vila-Conde 142.6 - 750.6 [61]

Leça River estuary and Atlantic coast of Porto 723.1 - 2,132 [65]

Douro River estuary and Atlantic coast of Porto 212.0 - 1,148 [62]

Mondego River and its estuary 118.5 - 18,327 [67]

Tagus River and its estuary ≈ 40 - ≈ 300 Unpublished

Sado River and its estuary 167.0 - 1,096 [59]

Mira River and its estuary ≈ 111 - ≈ 3,600 Unpublished

Ria Formosa 49.1 - 779.7 [60]

Table 4. Concentrations (minimum–maximum) of industrial and household products in Portuguese surface waters.
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2.3. Naturally occurring compounds present in plants

2.3.1. Phytoestrogens, characteristics and their environmental origin

Accordingly to the U.S. Food Standards Agency [104], phytoestrogens are "any compound of
vegetable origin, or their(s) metabolite(s) with structural similarities to E2, which results in
their ability to mimic or block the action of the endogenous sexual hormone in Man". Phy‐
toestrogens fall into two classes: (i) flavonoids; and (ii) non-flavonoids. The flavonoids are
subdivided into the three subclasses: (i) isoflavones (Figure 5); (ii) coumestans; and (iii)
prenylflavonoids. The non-flavonoids include the lignans [104].

Figure 5. Phytoestrogens with potential oestrogenic activity.

In this Chapter it is focused the group of isoflavones, which include compounds such as
daidzein (DAID), genistein (GEN), biochanin A (BIO-A) and formononetin (FORM), due to
their structural resemblance with E2. Although not steroids, isoflavones exhibit high affinity
for oestrogen receptors. In fact, both in vivo and in vitro studies have demonstrated their ability
to induce abnormal liver synthesis of vitellogenin in male goldfish (Carassius auratus) and in
rainbow trout (O. mykiss) [106-108], and the triggering of hermaphroditism in fish, such as the
Japanese medaka (O. latipes) exposed to 1,000 μg/L of GEN [15]. Thus, although these com‐
pounds have not been included yet in the list of substances under the supervision by the WFD,
but because their global levels in superficial waters can easily reach levels 1,000 times higher
than those of E2, i.e., in the order of μg/L or even mg/L, it is plausible to think that phytoes‐
trogens may induce effects equivalent to those described for E2 in spite of having a much lower
potency [109]. Despite this, there are not many studies dedicated to the evaluation of these
EDCs in surface waters. Also, little information exists about their origins and persistence.
Presently, the main source of phytoestrogens in the aquatic environment is attributed either
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to the presence of the seagrass Zostera noltii, and/or to the leaching from the margins where
plants rich in these compounds may exist, e.g., Typha spp., Phragmites communis, Juncus
acutus, Fuirena pubescens, Carex riparia and Carex hispida, Cladium mariscus, Callitriche stagnalis
and Potamogeton spp., Trifolium spp. and Papilionaceae [110-112].

Other equally important source of phytoestrogens in surface waters is their disposal as a result
of industrial processes — especially in food processing industries and paper mills [105]. So, as
the water levels of these compounds can quickly mount up to mg/L, it is possible that they
exert in the wilderness the disruptive biological effects attributed to them [112-114]. Nonethe‐
less, if the levels of these EDCs do not surpass ng/L and, in the absence of other potentially
stressful compounds, it is most likely that phytoestrogens are harmless [115].

2.3.2. Phytoestrogens in surface waters

Comparatively to the other EDCs, the evaluation of phytoestrogens in aquatic environments,
particularly in surface waters of estuaries or rivers, in less studied than the other EDCs referred
in this Chapter. This is an important gap in the current knowledge since one the possible origins
of these compounds is the natural aquatic flora, which generally is very developed in areas
where the organic load is high and prone for eutrophication [116], which is a banal occurrence
worldwide. In Table 5 it is shown a collection of studies done in several continents, and the
data reveal that the highest concentrations of DAID (42,900 ng/L) and GEN (143,000 n/L) were
found in Asia, in the Japanese Kanzaki River. In contrast, the highest amounts of FORM (157
ng/L) and BIO-A (59.4 ng/L) were measured in Europe, at various locations in Switzerland.

EDC Sampling area Concentration (ng/L) References

DAID

Tiber River, Italy 2.0 - 3.0 [44]
Glatt, Töss, Swiss Midlands, Switzerland ND - 31.5 [117]
Surface waters, Switzerland Detected [118]
Drainage waters, Switzerland 5.0 - 30 [118]
Rhine River, Germany < 10 [119]
Several rivers, Iowa, USA 10.5 - 41 [120]
Lake Vadnais and Metro Plant effluent channel, USA 1.6 - 1.8 [115]
Straight Lake, USA ND [115]
Several Rivers, Brazil 36.2 - 276 [121]
Waters from Mullet Creek, Australia 3.0 - 7.0 [122]
Macquarie Rivulet River, Australia 14 - 33 [122]
Mullet Creek water, Australia 2.0 - 12 [122]
Toolijooa surface dam (water), Australia ND - 120 [122]
Kanzaki River, Japan LOD - 42,900 [123]
Zhangcun River, China ND - 1,490 [124]

GEN

Tiber River, Italy 4.0 - 7.0 [44]
Glatt, Töss, Swiss Midlands, Switzerland ND - 24.2 [117]
Surface waters, Switzerland ND [118]
Drainage waters, Switzerland Detected - 14 [118]
Several rivers, Iowa, USA ND - 8.0 [120]
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Waters from Upper Midwest (USA) 1.4 - 1.6 [115]
Straight Lake, USA ND [115]
Several Rivers, Brazil 3.96 - 336 [122]
Waters from Mullet Creek, Australia ND - 1.0 [122]
Macquarie Rivulet River, Australia 1.0 - 8.0 [122]
Toolijooa surface dam (water), Australia 1.0 - 20 [122]
Yeongsan and Seomjin Rivers, Korea ND - 0.7 [93]
Salut, Malaysia ND [93]
Khong River, Thailand ND [93]
Long Xuyen city, Vietnam 1.5 - 2.4 [93]
Siem Reap, Cambodia 4.4 [93]
Fenhe, China 3.6 - 5.0 [93]
Zhangcun River, China ND - 2,650 [124]
Kanzaki River (Japan) LOD - 143,000 [123]

FORM

Tiber River, Italy ND [44]
Glatt, Töss, Swiss Midlands, Switzerland ND - 217 [117]
Surface waters, Switzerland Detected - 21 [118]
Drainage waters, Switzerland 44 - 157 [118]
Several rivers, Iowa, USA 5.3 - 13.5 [120]
Straight Lake, USA ND [115]
Lake Vadnais, USA 0.9 - 1.1 [115]
Macquarie Rivulet River, Australia ND - 2.0 [122]
Waters from Mullet Creek, Australia ND - 1.0 [122]
Toolijooa surface dam (water), Australia ND - 35 [122]

BIO-A

Tiber River, Italy 1.0 - 3.0 [44]
Glatt, Töss, Swiss Midlands, Switzerland ND - 59.4 [117]
Surface waters, Switzerland Detected - 12 [118]
Drainage waters, Switzerland 7 - 22 [118]
Several rivers, Iowa, USA 1.7 - 5.6 [120]
Lake Vadnais and Metro Plant effluent channel, USA ND - 1.1 [115]
Straight Lake, USA ND [115]
Waters from Mullet Creek, Australia ND - 0.1 [122]
Macquarie Rivulet River, Australia ND - 1.0 [122]
Toolijooa surface dam (water), Australia ND - 4.0 [122]

ND: Not Detected. LOD: Limit of Detection.

Table 5. Concentrations (minimum–maximum) of phytoestrogens in surface waters worldwide.

2.3.3. Phytoestrogens in Portuguese surface waters

Concerning the Iberian peninsula west Atlantic coast, it was found that surface waters from
the Rivers Douro (ca., 19 μg/L BIO-A), Mondego (ca., 5.5 μg/L of FORM and 12 μg/L DAID)
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and Tagus (ca., from 10 μ/L) were those holding the higher amounts of phytoestrogens (Table
6). As in these habitats there were occasions when the concentrations of the isoflavones were
more than 1,000 times higher than those measured for oestrogens (mainly in spring and
summer), it is supposed that those compounds may contribute significantly to endocrine
disrupting phenomena occurring in those ecosystems. So, although the phytoestrogens are
much less active than oestrogens (E2) their very high concentrations make them worth studying
and relevant in monitoring programs.

EDC Sampling area Concentration (ng/L) References

DAID

Lima River estuary and Atlantic coast of Viana-Castelo 2.9 - 78.5 [64]
Ave River estuary and Atlantic coast of Vila-Conde 7.7 - 74.3 [61]
Douro River estuary <10 - 888 [62]
Douro River estuary and Atlantic coast of Porto 6.7 - 24.2 [63]
Mondego River estuary <3.0 - 526 [66]
Mondego River and its estuary 52.9 - 11,945 [67]
Tagus River estuary ≈ 4 - ≈ 20 Unpublished
Sado River estuary 8.4 - 160 [103]
Sado River and its estuary 3.4 - 32.3 [59]
Mira River and its estuary ≈ 5 - ≈ 40 Unpublished
Ria Formosa 4.6 - 14.0 [60]

GEN

Lima River estuary and Atlantic coast of Viana- Castelo 18.5 - 120.3 [64]
Ave River estuary and Atlantic coast of Vila-Conde 36.6 - 682.3 [61]
Douro River estuary <3.2 - 197 [62]
Douro River estuary and Atlantic coast of Porto 16.6 - 137.8 [63]
Mondego River estuary <2.6 - 507 [66]
Mondego River and its estuary 127.9 - 5,093 [67]
Tagus River and its estuary ≈ 5 - ≈ 4,500 Unpublished
Sado River and its estuary 8.6 - 100 [103]
Sado River and its estuary 24.5 - 113.4 [59]
Mira River and its estuary ≈ 3 - ≈ 47 Unpublished
Ria Formosa 404.8 - 1,158 [60]

FORM

Lima River estuary and Atlantic coast of Viana-Castelo 90.0 - 801.0 [64]
Ave River estuary and Atlantic coast of Vila-Conde 83.0 - 362.3 [61]
Douro River estuary and Atlantic coast of Porto 68 - 341 [63]
Mondego River and its estuary 25.8 - 5,495 [67]
Tagus River and its estuary ≈ 3 - ≈ 8 Unpublished
Sado River and its estuary 423.4 - 2,605 [59]
Mira River and its estuary ≈ 3 - ≈ 91 Unpublished
Ria Formosa 186.3 - 1,041 [60]

BIO-A

Lima River estuary and Atlantic coast of Viana-Castelo 23.5 - 350.0 [64]
Ave River estuary and Atlantic coast of Vila-Conde 99.0 - 398.1 [61]
Douro River estuary <12 - 191 [62]
Douro River estuary and Atlantic coast of Porto 728.4 - 19,091 [63]
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Mondego River estuary <8.4 - 60 [66]
Mondego River and its estuary 50.1 - 590.0 [67]

BIO-A

Tagus River and its estuary ≈ 6 - ≈ 85 Unpublished
Sado River and its estuary 10 - 30 [103]
Sado River and its estuary 130.8 - 844.5 [59]
Mira River and its estuary ≈ 5 - ≈ 460 Unpublished
Ria Formosa 91.2 - 261.4 [60]

Table 6. Concentrations (minimum–maximum) of phytoestrogens measured in Portuguese surface waters.

3. Individual compounds versus total estrogenic load and its endocrine
disruption potential

To better understand and predict the effect of the measured concentrations of all EDCs
compiled in this Chapter, in terms of action strength and consequent endocrine disrupting
effects, the oestrogenic potency of each compound was estimated relative to that of the
standard reference oestrogen, the EE2, the most potent environmental oestrogen at this date.
Thus, the average levels of each analysed EDC at every studied area in the west of the Iberian
Peninsula were all converted in EE2 equivalents (EE2eq). The use of these units facilitates the
interpretation of the data. The EE2eq estimates of the estrogenic potential of the sixteen EDCs
referred in this Chapter followed the next formula [125]:

E E2eq =C x F

Here, C concerns to the measured concentration of a given EDC and F refers to the EE2

equivalency factor, as determined from in vitro assays [125]. Although this type of interpreta‐
tion is very useful, the C may vary with the assay and it does not exempt the in vivo testing.

Interpreting the results presented here, in light of that normalization, and joining the EDCs by
groups (i.e., oestrogens, APs + BPA, APEOs and phytoestrogens) it can be deduced that before
2005 the Portuguese surface waters taken from the rivers Douro, Mondego and Sado exhibited
values of EE2eq that "hovered" between 24 and 198 ng/L, being the Douro River estuary the
habitat with the highest oestrogen load (Table 7). After 2005, possibly due to the application
of some of the regulations proposed by WFD, it was observed a significant decrease of the
EE2eq in the Douro River estuary surface waters, which displayed values that stand in 12
ng/L, even considering a larger spectrum of analysed EDCs. For the Mondego and Sado Rivers
it is also observed that even analysing almost the twice number of EDCs, the data obtained
from surface waters in 2005 [66, 103] had similar EE2eq (24 ng/L) than those observed in waters
from the same sampling areas in 2010-2011. Besides, from the analysis of Table 7 it is also
possible to observe which group of compounds contribute the most to the final values of EE2eq.

Thus, it is concluded that by order of importance the compounds that contribute the most for

Toxicology Studies - Cells, Drugs and Environment174



the EE2eq values in the Portuguese surface waters were: (i) oestrogens; (ii) phytoestrogens; (iii)
APs + BPA; and (iv) APEOs. So, both oestrogens and phytoestrogens are important "key points"
to consider when the purpose of achieving good water quality by 2015 is the main goal of the
European Environment Agency (EEA). Overall, it is proposed herein that an improvement of
the sewerage system could surely promote reduction of the concentration of oestrogens and
eutrophication. In addition, it is also suggested that the authorities should equate ways to
reduce impacts caused by the use of products containing APEOs, e.g., by regulating their
imports.

Sampling areas
EE2eq (ng/L) Total

(ng/L)Oestrogens APs+BPA APEOs Phytoestrogens

Lima River [64] 18 0.5 0.000 13 32

Ave River [61] 9.0 0.4 0.001 12 22
Leça River [65] 10 0.01 0.000 NA 10

Douro River [63] 192 0.25 NA 5.1* 198
Douro River [62] 9.0 0.45 0.002 2.9 12

Mondego River [66] 16 0.04 NA 9.0* 25
Mondego River [67] 12 2.0 0.004 58 72

Tagus River Unpublished ≈ 11 ≈ 1 ≈ 0 ≈ 43 55
Sado River [103] 16 0.005 NA 8.7* 25
Sado River [59] 9.2 0.6 0.001 12 22
Mira River Unpublished ≈ 52 ≈ 1 ≈ 0 ≈ 1 54

Ria Formosa [60] 24 0.8 0.001 28 52

Data not available (NA) or (*) summations containing different number of analysed EDCs.

Table 7. Estimation of the estrogenic potential of several Portuguese surface waters.

4. Status of waters in the European Union and in Portugal

Since the beginning of the implementation of the WFD, the EC was aware that it would not be
an easy task to attain the proposed quality goals stated in all EU member states within a limited
period of time — 15 years [3]. Therefore, although strict targets ought to be accomplished in
all states, it was considered some temporal flexibility to completely achieve the main goals, as
it was considered that each nation has its own environmental (and social) characteristics. In
this vein, a 2007 report from the EC revealed that nineteen EU states still showed significant
weaknesses in the implementation of the WFD and, called attention to the risk of the purposes
set for 2015 may not be met. Therefore, in order to coerce the accomplishment of the WFD
requirements, the EC appointed the EEA as a periodic gauge which role has been the evaluation
of the water quality in each country that assumed to apply the WFD. In this context, during
the last evaluation by the EEA, Portugal was identified as having not yet implemented a plan
for the management of all national watersheds (Judgment from 21 June 2012 in Case C-223/11,
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Portugal) [126]. As this task was considered essential for the implementation of various articles
defined in the WFD, including the Article 8 that aims the implementation of standards for
water monitoring, Portugal together with others (Spain, Greece and Luxembourg) were
condemned by the Court of Justice of the European Community. Besides this occurrence, in
2013 the WFD published a list of other, most common, defaults recorded in many states [127]:
(i) existence of severe gaps in the levels of chemical pollutants from anthropogenic origins in
surface waters; (ii) 60% of groundwater resources in cities were over-exploitation; (iii) 25% of
the groundwater was polluted; (iv) 47% of the surface waters showed bad ecological status;
and (v) 50% of the wetlands showed extinction risks of indigenous species. Considering the
first item of this list, it is demonstrated the need of implement chemical monitoring programs
for all states involved in the implementation of the WFD. As a corollary, we do emphasize
herein the relevance of the regular chemical monitoring and the implementation of strategies
for reducing the levels of the EDCs referred in this Chapter.

5. Impact of natural and xenoestrogenic compounds in human health

Estimating with certainty the contribution of aquatic environmental pollution — namely by
the above mentioned EDCs — to the burden of disease in humans is extremely difficult and
consequently quite polemic [10, 128]. This fact comes from the difficulty to measure and link
exposures with the health disorders that may occur in humans, as these are not in regular
contact with “oestrogenic waters” as aquatic animals. However, the consumption of contami‐
nated drinking water and/or seafood together with some other sporadic contact between
humans and contaminated waters, e.g., during recreational activities either in sea or fluvial
beaches [60, 64], may change some preconception about this issue. In fact, and despite the
confounding variables, recent studies have linked the presence of environmental natural
oestrogens, phytoestrogens and xenoestrogens with the development of a range of disorders
that go from immune deficiencies, birth defects, chronic endocrine diseases to cancer (Table 8).

During the last decade researchers devoted to both environmental health and human oncology
have shown an increasing interest in the environmental impacts of EDCs over human health
as the chemical structures of some of these chemicals, namely those refereed in this work,
resemble that of E2 which is a molecule that evolution maintained conserved amongst different
species [10]. This means that, alike fishes and other aquatic animals, the distribution of
oestrogen receptors in mammalian/human tissues is so wide that the presence of these EDCs
are able to interfere with the orchestration of an important number of pathways, some of which,
are close related with the development of cancer [129-132]. Besides, in both fish and mammals
high levels of oestrogens induce the production of reactive oxygen species causing hypome‐
thylation and microsatellite instability [133, 134]; these phenomena, which is an early step in
the process of carcinogenesis, cause DNA adducts and other genetic damages, seen, e.g., by
the emergence of micronuclei, a fact that was observed by our group in fish caught in areas
described here as having high estrogenic loads [135].
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EDCs Human health disorders References

E1, E2 and EE2

Immune deficiencies [23, 24]
Ovarian Cancer [136]
Cancer in children and adolescent [137]
Abnormal prostate development [138]

BPA and APs

Breast Cancer [10, 139]
Human reproduction [140]
Reproductive development [141]
Premature puberty and endometriosis development [142]
Fetal development [143]
Defects in human male germ cells [144]

Phytoestrogens

Breast cancer [145]
Hypospadias [146]
Puberty disorders [147]
Masculine infertility [148]
Endocrine modulation [149, 150]

Table 8. Examples of some disorders promoted by the EDCs focused in this Chapter.

Some epidemiologic studies also support the correlation between oestrogenic EDCs and cancer
as, it was found that in Europe childhood cancer incidence is having an annual increase of 1%
[137]. This worrying result it is also associated with a rising trend of other cancer types such
as the soft tissue sarcoma, brain tumours, germ-cell tumours, lymphomas, renal cancers,
leukaemia, breast cancer and lung cancer in women [10, 151, 152]. These occurrences are much
preoccupant and alert all society to the possible risk that these compounds can pose for public
health.

6. Conclusion and perspectives

As demonstrated in this Chapter, with regard to the xenobiotics that can act as oestrogens there
is still much to do in both Portugal and other countries in order to reduce this type of chemical
pollution in the surface waters from rivers, estuaries and coastal areas. Thus it would be very
useful to conceive national monitoring plans, coordinated in time and space (location of the
areas under evaluation), using not only chemical methods but also biological tools (e.g., via
the usage of biomarkers). This type of plans, involving and networking public and private
agents, would make it possible to assess risks and if measures of prevention and remediation
that are being promoted on the ground produce, the desired effects, namely as required by the
implementation of the WFD. With regard to research activities done in the west Iberian
Peninsula, we seek to continue developing projects that allow the diagnosis of the aquatic
systems, not only focusing the attention in the type of EDCs discussed here but also in others
judged relevant, such as emerging pharmaceutical compounds, PAHs, PCBs and pesticides —
some data are already published concerning these compounds [153-159]. Introduction of
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passive sampling methods should be pursued too, to get time-integrated characterizations. In
parallel, we also view as utterly important to contribute with knowledge about the mechanisms
of action that underlie the disruptive effects in aquatic organisms, as illustrated in works we
co-authored [160-169]. At last, it is very relevant to reinforce the efforts to investigate cause-
effect associations related with potential long term risks of drinking (inc. tape) waters conta‐
minated with estrogenic compounds, both by monitoring the types and quantities of
compounds [170] and by epidemiological approaches [171].
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