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1. Introduction

Within the process of deriving satellite accelerations from GPS observations, the reduced-
dynamic  Precise  Orbit  Determination (POD) approach is  one of  the  most  complete  and
accurate strategies. On the one hand, high-precision GPS solutions are independent of the
user’s satellite dynamics but their solutions are more sensitive to geometrical GPS factors
([1] and [2]). On the other hand, a dynamical method estimates the satellite position and
velocity at  a  single epoch for which the resulting model trajectory best  fits  the tracking
observables.  These  dynamics  involve  the  double  integration  and  linearization  of  the
Newton-Euler’s equation of motion, the force model, the parameters to be estimated and
the orbital arc length. The combination of GPS observables with the dynamic approach can
counterbalance the  disadvantages  of  the  dynamic  miss-modeling and the  GPS measure‐
ment  noises  (e.g.,  [3])  with  the  high  GPS  precision,  the  robustness  of  the  dynamic  ap‐
proach  and  the  use  of  additional  force  measurements  and  models  (e.g.,  accelerometer
measurements,  time-varying gravity,  irradiative accelerations,  atmospheric  drag,  thruster
firings, magnetic field, etc.). Since the POD products do not use to give information about
the  acceleration  of  the  user’s  satellite,  accurate  interpolation  and  subsequent  numerical
differentiation  must  be  performed  to  the  POD  solution.  For  this  purpose,  a  feasible
methodology with the use  of  the  arc-to-chord threshold is  performed in this  scheme of
deriving satellite accelerations.

Non-gravitational accelerations are obtained by measuring the force to keep a proof mass
exactly at the spacecraft’s center of mass, where the gravity is exactly compensated by the
centrifugal force. Plus and minus drive voltages are applied to electrodes with respect to
opposite sides of the proof mass, whose electrical potential is maintained at a dc  biasing
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voltage. Unfortunately, this dc level is the source of bias and bias fluctuations of the most
electrostatic  space  accelerometers.  The  non-gravitational  forces  acting  on  LEO  satellites
comprise the atmospheric drag, irradiative accelerations, thruster firings, the relative proof
mass offset and the Lorentz force.

Several methodologies have been developed and applied for comparing the computed non-
conservative  accelerations  with  the  accelerometer  measurements.  The  non-conservative
force models augmented with estimated empirical accelerations, for instance, have shown
a good agreement with the accelerometer data [4] and were replaced with the accelerome‐
ter measurements in the reduced-dynamic POD, using a method with strong constraints in
the  cross-track  and radial  directions  [5].  In  [6],  the  non-gravitational  accelerations  were
calculated  as  piece-wise  constant  empirical  accelerations  via  the  reduced-dynamic  POD
approach with a standard Bayesian weighted least-squares estimator. Here, the regulariza‐
tion was applied to stabilize an ill-posed solution and only the longer wavelengths were
recovered, at best in the along-track direction, with a bias in the cross-track direction. It
was concluded that no meaningful solution could be obtained in the radial direction.

Concerning the acceleration approach, where accelerations are derived from a numerical
differentiation along precise orbits, the second derivative of the Gregory–Newton interpola‐
tion scheme was used in [7], a 16-order polynomial in [8], and a 6-order-9-point-scheme in [9].
After accelerations are calculated, the least-squares fitting can be applied, and the possible
correlations between calibration parameters removed by using the (fitted) autoregressive-
moving-average (ARMA) models [9].

However, results of the above mentioned studies were limited not only by the bias caused by
applying a numerical differentiation, but also by the consequences of applying the least-
squares estimation techniques. For example, the need of setting strong constraints or regula‐
rizations was probably caused by correlations from systematic errors. For this purpose, a new
approach to accurately determine the GPS-based accelerations of GRACE mission was
developed and applied in [10]. Along with the benefit of using high accuracy and precise
methodology and models, these systematic errors were modeled and removed from the
computed non-gravitational accelerations of GRACE. In the following sections, this new
approach is reviewed in detail and the calibration of GRACE accelerometers is given as an
example of its application for LEO satellite measurements.

2. Methods and models

2.1. Accelerations from GPS-based precise orbit determination

First, a brief description of the GPS-based POD strategy is given to understand what kind of
solutions is dealt with. Both GPS satellite (superscript s) and GPS receiver (subscript r)
experience a clock offset (δt), causing their respective internal time delays in the overall GPS
system time t as:
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and the circumflex mark indicates the value calculated in each iteration. The matrix adjustment
v=[H] Δy for the linearized equation of observation is given for each row as
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Note that  Ar
s(t0)   is constant over a continuous tracking.

The solution must be solved in iterative process and null values can be used for Δy in the first
iteration.
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-
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Through combinations of different frequency observations, several errors and parameters can
be eliminated:

• Ionosphere free linear combination.

• Geometry-free carrier phase linear combination (to detect cycle slips).

• Wide-lane and narrow-lane linear combinations (for ambiguity resolution applications).

• Multipath combinations.

Detailed methodology can be found, e.g., in [11] or [12]. Differenced GPS observations has the
advantage of eliminating or reducing several common error sources, such GPS satellite clock
offsets and common biases from hardware delays. Distinguished by the carrier phase differ‐
encing level, high precision data processing procedures are basically:

• The zero-differences or Precise Point Positioning (PPP) processing, where un-differenced
observations from a single GPS receiver are supplemented by pre-computed IGS ephemeris
and clock products (e.g., [12, 11]).
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• The single-differences processing, where the use of two receivers results in the cancelation
of the satellite clock bias and common systematic errors  Mr

s(t).

• The double-differences processing, with the elimination of the receiver clock biases (e.g.,
[13, 14] and [15, 16, 17]).

• The triple-differences processing, which eliminates the time-independent errors ([18, 19,
20]).

Detailed developments and algorithmic implementation can be found, e.g., in [21]. Regarding
now the satellite dynamics, the first-order time-differential equations are
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where the solution of a state vector y(t) is given by the position and velocity in function of time.
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and p accounts for any force-model parameters to estimate. The residual vector is described
by the difference between the measurements z and the modeled solution h, both as a function
of time.
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Reminding that the circumflex mark indicates the value calculated in each iteration, linearizing
all quantities around a reference state ŷ(t0), the residual vector is approximately given by
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H gives the partial derivatives of the modeled observations with respect to the state vector at
the reference epoch t0. The orbit determination problem is now reduced to the linear least-
squares problem of finding Δy(t0). In first iteration, null values can be used, and the system
solution is the correction to these values.
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Note that H should be updated in each iteration, but can be replaced by an initial constant
value, with the consequent iteration increasing and computation decreasing. Detailed algo‐
rithmic implementation and strategies can be found, e.g., in [22, 23, 11, 12, 24] or [25].

Since the POD products do not use to give information about the satellite’s acceleration,
interpolation and subsequent numerical differentiation must be performed to the POD
solution. In order to keep the error of interpolation small enough, a low-degree polynomial is
not sufficient, high-degree polynomials introduce undesired oscillations, and the FFT ap‐
proach is not considered in presence of data gaps and outliers [26]. The best alternative, as seen
in [7], is to use a piece-wise interpolation, such as splines or Hermite polynomials. Different
algorithms for interpolation were compared in [10], interpolating odd from even original
samples, and the committed error evaluated by a simple difference between interpolated and
original data. Finally, 8-data point piece-wise Lagrange interpolation was chosen, which
provided a white noise error of standard deviation of ~10nm/s, from evaluating the error
committed at 10 s sampling (odd from even original samples). Similar results were obtained
when the piece-wise cubic Hermite interpolation was tested.

When calculating total accelerations by simple differentiation of velocities, the approximations
to numerical derivatives have been found to produce large bias [9]. To avoid this error of arc-
to-chord approximation [10], interpolated velocities must be differentiated by an increment of
time (Δt), which minimizes the error committed at a given threshold. The modified three-point
formula upgraded with the arc-to-chord threshold (Δt) is given by [10] in the form
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where simple and double quotation mark denotes the simple or double arc to chord approxi‐
mation respectively, and each ti is equispaced by Δt.

2.2. Time-varying gravity field effects

The conventional gravity model based on the EGM2008 [27], describes with Stokes’ coefficients
the static part of the gravitational field and the underlying background for the secular
variations of some coefficients. In addition, when computing the gravitational forces acting on
the satellite, other time-varying effects must be taken into account. These include the third
body tide caused by the Moon and Sun, the solid Earth tides, the ocean tides, the solid Earth
pole tide, the ocean pole tide and the relativistic terms.

The geopotential field V at the point (r, φ, λ) is expanded in spherical harmonics with up to
degree N as:
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The GM⨁ and ae values (398600.4415km3/s2 and 6378136.3m respectively) from the EGM2008
should be used as scaling parameters with its gravitational potential coefficients. In order to
use the conventional static gravitational field properly and project it in time, the secular low
degree C̄20 (zero-tide), C̄30 and C̄40 rates must be accounted for. These instantaneous values are
given by:

0
0 0 0 0( ) ( ) ( )n

n n
dCC t C t t t

dt
= + -

where t0 is the epoch J2000.0 and the values of  C̄n0(t0), and rates of dC̄n0(t0) / dt   are given in
Table 1

Coefficient Value at 2000.0 Rate (yr -1)

C̄20   (zero tide) -0.48416948·10−3 11.6·10−12

C̄30 0.9571612·10−6 4.9·10−12

C̄40 0.5399659·10−6 4.7·10−12

Table 1. Low-degree coefficients of the conventional geopotential model

To provide a mean figure axis coincident with the mean pole and consistent with the Terrestrial
Reference Frame, the values for the coefficients C̄21 and S̄ 21 are given by:
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Recent values of  C̄20, C̄22 and S̄ 22 are adequate for 10−14 accuracy, e.g. the values of the present
conventional model (−0.48416948 10−3, 2.4393836 10−6 and −1.4002737 10−6 respectively). The
variables x̄ p and ȳ p (in radian) represent the IERS conventional mean pole:
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where t0 is the year 2000.0 and the coefficients  x̄ pi and ȳ pi (mas yr -i) are given in Table 2
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Before 2010.0 After 2010.0

Degree i x̄ pi ȳ pi x̄ pi ȳ pi

0 55.974 346.346 23.513 358.891

1 1.8243 1.7896 7.6141 -0.6287

2 0.18413 -0.10729 0.0 0.0

3 0.007024 -0.000908 0.0 0.0

Table 2. Coefficients of the IERS 2010 mean pole model

The gravitational acceleration of a third body on the satellite [22] can be described as a
difference between the accelerations of the satellite and the Earth caused by a third body B.

B 3 3GM
æ ö-ç ÷D = -
ç ÷-è ø

B sat B
sat

B sat B

r r rr
r r r

&&

where rsat and rB are the geocentric coordinates of the satellite and of a third body of mass MB,

respectively. Since accelerations on near-Earth satellites from other planets actions are
relatively small (< 0.1nm/s2), only Luni-solar accelerations are calculated. Moon and Soon
coordinates can be interpolated from the solar and planetary ephemerides (DE-421) provided
by the Jet Propulsion Laboratory (JPL) in the form of Chebyshev approximations. The evaluation
of these polynomials yields Cartesian coordinates in the ICRS for the Earth-Moon barycenter
b⨁⊘ and the Sun b⊙ with respect to the barycenter of the solar system, while Moon positions r⊘

are given with respect to the center of the Earth. The geocentric position of the Sun can be
computed as

*1 mÅ= - +
+e e

%
%

r
r b b

where µ* denotes the ratio of the Earth's and the Moon's masses. Since the changes induced
by the Earth’s solid tides [27] due to its rotation under effects of ellipticity and Coriolis force,
can be described in terms of the Love numbers, variations in the low-degree Stokes’ coefficients
can be easily computed. Dependent and independent frequency corrections are calculated
using lunar and solar ephemerides, Doodson’s fundamental arguments, the nominal values
of the Earth’s solid tide external potential Love numbers and the in-phase and out-of-phase
amplitudes of the corrections for frequency-dependent Love values. First, changes induced by
the tide generating potential in the normalized geopotential coefficients for both n = 2 and n =
3 for all m are given by the frequency-independent corrections in the form:
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where

knm is the nominal Love number for degree n and order m,

rB is the distance from geocenter to Moon or Sun,

φB is the body-fixed geocentric latitude of Moon or Sun,

λB is the body-fixed east longitude (from Greenwich) of Moon or Sun.

Here, anelasticity of the mantle causes knm and k(+)
nm to acquire small imaginary parts (Table 3).

Elastic Earth Anelastic Earth

n m knm k(+) nm Re(knm) Im(knm) k(+) nm

2 0 0.29525 −0.00087 0.30190 −0.00000 −0.00089
2 1 0.29470 −0.00079 0.29830 −0.00144 −0.00080
2 2 0.29801 −0.00057 0.30102 −0.00130 −0.00057
3 0 0.093 ...
3 1 0.093 ...
3 2 0.093 ...
3 3 0.094 ...

Table 3. Nominal values of solid Earth tide external potential Love numbers

To calculate rB, φB and λB, geocentric Moon and Sun Cartesian coordinates must be rotated
from the ICRS to the ITRS and transformed to the spherical coordinates as usually.

Frequency dependent corrections are computed as the sum of contributions from a number of
tidal constituents belonging to the respective bands.
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β̄ is the six-vector of Doodson’s fundamental Lunisolar arguments (τ, s, h, p, N’, ps);

n̄ j is the six-vector of multipliers of the fundamental Lunisolar arguments (j=a, b, c);

Aj is the In-phase (ip) and out-of-phase (op) amplitudes (j=a, b, c);

j=a, b, c correspond to the parameters from Tables 6.5a, 6.5b and 6.5c given in [27].

Doodson’s variables are related to Delaunay’s by

  
  
  
  

’  
    ’s

s
s F
h s D
p s l
N
p s D l

t g= -
= + W
= -
= -
= -W
= - -

and Delaunay’s fundamental Lunisolar arguments can be computed as
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Here, t is measured in Julian centuries of Barycentric Dynamical Time (TDB), but the Terrestrial
Time (TT) can be used in practice (assuming a difference in the CIP location smaller than 0.01
µas).

( )  2451545 / 36525
 –  32.184

TT

TT UTC

t JD
JD JD TAI UTC
= -

= + +

Accounting for the dynamical effects of ocean tides, the periodic variations in the normalized
Stokes’ coefficients are calculated based on the most recent ocean tide model EOT11a [28]. The
potential coefficients for the mass redistribution effect of ocean tides are available in the form
of cnmCos, snmCos and cnmSin, snmSin (including the loading potential and the Doodson-
Warburg phase corrections) up to maximum degree and order 120 for each tide s, and obtained
by
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[28] also provided the influences of additional minor tide constituents that are not included in
the tide model EOT11a and should not be neglected in Low Earth Orbiters. This function
evaluates the contribution of altogether 256 tides.

Changes in the geopotential value due to the centrifugal effect of pole motion, known as the
Earth’s solid pole tides [27], can be readily computed in function of the wobble variables and
calculated under sub-daily polar motion variations as

( )9
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where m1 and m2 in seconds of arc are obtained from the difference between the polar motion
and the IERS conventional mean pole (above defined) as
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m y y
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The standard pole coordinates of the parameters xp and yp are from the IERS (http://
hpiers.obspm.fr/iers/eop/eopc04/) with additional components to account for the effect of
ocean tides (∆xp, ∆yp)ocean and forced terms (∆xp, ∆yp)libration with periods of less than two days
in space. These sub-daily variations are not part of the polar motion values published by the
IERS and are therefore to be added after interpolation.
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where

F̄  is the six-vector of Delaunay’s fundamental arguments (γ, l, l’, F, D, Ω);

n̄ j is the six-vector of multipliers of the fundamental arguments (j=o, l);

xj
cos, xj

sin are the amplitudes in xp for cosinus and sinus respectively (j=o, l);

yj
cos, yj

sin are the amplitudes in yp for cosinus and sinus respectively (j=o, l);

j=o, l makes reference to oceanic and libration parameters, respectively.
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Oceanic parameters are retrieved from Tables 8.2a and 8.2b, and libration parameters (n=2)
from Table 5.1a of [27]. The ocean pole tide, generated by the centrifugal effect of pole motion
on the oceans, is calculated as a function of sub-daily wobble variables from the coefficients
(Ānm and B̄nm) of the self-consistent equilibrium model [29]. These perturbations to the
normalized geopotential coefficients are given by

( ) ( )R I R I
1 2 2 2 2 2 1 2γ γ γ γ

R I
nm nmnm

n R I
nm nm nm

A AC
R m m m m

S B B

ì üé ù é ùé ùD ï ï= + + +ê ú ê úê ú í ý
Dê ú ê ú ê úï ïë û ë û ë ûî þ
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p rÅ
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w
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2
e
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ω =7.292115·10 rad ;
=1025kg/m ;

G=6.67428·10 m / kg·s ;

g =9.7803278m/s ;
k’ =-0.3075, k’ =-0.195, k’ =-0.132, k’ =-0.1032, k’ =-0.0892;

=0.6870 and =0.0036.

Only the main relativistic effects (described by the Schwarzschild field of the Earth itself ~1nm/
s2), might be calculated, since the effects of the Lense-Thirring precession (frame-dragging)
and the geodesic (de Sitter) precession are two orders of magnitude smaller at a near-Earth
satellite orbit [27].

( ) ( )2 3
satsat

GM GM
4 4

rc  r
Å Å
ì üé ùï ïD = - × × + × ×í ýê ú
ï ïë ûî þ

sat sat sat sat sat sat satr r r r r r r&& & & & &

Finally, time-varying Stokes’ coefficients with up to a degree and order 120 can be computed
under an increment of time small enough to desensitize from discontinuities (~3600 s) and the
gravity for every satellite position calculated by using the first derivative of the gravitational
potential in Cartesian coordinates. With the substitution of P̄nm = P̄nm(sinφ) and
P̄ 'nm =∂ P̄nm(sinφ) / ∂φ, the first derivative of the gravitational potential of the Earth, in spherical
coordinates, is calculated from the computed time-varying Stokes’ coefficients as
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The derivative of the normalized associated Legendre function can be computed as

, , 1 ,' tannm n m n m n mP k P m Pj+= -

where the scale factor is

( ) ( ) ( )( ) ( )( )0 01 1 1 1 / 2nm nm m mk n m n m n nd d dé ù= - - + + - + +ê úë û
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2.3. Accelerometer calibration

The approach here given (acceleration approach) is based on the fact that the GPS-derived
accelerations can provide exact values to estimate the accelerometer calibration parameters.
In order to compute the differences between the GPS-based non-gravitational accelerations
and the accelerometer measurements, several transformations between reference systems are
required (POD solutions are usually given in the ITRS and accelerometer measurements in the
SBS).

Lunisolar direct tides and the relativistic effect are calculated in the ICRS, the others, in the
form of Stokes’ coefficients. The computation must be done under an increment of time small
enough to desensitize from temporal variations (~3600 s). Gravitational accelerations must be
rotated to the ICRS as they were positions, because the Stokes’ coefficients have already
included the contribution of the Earth’s rotation. The attitude of the satellites is based on
celestial body observations, so the rotation to the SBS implies to pass through the ICRS. First,
the gravitational accelerations must be subtracted from the GPS-based accelerations to obtain
the non-gravitational accelerations. Then, computed non-gravitational accelerations can be
rotated to the SBS, and the differences to the accelerometer measurements are evaluated by
means of simple difference of median averages or by Least Squares adjustment.

For the following, the basic rotations in the tri-axial reference system are defined as
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The rotation ICRS to SBS is derived from the star-camera quaternion (Fig. 1)
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For the following, the basic rotations in the tri-axial reference system are defined as 

The rotation ICRS to SBS is derived from the star-camera quaternion (Fig. 2.1) 
 

 Fig. 2.1. Representation of the star-camera quaternion angles. The transition from the ITRS to the ICRS is realized through a sequence of rotations that account for precession [ ], nutation [ ] and Earth rotation [ ], including polar motion [ ] [27]. 
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Figure 1. Representation of the star-camera quaternion angles.

The transition from the ITRS to the ICRS is realized through a sequence of rotations that account
for precession [P], nutation [N] and Earth rotation [S], including polar motion [PM] [27].
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( )-
Å × é ù= ë - + D û

57.29211514670698 10 1 LOD LOD 86400ω

is the nominal mean Earth’s angular velocity corrected from Length Of Day (LOD). Similarly
to polar motion, additional components should be added to the values from the IERS for UT1
and LOD, to account for the sub-daily effects of ocean tides.
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where the effects of libration have been neglected due to its small size and

F̄   is the six-vector of Delaunay’s fundamental arguments (γ, l, l’, F, D, Ω);

n̄o   is the six-vector of multipliers of the fundamental arguments;

OUT 1
cos , OUT 1

sin  are the oceanic amplitudes in UT1 for cosinus and sinus respectively;

OLOD
cos , OLOD

sin  are the oceanic amplitudes in LOD for cosinus and sinus respectively;

These oceanic parameters are retrieved from Tables 8.3a and 8.3b of [27].

And the Earth rotation matrix [S] has the form

( )3RS ERAéë = -ùû

where

( )

( )
1

 2 0.7790572732640 1.00273781191135448 ;
2451545;

1  1  1;

UT

UT UT

ERA JD
JD JD
UT UTC UT UTC UT

p= +

= -

= + - + D

Polar motion consists of two quasi-periodic components and a gradual drift. The two main
periodic parts are the Chandler wobble and the seasonal motions. The longer term variation
is less well understood (motions in the Earth's core and mantle, water mass redistribution, and
the isostatic rebound). The rotation matrix for polar motion is given by:

( ) ( ) ( )3 2 1R ’  R  Rp p p pPM s x x y yé ùû = +ë - D + D

where

( ) ( )6’ 47·10 / 3600·180s t p-= -

The standard pole coordinates xp and yp are from the IERS. The additional sub-daily variations
of pole coordinates (Δxp and Δyp) and the parameter t (~Julian centuries of TT) have been
formulated before.
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The combined transformation for precession [P] and nutation [N] is defined in terms of co-
declination d , right ascension  E , and the instantaneous right ascension of the instantaneous
pole (parameter  s).

( ) ( ) ( ) ( )3 2 3 3R  R  R  RQ P N E d E sé ùù é é ùû ë ë ûû =ë = - - -

For convenience, the coordinates are redefined as
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The IAU 2006/2000A developments for the parameters X, Y and s are
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where

n̄ is the 14-vector of multipliers of the fundamental arguments of the nutation theory;
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Ā is the 14-vector of fundamental arguments of the nutation theory, of which Lunisolar ones
(l, l’, F, D and Ω) have been defined in the previous section, and the planetary ones (in radian)
are:

4.402608842 2608.7903141574 ;
3.176146697 1021.3285546211 ;

1.753470314 628.3075849991 ;
6.203480913 334.06124267 ;

0.599546497 52.9690962641 ;
0.874016757 21.329910496 ;
5.48129387

Me

Ve

E

Ma

J

Sa

U

L t
L t
L t
L t
L t
L t
L

= +
= +
= +
= +

= +

= +
=

2

2 7.4781598567 ;
5.311886287 3.8133035638 ;

0.02438175 0.00000538691 ;
Ne

A

t
L t
p t t

+
= +

= +

The parameter t (~Julian centuries of TT) has been defined in the previous section. Amplitudes
(aj

sin)i,  (aj
cos)i,  (bj

sin)i, (bj
cos)i, (cj

sin)i, (cj
cos)i  and the multipliers of the fundamental arguments are

available at the IERS Conventions 2010 website (ftp://tai.bipm.org/iers/conv2010/chapter5/).
After parameters X and Y are calculated, the IERS celestial pole offsets ΔX and ΔY can be
added. These are provided by the IERS’ EOP.

3. Results and analysis

3.1. GPS-based non-gravitational accelerations from GRACE

The GNI_1A files provide the most precise position and velocity at 5 s interval, including
formal error (dynamic-reduced approach computed by the GPS Inferred Positioning System
software of JPL). GNV_1B files are practically unchanged from the previous processing level
(GNI_1A files), since only smoothing on day boundaries is applied.

Time conversion between Level 1B files and the UTC is defined as

( )FILE 0  19UTC T UTC TAI UTC= + + - -é ùë û

where TFILE is the time in the Level 1 data file and UTC0 is the January 1st of 2000 at 12h 00m
00s. Since satellite accelerations are not provided in the GNV_1B files, these are derived from
the precise velocities by means of interpolation and subsequent numerical differentiation. 8-
data point piece-wise Lagrange interpolation is used for interpolation as recommended by [10]
or [7]. In order to obtain a value to define the arc-to-chord interpolation threshold (Δt), total
accelerations are calculated for several Δt and a value of Δt = 0.05 s should be chosen (error <
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1nm/s2 in the arc-to-chord approximation). Then, total accelerations can be numerically
obtained as the first derivative of the GNV_1B velocities.

After subtracting the time-varying gravity from the GPS-based accelerations, an unknown
periodic error (~1.6 hour) of amplitude maxima of ~3µm/s2 can be identified in the YSBS axis of
both GRACE satellites. ZSBS axes also reveal a slightly systematic behaviour, but two orders of
magnitude smaller. The underlying signal is recovered by subtracting a sinusoidal function
fitted on the envelope of the modulated amplitude. Since only sinusoidal functions are
removed, the resulting solution remains unchanged from mean values [10]. Figure 2 shows
the results contrasted to accelerometer measurements calibrated with recommended a-priory
biases of [30][30]. When analyzing the solution for XSBS axes, aside the excellent agreement with
the accelerometer precision, several local mismatches can be identified and probably attributed
to the non-modelled local time-varying gravity, such as post glacial rebound, hydrologic cycle,
etc., due to lack of accuracy of ocean tides models or possible external sources to the Earth’s
gravity, e.g. Figure 2 at 19:30 h. Concerning the YSBS and ZSBS axes solutions, aside the bias
detected with respect to [30], it can be clearly seen the high correlation with the accelerometer
measurements, and consequently the good reference for accelerometer calibration.
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Figure 2. Measured non-gravitational accelerations calibrated with recommended a-priory biases of [30] in solid line,
and the GPS-based non-gravitational accelerations from this study in dashed line. GRACE-A on July 15th 2006. Plots
are not equally scaled.

3.2. Calibration of GRACE accelerometers

The twin satellites of the GRACE mission are equipped with three-axis capacitive SuperSTAR
accelerometers to measure the non-gravitational forces. The precision of the XSBS and ZSBS axes
is specified to be 0.1nm/s2, while 1nm/s2 for the YSBS axes. According to the ONERA Super Star
accelerometers, the accelerations due to the relative proof mass offset and the Lorentz force
can be neglected. Measurements at a second interval are included in ACC_1B files.
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In order to evaluate the bias and bias fluctuations of the GRACE electrostatic accelerometers,
the computed GPS-based non-gravitational accelerations are compared to the accelerometer
measurements. Figure 3 shows the biases evaluated by simple difference of daily median
averages for the 1st day and the 15th day of every month from 2003 to 2012 (240 days).

Time span in MJD(UTC)

Axis 52720-53720 53720-55390 55390-55670 55670-56276

XSBS GA
a 1.8661E-10 7.6744E-11 2.6610E-09 -2.1745E-09
b 3.7589E-09 -1.2267E-09 3.4110E-09 2.0266E-08
c -1.2067E-06 -1.2572E-06 -1.2949E-06 -1.3772E-06

XSBS GB
a 1.3180E-10 -3.6244E-12 -3.1007E-10 7.3652E-10
b 3.1492E-09 -1.5015E-09 -1.0071E-09 -7.1242E-09
c -5.9029E-07 -6.3587E-07 -6.5277E-07 -6.6374E-07

YSBS GA
a -7.3899E-09 -8.6972E-10 -3.6298E-08 2.1178E-08
b -2.3187E-07 4.1156E-09 -6.5976E-08 -2.1715E-07
c 2.7577E-05 2.9751E-05 3.0619E-05 3.2154E-05

YSBS GB
a -1.2166E-08 -1.9175E-09 2.4402E-08 2.7737E-08
b -3.9671E-07 2.0905E-08 4.5169E-08 -2.3808E-07
c 7.4314E-06 1.1700E-05 1.2362E-05 1.3520E-05

Time span in MJD(UTC)

Axis 52720-53005 53005-55166 55166-55562 55562-56276

ZSBS GA
a 2.5641E-09 4.1747E-11 6.9776E-10 -7.2715E-12
b 1.3726E-07 7.7995E-10 1.1175E-09 -1.3730E-09
c 1.2338E-06 -5.7149E-07 -5.7692E-07 -6.0613E-07

Time span in MJD(UTC)

Axis 52720-53005 53005-55287 55287-55562 55562-56276

ZSBS GB

a 3.9394E-09 -5.8487E-11 -1.9218E-09 7.5564E-10
b 2.1614E-07 3.0758E-09 1.3300E-09 -4.9383E-09

c 2.0477E-06 -7.4038E-07 -7.6010E-07 -7.7323E-07

Equation: bias = ax2+bx+c, where x = (MJD(UTC)-55555)/100.

Table 4. Fitted parameters for bias calibration of GRACE accelerometers

Biases and fitted approximations are plotted in Figure 3, with respect the a-priori biases as
recommended by [30]. Since the nature of circular orbits implies a constant behaviour of the
arc-to-chord error, the real magnitude (bigger) of radial accelerations (ZSBS axes) seems to cause
a constant difference (~20 nm) in the solutions of [30]. Furthermore, it is interesting to see that
since electrostatic accelerometers are sensible to temperature changes, the correlation between
YSBS biases and the β’ angle (angle between the Earth-Sun line and the orbit plane) is clearly
recognized. Note that the β’ angle is defined such that it is zero when the Sun is within the
orbit plane and, consequently, the perturbation of YSBS biases is minimized. The opposite
situation happens when maximum β’ angle, in which the solar radiation has the same direction
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as the YSBS axes and maximizes its bias perturbation. These variations are disregarded in the
polynomial fitting given in table 4, being this solution a more close approximation to values
of β’ angle zero than the real β’ angle value.
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Figure 3. Differences with respect to the solution of [30]. Small dots represent the standard deviation to the accelerom‐
eter measurements and solid line is the parameterized solution. Plots are not equally scaled.
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4. Summary

In this chapter, a detailed theory and methodology to derive non-gravitational accelerations
from GPS measurements has been review, developed and validated with GRACE satellites as
an example. The results show good agreement with accelerometer measurements and
demonstrate that this new approach is a good reference for accelerometer calibration. This
methodology is based on the use of the arc-to-chord threshold for data interpolation, and the
robust fitting of sinusoidal functions in case of finding systematic errors within the accurately
derived non-gravitational accelerations.

With the development of space accelerometers, the calibration of current bias-rejection devices
is not anymore required. Nevertheless, the non-gravitational accelerations can be determined
accurately from the precise orbit ephemeris and, so far, it is, among others, a precious source
of information for atmospheric and force model studies. With the increased accuracy of GPS
positioning and dynamic measurements and models, the methodologies for GPS-based POD
are becoming more and more accurate.

In order to guarantee an unbiased solution in accelerometer measurements, calibration
parameters have been finally calculated without using any kind of regularization or constraint,
and by using the GPS-based POD solution as a reference. Since the POD products do not use
to give information about accelerations, the first derivatives of the precise-orbit velocities are
calculated under the arc-to-chord interpolation-threshold. On the other hand, the modeled
time-varying forces of gravitational origin and reference-system rotations are computed
according to current IERS 2010 conventions (including sub-daily tide variations). In a case
study from GRACE was shown that after subtracting the modeled time-varying gravity from
the GPS-based accelerations, cross-track axes of both GRACE satellites are affected by a
periodic error of unknown source. With the finality of extracting the underlying information
from the resulting data, the systematic error is modeled and subtracted successfully by
applying a robust fitting by sinusoidal functions. The resulting accelerations can serve as a
reliable reference for the accelerometer calibration. In the future, this systematic error should
have further considerations in POD software development.

5. Nomenclature

δ jk ;   Kronecker’s delta.

ti; Instant i of time.

Δt; Increment of time.

c; Speed of light

U; Gravitational potential.⨁; Earth.
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⊙; Sun.

⊘; Moon.

GM; Product of gravitational constant by mass.

ae ; Equatorial radius of the Earth.

P̄ lm;   Normalized associated Legendre functions of degree l  and order m.

C̄ lm;   Normalized Stokes’ coefficient of degree l  and order m for cosinus.

S̄ lm;   Normalized Stokes’ coefficient of degree l  and order m for sinus.

ω⊕;   Rotation vector of the Earth.

r ;   Satellite position vector.

ṙ ;   Satellite velocity vector.

r̤; Satellite acceleration vector.

(φ, λ);   Latitude, longitude.

GPS; Global Positioning System.

POD; Precise Orbit Determination.

LEO; Low Earth Orbit

GRACE Gravity Recovery And Climate Experiment.

GA, GB; Satellite identifier (GRACE-A; GRACE-B).

EOP; Earth Orientation Parameters.

MJD; Modified Julian Date.

UTC; Coordinated Universal Time.

TAI; International Atomic Time.

ICRS; International Celestial Reference System.

ITRS; International Terrestrial Reference System.

SBS; Satellite Body System.

ORS; Orbit Reference System.

[P]; Rotation matrix for precession.

[N]; Rotation matrix for nutation.

[S]; Rotation matrix for sidereal time.

[PM]; Rotation matrix for polar motion.
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