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1. Introduction

Cholesterol is a key structural component of the brain, and cholesterol transport and distri‐
bution within the central nervous system (CNS) is mediated by a lipid metabolic cycle that
includes generation of apolipoproteins as lipid carriers, lipidation by cholesterol and phos‐
pholipid transporters, enzyme remodeling of these particles and their receptor-mediated
uptake and turnover in cells. It is becoming increasingly appreciated that Alzheimer’s Disease
(AD) patients often have comorbid conditions such as cardiovascular disease, type II diabetes
mellitus, or hypertension, each of which can greatly affect lipoprotein metabolism, especially
at the vessel wall and thereby possibly contribute to AD pathogenesis. Here we review the
known biology of lipids and lipoproteins in the CNS and discuss how alterations in lipid
metabolism may impact AD pathogenesis. Apolipoprotein E (APOE) is the best established
genetic risk factor for AD and the major apolipoprotein expressed in the brain. In addition,
genome-wide association studies (GWAS) have identified several other genes associated with
AD risk that function in lipid or lipoprotein metabolism, including clusterin (CLU), ATP
binding cassette (ABC) transporter A7 (ABCA7), and apoE receptors. Understanding how
lipid/lipoprotein metabolism in the brain and body affect cognitive function may therefore
offer new insights in developing more effective therapeutic approaches for dementia.

2. Lipid and lipoprotein metabolism in the CNS

2.1. General biology and function of lipids and lipoproteins in the CNS

The brain is the most cholesterol-rich organ in the body, with an average cholesterol content
of 15-20 mg/g wet weight compared to 2 mg/g for peripheral tissues in the adult mouse [1].
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The majority of the brain’s sterol content is located in free cholesterol, 70-80% of which is in
myelin. Cholesterol, sphingomyelin and phospholipids form the major structural components
of cellular membranes, with cholesterol, phosphatidylcholine and phosphatidylethanolamine
being the most abundant lipids in synaptic vesicles [2]. Many lipids also participate in
important signaling pathways in the brain, with lipid-mediated second messengers derived
from sphingomyelin and phosphatidylinositol, activation of G- protein coupled receptors and
nuclear receptor activation being particularly important [1, 3].

Name Major Sites of
Production in the Brain

Main Functions in
Healthy Brain

Potential Role in AD

ApoE • Astrocytes
• Microglia

• Lipid transport
• Aβ homeostasis
• BBB integrity
• Cerebrovascular health
• Innate immune response
• Reelin signaling

• Involved in Aβ metabolism: deposition,
transport across the BBB, clearance through ISF
and the CSF pathways, and enzymatic
degradation
• Regulation of inflammation
• ApoE4, the most established AD genetic risk
factor, is associated with:

1. Impaired Aβ degradation and
clearance
2. Increased tau phosphorylation and
formation of NFT
3. Ineffective lipid transport
4. Impaired synaptic integrity
5. Reduced ability to suppress
inflammation

Clusterin • Astrocytes
• Choroid plexus
epithelial cells
• Neurons

• Golgi chaperone
• Inflammatory response
• Complement regulation
• Cell Cycle regulation
• Reelin signaling

• Third most highly associated susceptibility
locus for AD.
• Potentially involved in Aβ sequestration,
degradation and clearance

ApoA-I • Not produced in the
brain

• Reverse cholesterol
transport
• Vascular endothelial
health

• AD comorbidities such as type II diabetes and
hypercholesterolemia lead to apoA-I dysfunction
• Reduction of CAA, neuroinflammation, and
oxidative stress in mouse models of AD

Table 1. Major Apolipoproteins in the Brain

As lipids are insoluble in aqueous environments, neutral lipids are transported through bodily
fluids on lipoprotein particles consisting of amphipathic apolipoproteins that surround and
stabilize their lipid cargo. The general structure of mature spherical lipoproteins consists of a
core of neutral cholesterol ester and triglycerides surrounded by amphipathic free cholesterol
and phospholipids at the exposed surface, all of which are encapsulated by apolipoproteins
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[3]. Four major lipoprotein classes, defined by their buoyant density, are found in the circula‐
tion: high density lipoproteins (HDL), low density lipoproteins (LDL), very low density
lipoproteins (VLDL) and chylomicrons. While LDL, VLDL and chylomicrons are triglyceride
rich, HDL is triglyceride poor, and the HDL-like lipoprotein species found within the CNS
contain even less triglyceride than plasma HDL. As apolipoprotein B (apoB), the major
apolipoprotein of chylomicrons, VLDL, and LDL, is not found in the CNS, lipoprotein
metabolism in the brain and cerebrospinal fluid (CSF) is based entirely on a lipoprotein class
that most resembles plasma HDL with respect to size, shape, and density [4-11]. In rodents,
astrocytes secrete apoE-containing lipoproteins that are primarily composed of phospholipids
(~6 µg/ml) and cholesterol (~13 µg/ml), 0-18% of which is found in the esterified form. These
nascent lipoprotein particles are discoidal, ranging from 9-17 nm in diameter with a density
of 1.00-1.12 g/ml [7, 10]. Clusterin, also known as apolipoprotein J (apoJ), is also produced by
astrocytes but is secreted virtually free of lipids [7, 10, 12]. Conversely, whereas lipoprotein
particles found in CSF are of a similar diameter (11-20 nm) and density (1.063-1.12 g/ml) to
those secreted by astrocytes, they are distinguished by their spherical shape and a greater
proportion of phospholipids and cholesterol, with approximately 70% of cholesterol found as
cholesterol esters [5, 7, 8, 10, 13]. ApoE and apolipoprotein A-I (apoA-I) are the major apoli‐
poproteins present in CSF by mass, with apolipoproteins A-II, A-IV, D, CI, CIII, and clusterin
also present to a lesser extent [5, 8-11]. In the healthy CNS, lipoproteins regulate the transport,
delivery and distribution of lipids. In addition, lipoproteins are also thought to regulate many
functions in the CNS including inflammation, oxidative stress, vascular tone, cerebral blood
flow, and blood brain barrier (BBB) integrity (Table 1) [14].

2.2. Apolipoproteins present in the CNS

ApoE is present at 2-10 µg/ml in human and mouse CSF [8, 13, 15, 16] and at 10-50 ng/ml in
interstitial fluid (ISF) from both wild-type mice as well as in targeted replacement mice that
express human apoE [17]. ApoE is the most abundant apolipoprotein expressed within the
brain, where it is synthesized and secreted by astrocytes and, to a lesser extent, microglia [5].
Secreted apoE particles are lipid-rich, containing equal amounts of apoE and lipid, and carry
cholesterol secreted by astrocytes [10, 18]. Indeed, lipidation of apoE is essential for its stability
and function [19-21]. Humans express three APOE isoforms that differ from one another by
two amino acid residues; APOE2 (cys112, cys158), APOE3 (cys112, arg158) and APOE4 (arg112,
arg158), with the APOE3 allele being the most common and the APOE2 allele being the least
frequent in the general population [19]. The resulting apoE2, apoE3 and apoE4 proteins
therefore have both structural differences with respect to protein folding as well as functional
interactions with respect to their ability to bind to lipids and apoE receptors [22]. In addition
to mediating cholesterol transport to neurons, apoE has other functions in the brain such as
regulating vascular health and the innate immune system (Table 1) [23].

Brain tissue has one of the highest concentrations of clusterin, which is expressed in astrocytes,
epithelial cells of the choroid plexus, and selected neuronal subsets [24]. As a result, clusterin
is present in CSF at concentrations of 4-6.5 µg/ml in healthy human adults [25]. In humans,
due to the presence of three alternative mRNA start sites, the clusterin gene CLU is expressed
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as three transcriptional isoforms. At the protein level, clusterin exists in two major forms: a 50
kDa nuclear form and a 75-80 kDa glycosylated secreted form [26]. Although clusterin is best
known for its role as a chaperone, it also appears to be involved in the inflammatory response
and complement regulation, the cell cycle, and endocrine functions (Table 1) [27].

Unlike apoE and clusterin, apoA-I is not expressed in either murine or human brain [28-31],
suggesting that its presence in the CNS reflects transport across the BBB and/or the blood-CSF-
barrier (BCSFB) following its production from hepatocytes and enterocytes. Although in
vitro experiments suggest that apoA-I can transcytose across cultured endothelial cells [32], an
in vivo study shows that peripherally injected apoA-I rapidly localizes to choroid plexus
epithelial cells with negligible association in cerebrovascular endothelial cells, suggesting that
peripherally derived apoA-I may gain access to the CNS primarily by crossing the BCSFB [31].
The concentration of apoA-I in CSF is ~3-4 µg/mL, or 0.26% of plasma levels, in humans [8, 13,
15, 33] and 0.02 µg/mL, or 0.01% of plasma levels, in wild-type mice [31]. The physiological
functions of apoA-I in the CNS are not well understood but are hypothesized to be similar to
those of CNS apoE (Table 1) [14].

In addition to apoE, clusterin, and apoA-I, other apolipoproteins are also detected in the CNS,
including apoD, apoC-I, apoC-III, apoA-II, and apoA-IV [8, 9, 11], each of which is detected in
human CSF [5, 8-11]. It has been shown that apoD, an apolipoprotein with antioxidant and
anti-inflammatory properties, is produced in neuroglial cells, pia mater cells, and perivascular
cells in the human brain [34, 35].

2.3. Cholesterol and Phospholipid Transporters

Lipid-poor apolipoproteins receive cholesterol and phospholipids from membrane bound
transporters that are part of the ABC transporter family. The ubiquitously expressed trans‐
porter ABCA1 mediates the transfer of cellular cholesterol and phospholipids from cellular
membranes to lipid-poor apolipoprotein acceptors including apoA-I and apoE [36- 39], a
process that is essential for the production of both plasma and CSF HDL. HDL plays a critical
role in the regulation of lipid homeostasis, and is particularly important for cells such as
macrophages and microglia that form part of the innate immune system. ABCA1 activity in
these phagocytic cells is exquisitely sensitive to cholesterol accumulation, and by catalyzing
efflux of excess cholesterol and phospholipids to apoA-I and apoE acceptors, ABCA1 activity
helps to maintain intracellular cholesterol balance. In humans, mutations that block ABCA1
function cause Tangier Disease, which is characterized by a 95% loss of plasma HDL cholesterol
and apoA-I levels due to rapid catabolism of lipid-poor apoA-I by the kidney. ABCA1-
dependent lipidation of CNS apoE is also critical for its stability as both total body and brain-
specific loss of ABCA1 in mice leads to a significant 60-80% reduction of brain and CSF apoE
[20, 21, 30]. Whether ABCA1 also regulates apoE levels in the brain of Tangier Disease patients
is not known. Notably, Wahrle et al. did not observe significant differences in CSF apoE levels
between control subjects versus those with ten different ABCA1 single nucleotide polymor‐
phisms (SNPs), suggesting that these SNPs may not have a significant effect on human ABCA1
function in the CNS [16]. In mice, total body deletion of ABCA1 results in a significant and
proportional reduction of apoA-I levels by 60-90% in plasma, brain tissue and CSF [40].
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Intriguingly, brain-specific deletion of ABCA1 in mice leads to a significant increase of apoA-
I protein levels in brain tissue and CSF [30]. The mechanisms that regulate the distribution of
apoA-I between peripheral and CNS compartments remain to be fully determined.

Highly homologous to ABCA1, ABCA7 is also abundantly expressed in microglia, oligoden‐
drocytes, neurons, and astrocytes in both humans [41] and mice [42, 43]. Although the potential
for ABCA7 to act as a cholesterol and/or phospholipid transporter in the CNS is unknown,
when overexpressed in human embryonic kidney cells, ABCA7 can mediate the transfer of
phospholipids and sphingomyelin, but not cholesterol, to lipid-poor apoA-I and apoE [42].
The relative contribution of ABCA7 to the in vivo generation of plasma HDL cholesterol
appears to be minimal and may be influenced by sex, as decreases in plasma total cholesterol
and HDL cholesterol are only detected in female Abca7-/- mice [43]. Instead, ABCA7 may be
more involved is modulating the phagocytic activity of macrophages, particularly following
injury or infection; whether this is also true in brain microglia will be important to address in
the future [44, 45]. One critical difference between ABCA1 and ABCA7 is the distinct manner
in which they are regulated by cholesterol. Whereas ABCA1 expression is induced by activa‐
tion of the Liver-X-Receptor (LXR) pathway in response to increased cellular cholesterol
content, ABCA7 induction is unaffected [42, 43]. Instead, ABCA7 expression is primarily
regulated by sterol regulatory element binding protein 2 (SREBP-2) and is thus repressed in
cholesterol-laden cells [44].

Following initial lipidation, nascent HDL lipoproteins can receive additional lipids from the
cholesterol transporters ABCG1 and ABCG4 [46], which are abundantly expressed in grey and
white matter of the brain [47]. Unlike ABCG4, whose expression appears to be restricted to
neurons, astrocytes, and the retina, ABCG1 is widely expressed throughout the body and is
found in the liver, intestine, lungs, kidney and spleen in addition to neurons, astrocytes,
microglia, and choroid plexus epithelial cells [47, 48]. In addition to lipid efflux activity, ABCG1
and ABCG4 are also believed to regulate intracellular transport of cholesterol and sterols and
vesicle trafficking in the brain [47, 48].

2.4. Enzymes involved in lipoprotein metabolism

Many enzymes involved in lipoprotein metabolism are found in CSF, although for most, their
CNS expression patterns and functional roles have not been explored to the same extent as in
the periphery. For example, lecithin cholesterol acyltransferase (LCAT), phospholipid transfer
protein (PLTP), and cholesteryl ester transfer protein (CETP) are all detectable in brain tissue
and CSF [13, 49-53] and, as they have established roles in plasma lipoprotein metabolism, it is
of interest to understand whether they function similarly in the brain.

In plasma, LCAT is the enzyme responsible for generating the cholesterol ester core charac‐
teristic of mature circulating lipoproteins, including HDL. As the more hydrophobic choles‐
terol esters migrate to the core of the lipoprotein particle, the discoidal nascent particle takes
on its mature spherical shape. LCAT-mediated esterification of cholesterol serves not only to
generate mature HDL particles, but also to maintain the downward cholesterol gradient
between the cell and the lipoprotein particle, enabling further cholesterol efflux [54]. LCAT is
present in human CSF at levels corresponding to 2.2-2.5% of that in serum and migrates with
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γ-like lipoproteins [13, 49]. In mice, LCAT is secreted mainly by astrocytes, can be activated
by both apoA-I and apoE, and esterifies free cholesterol contained on glial-derived apoE-
containing lipoproteins [55]. LCAT may therefore play a role in maturation of discoidal
lipoprotein particles secreted from glia to the spherical particles that circulate in CSF by
catalyzing the cholesterol esterification of immature CNS lipoprotein particles [5, 7, 56].

PLTP is another enzyme intimately involved in the maturation and turnover of lipoprotein
particles within the circulation and CNS. PLTP’s primary activity involves the transfer of
phospholipids between HDL particles, thus modulating HDL size and composition, and
transferring lipids between apoB-containing lipoproprotein particles and HDL [53]. Within
the CNS, PLTP is highly expressed by neurons, astrocytes, microglia, oligodendrocytes, BBB
endothelial cells, choroid plexus ependymal cells and can be found both in brain tissue and
CSF in human and animals [57-61]. Within CSF, PLTP is associated with apoE-containing
lipoproteins where it actively participates in phospholipid transport [13, 62, 63] with activity
corresponding to 15% of plasma levels in humans [62] and 23% of plasma levels in rabbits [59].
Functionally, PLTP has been reported to regulate apoE expression and secretion by astrocytes
[63] and participate in neuronal cell signalling [64].

In plasma, CETP catalyses the bi-directional transfer of cholesterol esters from HDL in
exchange for triglycerides from VLDL and LDL, thereby reducing circulating HDL concen‐
tration and increasing its size [65]. CETP can potentially diffuse through the BCSFB and enter
the brain from plasma. However, it is not clear whether CETP is produced in the brain. Yamada
et al. reported CETP-like immunoreactivity in astrocytes in healthy human brain [51]. Albers
et al. have suggested that CETP is locally produced in the brain, as they were able to detect
CETP in human CSF samples at concentrations higher than what would be expected from
simple diffusion of proteins across the BCSFB [66]. However, Demeester et al. were unable to
detect CETP in human CSF and CETP mRNA in the human brain [13]. A few other studies
have also not detected CETP mRNA in the CNS of rabbits and cynomolgus monkeys [59, 67].
Undoubtedly, more research on the production and the role of CETP in the CNS of healthy
individuals is needed.

2.5. Receptors involved in lipoprotein uptake and turnover

Lipoprotein uptake and delivery of lipids into target cells of the CNS is regulated by the low
density lipoprotein receptor (LDLR) family [68]. The four major apoE receptors in the CNS are
LDLR, lipoprotein receptor related protein-1 (LRP1), very low density lipoprotein receptor
(VLDLR), and apolipoprotein E receptor 2 (apoER2) [69]. Of these, LDLR is the only receptor
that has apoE as its only known ligand in the CNS [69]. LDLR and LRP1 levels are inversely
correlated with brain apoE levels as deletion or overexpression of these receptors in mice
increases or decreases brain apoE levels, respectively [70-73]. VLDLR and apoER2 also serve
as essential receptors for the neuromodulatory ligand Reelin, which is involved in long term
potentiation, learning and memory [74-76]. Like apoE, clusterin can also bind to VLDLR and
apoER2 to regulate Reelin signaling (Table 1) [77]. LDLR, LRP1, VLDLR and apoER2 are all
expressed on neurons, which have a high LRP1:LDLR ratio. LRP1 and LDLR are also found
on astrocytes, which have a low LRP1:LDLR ratio, and LRP1 and VLDLR are found on
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microglia [78-81]. Solubilized forms of these receptors, generated via ectodomain shedding or
splice variants lacking the transmembrane domain, possibly contribute to negative feedback
and inhibition of lipoprotein uptake [82]. Of note, the lipoprotein related protein 2 (LRP2), also
known as megalin, and the neuronal sortilin- related receptor (SORL1 receptor) are also
additional apoE receptors expressed in the CNS [83, 84].

3. Alterations to lipids and lipoproteins in Alzheimer’s disease

The neuropathology of AD is defined by the presence of amyloid plaques and neurofibrillary
tangles (NTFs), which are composed of deposited amyloid-beta (Aβ) peptides and filamentous
hyperphosphorylated tau, respectively [85]. In addition to parenchymal amyloid plaques,
most AD patients also have accumulation of amyloid in cerebral blood vessels, known as
cerebral amyloid angiopathy (CAA) [14, 86]. Furthermore, neuronal degeneration and
dysfunction, the brains of AD patients are often marked by significant signs of chronic
inflammation, oxidative stress and vascular dysfunction. Not surprisingly, apolipoproteins,
the lipids they carry, and the transporters responsible for their lipidation may be intimately
involved in each step of the disease. In particular, the interrelationship between cerebrovas‐
cular dysfunction and AD is increasingly appreciated. Epidemiological, clinical, neuropatho‐
logical and pathophysiological evidence shows that several cardiovascular risk factors also
increase AD risk, including age, sex, hypertension, dyslipidemia, and type II diabetes [87-90].
Dementia progresses more rapidly in patients with cerebral infarcts [90- 93] and infarction and
other forms of brain injury may potentiate AD pathophysiology [94- 96]. Importantly, many
of these cardiovascular risk factors include aspects of dysfunctional lipid and lipoprotein
metabolism, which likely occurs at the vessel wall. However, compared to the wealth of
knowledge about lipid and lipoprotein physiology in large peripheral vessels, little is known
about the mechanisms by which vascular risk factors for AD may impair the function of
cerebral vessels. Importantly, BBB dysfunction may contribute to inflammatory processes in
the CNS, where exacerbated inflammatory responses or failure to resolve inflammatory
reactions are increasingly recognized to play important roles in AD pathogenesis [97].

3.1. Changes in brain lipid composition and their direct effects in AD

One often overlooked neuropathological observation initially reported by Alois Alzheimer is
the presence of adipose inclusions in the brain, which Alzheimer defined as “extraordinarily
strong accumulation of lipoid material in the ganglion cells, glia and vascular wall cells, and
the particularly numerous fibril-forming glia cells in the cortex and, indeed, in the entire central
nervous system” [98]. Almost all major classes of lipids have some correlation with AD
pathogenesis [99]. A recent review by Kosicek and Hecimovic reported that the post-mortem
brain levels of phosphatidylinositol, phosphatidylethanolamine, ethanolamine plasmalogen,
and sulfatide are decreased in AD, while the levels of ceramide are increased [100]. Though
not as extensively studied, it has been reported that CSF levels of ceramide are increased, while
the levels of sulfatide are decreased in AD [101, 102]. Furthermore, studies by Soderberg et al.
and Tully et al. report lower levels of n-3 and n-6 polyunsaturated fatty acids, which are major
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components of phospholipids, in AD brain compared to healthy controls [103, 104]. Changes
to the levels of these lipid classes affects not only the structural properties of the membranes,
but also numerous signaling and trafficking pathways that are heavily involved in the normal
functioning of the cells in the CNS [99, 105].

Changes to CNS lipid composition can also influence the production of Aβ peptides. As the
generation of these peptides involves several lipid-associated steps, including intracellular
trafficking and inter-membrane proteolytic cleavage, it is not surprising that, in addition to
genetic changes that alter Aβ production, there are also indirect, lipid- dependent changes that
can affect production of Aβ. Aβ peptides are derived via sequential proteolytic processing of
the amyloid precursor protein (APP) by β-secretase and γ- secretase. This leads to liberation
of Aβ peptides 38-46 amino acids in length into the extracellular space [106-108]. Of these, Aβ40
and Aβ42 are quantitatively the most important for amyloid deposition [109]. In healthy brains,
the vast majority of APP is processed by α-secretase, followed by γ-secretase cleavage, which
prevents toxic Aβ peptide generation [110]. All of the enzymes involved in APP processing
are transmembrane proteins, raising the hypothesis that the lipid composition and lipid
organization in the membrane may affect Aβ production [111]. Numerous in vitro studies have
focused on determining the role of specific lipid classes in APP processing. For example, it has
been shown that reducing membrane cholesterol lowers the levels and activity of β-secretase
and reduces γ- secretase activity, decreasing Aβ production [99, 112]. Altered cholesterol
content in lipid rafts, regions in the cellular membrane enriched with cholesterol and sphin‐
golipids, affects the localization of enzymes involved in Aβ production, which can lead to
changes in amyloidogenic APP processing [99]. Moreover, sphingolipids have been reported
to regulate γ-secretase activity [99, 113, 114]. Interestingly, expression of familial presenilin
(PS) mutations, which are mutations in components of the γ-secretase complex, affects
sphingolipid metabolism, suggesting an interplay of genetics and lipid metabolism in the
context of APP processing. Furthermore, in vitro elevation of ceramide, which is composed of
sphingosine and fatty acids, increases β-secretase stability and promotes Aβ biogenesis [115].

The production of Aβ peptides is not unique to AD pathology, but a constitutive process that
is a product of normal cell metabolism throughout life, confirmed by its secretion from primary
cells in culture and its presence in the plasma and CSF of healthy individuals [108, 116, 117].
Therefore, it is possible that disrupted Aβ homeostasis, either via increased production or
impaired degradation and clearance, leads to its net accumulation in the brain, triggering
subsequent neurotoxicity. Aβ production is clearly enhanced in cases of familial early onset
AD (<60 years of age), which account for 2-3% of the AD population [118]. In contrast to familial
early-onset AD cases, the vast majority of AD subjects who develop cognitive impairment in
late life have no genetically-determined net increase in Aβ production. For these late-onset AD
patients, who account for up to 99% of the AD population [119], aging, environmental factors,
or other genetic-related impairments in Aβ degradation and clearance are thought to lead to
the net accumulation of Aβ within the CNS [120-122].
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3.2. Apolipoproteins and AD pathogenesis

Of the apolipoproteins present in the CNS, APOE has the most established genetic association
with AD, influencing the risk, progression, and pathology of the disease (Table 1). The APOE4
allele is a robust risk factor for late-onset AD and is found in 40-60% of AD subjects depending
on ethnicity (the prevalence is lower in Asian compared to Northern European populations)
even though its carrier frequency in the human population is approximately 15-20% [123-125].
APOE4 increases AD risk by 3-fold when inherited in a single copy and greater than 9-fold in
homozygous individuals. APOE4 also accelerates the age of onset of AD [123, 126, 127]. A
wealth of pre-clinical and clinical evidence has demonstrated that APOE4 is associated with
earlier and more extensive Aβ and amyloid deposition, which is currently believed to result
from a net impairment of Aβ degradation and clearance from the CNS [120, 128]. ApoE affects
Aβ metabolism through multiple mechanisms, including transport of Aβ across the BBB,
modulation of interstitial fluid (ISF) and CSF clearance pathways, effects on BBB integrity, and
modulating the growth of Aβ oligomers and fibrils [129, 130]. Some studies suggest that the
risk and severity of CAA is also increased in APOE4 carriers [131, 132]. Intriguingly, a patient
with an ablative mutation in APOE was recently described to have no detectable impairment
in cognitive, neurological and retinal function, with normal levels of CSF Aβ and tau despite
very high plasma cholesterol levels [133], suggesting that apoE may have non-essential
functions in the human brain and eye. This observation reflects the prediction made from
Apoe-deficient mice, which also have greatly increased plasma cholesterol levels and exhibit
greatly reduced Aβ retention in the CNS [134-137].

In addition to modulating Aβ, apoE may also be involved in tau phosphorylation. In neurons,
hyperphosphorylation of the microtubule-associated protein tau by kinases, including
GSK-3β and CDK5, causes the dissociation and aggregation of tau to ultimately form neuro‐
fibrillary tangles [138]. Under conditions of stress or injury, neurons have been reported to
synthesize and process apoE4 to produce neurotoxic C-terminal fragments. Release of these
fragments into the neuronal cytosol has been reported to enhance tau phosphorylation and
formation of NFT-like structures [139, 140].

ApoE4 has additional deleterious consequences. Compared to apoE3, apoE4 is less effective
at mediating cholesterol transport in the brain; human knock-in APOE4 homozygous mice
show reduced total cholesterol and phospholipids compared to wild type mice [81, 141]. The
APOE4 allele has also been implicated in impaired synaptic integrity, as human APOE4
transgenic mice show lower levels of excitatory synaptic activity that declines to levels
comparable to Apoe knockout mice by 7 months of age [142]. ApoE4 has also been reported to
reduce apoER2 expression at the neuronal surface, impairing the ability of Reelin to enhance
synaptic glutamate receptor activity [143].

ApoE plays an integral role in inflammatory processes in the brain. Inflammation of the brain’s
glial supporting cells, known as neuroinflammation, is a prominent feature AD [144] and
contributes to neuronal damage. In response to Aβ or lipopolysaccharide (LPS), LRP1-
mediated glial cell activation increases apoE, which can limit the inflammatory response by
signaling though LDL receptors to suppress c-Jun N-terminal kinase signaling [145, 146]. There
is also evidence that isoform-specific apoE modulation of the innate immune response can
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modulate Aβ deposition [147]. Consistent with apoE having an anti- inflammatory role,
Apoe-deficient mice have elevated proinflammatory cytokines in the liver [148]. Importantly,
isoform specific effects appear to determine the extent of cytokine induction and may also
modulate progression and resolution of CNS inflammation. In mice, apoE4 has reduced ability
to suppress the inflammatory response induced by LPS treatment [149] and in the EFAD model
(5 familial AD mutations in the presence of human APOE), microglial activation in response
to Aβ is augmented by the APOE4 genotype [150]. Indeed, Apoe-deficient mice show a similar
activation of the inflammatory response to human APOE4 knock-in mice following LPS
injection, implying that apoE4 may lack the anti- inflammatory functions of the other apoE
isoforms [151]. Consistent with these findings, non- steroidal anti-inflammatory drugs are
associated with a reduced risk of AD only in participants with an APOE4 allele [152].

According to the AlzGene database, CLU is the third most highly associated susceptibility
locus for AD following APOE and bridging integrator 1 (BINI) (www.alzgene.org). In 2009,
two independent GWAS studies identified the C allele of the rs11136000 SNP in the CLU gene,
which occurs in 88% of Caucasians, to confer a modest risk of AD development (odds ratio
(OR) 1.16), whereas inheritance of the T allele is protective (OR 0.86) in Caucasians [153, 154].
Although these findings have been replicated in, and confirmed for, Caucasians of European
ancestry, the association of CLU polymorphisms and AD risk has not been replicated in
African-American, Hispanic, or Arab populations [27, 155]. Since this discovery, estensive
work has been conducted in an attempt to delineate the mechanism(s) by which the rs11136000
SNP confers AD risk. Inheritance of the TT versus TC versus CC allele appears to result in
either no change [156, 157] or a very subtle 8% decrease [158] of plasma clusterin levels in AD
and mild cognitive impairment (MCI) patients, with small 10-17% decreases of plasma
clusterin observed in cognitively normal aged-matched controls with the TT allele [156, 158].
Despite minimal effects on circulating clusterin levels with the T allele, inheritance of the C
allele of the rs11136000 SNP is associated with both structural and functional changes in the
CNS. In young (aged 20-30 years) cognitively normal adults, each copy of the C allele of the
rs11136000 SNP is associated with lower white matter integrity [159], decreased coupling and
connectivity between the hippocampus and prefrontal cortex during memory processing tasks
[160], and neural hyperactivity under emotional working paradigms [161], indicative of early
structural and functional abnormalities that may leave the brain more vulnerable to disease
during aging. In the elderly, independent of dementia status, the CC allele is significantly
associated with longitudinal increases in ventricular volume over a 2 year period [162], and
increased resting regional cerebral blood flow in the hippocampus and right anterior cingulate
cortex, regions which are important for memory function and default mode network activity,
over an 8-year period [163]. Further, the protective T allele is associated with a reduced rate
of conversion from MCI to AD (OR 0.25) [164], while the detrimental C allele is correlated with
a significantly faster rate of decline in verbal but not visual memory performance in MCI and
AD patients [163]. Lastly, with respect to CSF biomarkers, the CLU C allele is associated with
significantly lower CSF Aβ42 in a Finnish [165] but not American cohort [166], with no
association found for either total or phosphorylated tau.
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Although the specific mechanisms by which an individual SNP in CLU may confer disease
risk are not well understood, there are well recognized global changes to clusterin mRNA and
protein expression both in the plasma and CNS that are associated with AD pathology and
clinical presentation [27]. In non-demented elderly controls and patients with subjective
memory complaints, CSF clusterin is positively associated with CSF total and phosphorylated
tau [167] and an elevated atrophy rate in the entorhinal cortex of older non- demented adults
with low CSF Aβ42 [168]. Whereas older studies did not detect significant differences in CSF
clusterin between cognitively normal aged matched controls and AD subjects [25, 169], newer
studies that utilize higher sensitivity methods have reported up to a 25% increase of CSF
clusterin in AD subjects [170, 171], suggesting that increased CNS clusterin may be detrimental.
Within brain tissue, clusterin mRNA is increased after correcting for neuronal loss [172, 173],
whereas protein levels are reportedly increased by 40-180% depending on the brain region
[172, 174-177]. Within the AD brain, clusterin strongly co-stains with dystrophic neurites,
neuropil threads, and intracellular NFT [176, 178, 179], with minimal to moderate co-localiza‐
tion observed with mature amyloid plaques [176, 178, 180, 181] and cerebrovascular amyloid
[180]. Unlike the CNS, multiple studies have detected no difference between plasma clusterin
levels in non-demented controls, MCI, and AD subjects [157, 182-185]. However, increased
baseline plasma clusterin levels are suggestive of increased prevalence and severity of AD
pathology and presentation, including brain atrophy, amyloid deposition and worsened
cognitive function, with a more rapid clinical progression [186-188].

A mechanistic involvement of clusterin in AD pathology is also supported by in vivo preclinical
studies (Table 1) [27]. Clusterin appears to be directly involved in neuronal health and Aβ
metabolism via a variety of mechanisms. In transgenic AD mice, genetic ablation of clusterin
results in a reduction of mature fibrillar amyloid deposits and the dystrophic neurites that are
associated with them [189]. Supporting this, a recent study found that co- incubation of Aβ
with clusterin leads to a 60% decrease in oligomeric and 42% decrease in fibrillar Aβ binding
and uptake by primary microglia, and a 72% reduction in binding and uptake of oligomeric
Aβ by primary astrocytes, suggesting that clusterin can impede Aβ degradation by local glia
[190]. In vitro and in vivo, clusterin may also mediate Aβ toxicity and tau phosphorylation via
dickkopf-1-driven induction of the Wnt-PCP-JNK pathway [191]. In contrast, other studies
have found a beneficial role of clusterin in facilitating Aβ clearance across the BBB via LRP-2
[192] and binding to and sequestering Aβ oligomers, thereby reducing their potential toxicity
[193]. Clusterin also participates in various aspects of cell signaling. In vitro, clusterin signals
via Reelin by binding to apoER2 and VLDLR thereby increasing cell proliferation and neuro‐
blast chain formation in the subventricular zone [77]. Clearly, more research is necessary to
fully understand the pathways by which clusterin is involved in brain function and the
pathogenesis of AD.

Although apoA-I is relatively abundant in CSF and brain tissue, the physiological roles of
apoA-I containing lipoprotein particles in the CNS, their potential influence on AD risk and
pathology, and whether they affect AD pathogenesis through actions from one or both sides
of the BBB remains unknown [14]. The most established data regarding apoA-I and AD are
human epidemiological studies examining the interaction between serum apoA-I and HDL-

Lipids and Lipoproteins in Alzheimer’s Disease
http://dx.doi.org/10.5772/59808

109



cholesterol levels with AD risk (Table 1). At mid-life, high serum apoA-I levels resulted in a
significantly lower risk (hazard ratio (HR) 0.25) of dementia later in life, [194] while high levels
of serum HDL cholesterol (> 55 mg/dL) in cognitively normal elderly was associated with a
significantly reduced risk (HR 0.4) of AD even after adjusting for APOE genotype and vascular
risk factors such as heart disease, diabetes, obesity, hypertension, and lipid lowering treatment
[195]. Recently, Reed et al. demonstrated that low plasma HDL cholesterol and apoA-I were
associated with and predicted higher amyloid Pittsburgh compound B binding independent
of APOE4 in cognitively normal and MCI elderly subjects [196]. There also appears to be a
consistent 20-30% reduction in serum apoA-I in late-onset AD subjects compared to age-
matched controls [197-199], with levels of serum apoA-I positively correlating to cognitive
function [199, 200]. Further, in symptomatic AD patients, plasma apoA-I levels are negatively
correlated with measures of brain atrophy, including hippocampal and whole brain volume
and mean entorhinal thickness [186]. Alterations to CSF apoA-I are less clear, potentially due
to the small number of studies or sample size, whereas two studies reported a decrease of CSF
apoA-I in AD subjects [15, 201], two other studies reported no change [13, 202]. Prospective
studies designed and powered to assess the levels, and perhaps more importantly, the function
of both plasma and CSF apoA-I-HDL with respect to AD onset and progression are needed to
determine if apoA-I-HDL potentially contributes to AD pathology.

Although questions remain about the importance of apoA-I to AD in humans, studies in
preclinical AD mouse models support a role for apoA-I in removing amyloid selectively from
the cerebral vasculature, leading to reduced neuroinflammation and maintenance of cognitive
function (Table 1). Specifically, genetic loss of Apoa1 is associated with increased CAA, greater
inflammation, and exacerbated cognitive impairment, whereas transgenic overexpression of
human APOA1 from its endogenous promoter (driving expression from only hepatocytes and
enterocytes) prevented AD-related cognitive decline and reduced both CAA and glial
activation in symptomatic APP/PS1 mice [203, 204]. Given the known roles of apoA-I-
containing HDL in regulating vascular endothelial health, reducing inflammation and
oxidative stress, coupled with the relative contributions of these pathologies to AD, it will be
paramount to fully elucidate the function of apoA-I in the CNS and evaluate its therapeutic
potential [14].

Although the roles of other CNS apolipoproteins in AD pathogenesis are not as extensively
studied, apoD, apoC-I, apoA-IV, and apoC-III may play a role. The most significant change
due to aging is observed in gene expression levels of APOD [205]; CSF and hippocampal apoD
are elevated in AD [206] and correlated with disease severity [207]. ApoC-I colocalizes with
Aβ plaques in human AD brain [208] and apoC-I has been suggested to influence neuroin‐
flammation in AD [209]. The APOC1 gene is also considered as an AD susceptibility locus, as
the H2 polymorphism of APOCI is in linkage disequilibrium with APOE4 [209-211]. Further‐
more, heterozygosity of the APOA4 (360:His) allele is more common in AD patients [212]. In
APP transgenic mice, Apoa4 deficiency increases Aβ load, enhances neuronal loss, accelerates
cognitive dysfunction and increases mortality [213]. Lastly, apoC-III has recently been reported
to be associated with Aβ levels in the periphery and is of possible interest for use as an early
biomarker for AD [214].
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3.3. Cholesterol and phospholipid transporters in AD

There is a growing body of pre-clinical and clinical evidence that supports the involvement of
ABCA1, and recently ABCA7, in the pathogenesis of AD [215]. In mice, ABCA1-mediated
lipidation of apoE correlates with a net increase in Aβ clearance [216]. For example, total body
deficiency of Abca1 markedly decreases soluble apoE and increases amyloid plaque-associated
insoluble apoE, decreases plasma and CSF apoA-I, and increases Aβ deposits in both paren‐
chymal and vascular compartments, with no net change in APP production or processing
[217-220]. Recently, Fitz et al. demonstrated that haploinsufficiency of Abca1 significantly
exacerbated cognitive deficits, increased Aβ and amyloid deposits, and reduced Aβ clearance
in ISF of APOE4 but not APOE3 APP/PS1 Abca1-/+ mice, suggesting a particularly deleterious
state of poorly-lipidated apoE4 compared to apoE3 [221]. Of interest, the presence of apoE4
with Abca1 hemizygosity leads to a modest but statistically significant decrease in CNS apoE
(~10%), decreased CNS and plasma apoA-I by approximately 50 and 20%, respectively, and
decreased plasma Aβ42 and HDL cholesterol, with a strong inverse correlation between
plasma HDL cholesterol levels and amyloid burden [221]. Both genetic and pharmacological
approaches that increase brain ABCA1 activity also increase functional CNS apoE [40, 222]
and improve learning and memory with [222-227] or without [228-232] changes in Aβ and/or
amyloid burden. Importantly, ABCA1 was required to observe an improvement in cognitive
function in APP/PS1 mice treated with the LXR agonist GW3965, suggesting that ABCA1
lipidation of lipid-poor apolipoproteins is essential for cognitive function [229]. It is important
to note, however, that these manipulations will affect ABCA1-mediated lipidation of apoE in
the brain as well as ABCA1-mediated lipidation of apoA-I in the periphery and potentially the
CNS, of which the relative contributions are unknown.

The association of ABCA1 genetic variants and AD risk in human subjects is not as clear despite
more than a dozen studies [216]. In 2013, a meta-analysis was conducted on 13 independent
studies totaling 6034 controls and 6214 AD patients that examined whether the ABCA1 variants
R219K rs2230806, I883M rs4149313 and R1587K rs2230808 were associated with AD risk. No
significant association was found even after adjusting by ethnicity and sample size [233]. This
is consistent with ABCA1 failing to appear in GWAS [216]. It is important to note, however,
that most of the ABCA1 gene variants in heterozygous patients translate to a relatively small
reduction in plasma HDL cholesterol that may or may not increase the relative risk of ischemic
heart disease [234, 235], raising the caveat that these variants may not be severe enough to
impact brain physiology. As Tangier Disease, in which patients completely lack functional
ABCA1, is extremely rare and most patients die before 70 years of age, it is not known whether
human ABCA1 deficiency is associated with neuropathological changes relevant to AD [236].

In  contrast  to  ABCA1,  numerous  independent  GWAS  have  identified  associations  be‐
tween multiple ABCA7  SNPs and AD risk [237-244]. ABCA7 expression has been report‐
ed  to  be  increased  in  the  brains  of  AD  subjects,  with  the  magnitude  of  the  increase
correlating with greater cognitive decline [239, 241]. In 2011, the first two major SNPs of
ABCA7,  rs2764650 [244] and rs3752246 [237],  were associated with increased risk of late-
onset AD. Two subsequent GWAS found that the rs2764650 SNP was significantly associated
with  increased  neuritic  plaque  burden  [242,  243].  However,  both  Larch  et  al.  and  Vas‐
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quez et al. found that the minor allele of the rs2764650 SNP conferred protection from AD
by delaying onset and decreasing disease duration, despite increased ABCA7 expression,
whereas another study found that rs2764650 neither altered ABCA7 expression or AD risk
[238]. In African Americans, the ABCA7 rs115550680 SNP was shown to increase AD risk
by 1.79 even after adjusting for APOE  genotype, which itself conferred a relative risk of
2.31 [240]. With more ABCA7 SNPs identified by GWAS to confer AD risk [238], it will be
increasingly important to identify the functional consequences of ABCA7 polymorphisms.
In transgenic APP mice, total body loss of Abca7 increases hippocampal Aβ and amyloid
burden with  no  changes  in  APP processing  or  brain  levels  of  ABCA1,  apoE,  LDLR,  or
markers  of  neurodegeneration  or  synaptic  loss  [245].  However,  increased Aβ and amy‐
loid  did  not  significantly  impair  any  measure  of  cognitive  function,  including  spatial
memory, object recognition, short-term recognition, or fear conditioning [245]. Intriguing‐
ly,  bone  marrow  derived  macrophages  obtained  from  Abca7-/-  mice  displayed  a  50%
reduction in Aβ uptake compared to wild type controls, suggesting that phagocytosis may
be compromised; however, there were no change to either the number or distribution of
microglia or macrophages within the brain parenchyma in AD Abca7-/- mice [245].

Despite high expression in the brain, ABCG1 does not appear to have a marked role in AD
pathogenesis, as ABCG1 overexpression in AD mice does not significantly change Aβ or
amyloid burden [246]. Although a recent GWAS study reported that ABCG1 SNPs were
correlated with neuritic plaque burden in AD subjects [243], the relative risk of ABCG1 variants
has yet to be confirmed.

3.4. LCAT, PLTP and CETP in AD

Although better characterized with respect to their involvement in atherosclerosis, research is
emerging regarding the potential role of the lipoprotein modifying enzymes LCAT, PLTP and
CETP in AD [53, 65, 247]. One early study in a small group of symptomatic AD patients
suggested that CSF LCAT activity was reduced by 50% compared to cognitively normal age-
matched controls [13], raising the possibility that aging may influence LCAT activity or LCAT
activity may influence AD pathogenesis. Stukas et al. recently tested this hypothesis in mice
and found that the abundance and activity of LCAT in liver, cortex and plasma is unaltered
by aging or the presence of amyloid deposits [14]. Furthermore, total loss of Lcat does not
impact apoE levels or lipidation, or Aβ or amyloid metabolism in symptomatic APP/PS1 mice,
despite a 70-90% decrease in circulating and CNS levels of apoA-I [14]. These results suggest
that CNS lipoproteins need not be in a mature spherical form containing cholesterol esters to
participate normally in Aβ metabolism.

PLTP may also be involved in the pathogenesis of AD. Intriguingly, whereas PLTP synthesis
by neurons and glia is increased in the early stages of AD [62], its levels, and more importantly,
its activity are reduced in brain tissue and CSF of AD patients in later stages [57, 63]. In mice,
deletion of Pltp increases cerebral oxidative stress, elevates Aβ42, reduces synaptophysin
expression, increases BBB permeability and decreases expression of tight junction proteins
under basal conditions [61, 248]. Further, intracerebroventricular injection of an oligomeric
Aβ peptide leads to exacerbated cognitive impairment in Pltp-/- mice compared to wild-type
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controls [248]. In aged Pltp-/- mice, enhanced cognitive impairment is accompanied by
increased cortical Aβ42, APP expression, and both β- and γ-secretase activity with decreases
in cortical Aβ40 and apoE [249]. These preclinical studies suggest a role for PLTP not only in
phospholipid transport, but Aβ homeostasis, neuronal function, barrier integrity, and oxida‐
tive stress.

Another enzyme that plays a central role in lipid homeostasis that can potentially affect
dementia outcome is CETP. As reduced CETP activity in humans is associated with reduced
cardiovascular disease risk, the functions of CETP in atherosclerosis and the potential of CETP
inhibitors for cardiovascular disease have been of intense interest [65]. The CETP 405V allele,
which results in low plasma CETP levels in CETP 405V homozygotes [250], is associated with
longevity. However, the direction and the magnitude of this effect is not clear as some studies
have found a positive association, some a negative association, and some no association with
longevity [251-256]. It has also been shown that in young adults, this allele is associated with
higher fractional anisotropy, a measure of myelination in brain’s white matter [257]. In older
subjects, however, this effect is reversed [257]. Furthermore, genetic studies have proposed a
relationship between C629A, I405V, and D442G CETP polymorphisms and AD risk. Intrigu‐
ingly, the effects that are exerted by these polymorphisms may be dependent on the presence
of the APOE4 allele. Rodriguez et al. reported that in APOE4 carriers, the AA genotype of the
C629A CETP polymorphism is associated with lower AD risk [258]. It has also been shown
that in the Northern Han Chinese population, there is an association between the G allele of
the D442G CETP polymorphism and lower AD risk, an effect that was abolished in the absence
of APOE4 [259]. Additionally, Murphy et al. reported that in APOE4 non-carriers, the I allele
of the I405V polymorphism is protective, whereas the V allele is associated with higher AD
risk [260]. Interestingly, these associations are reversed in APOE4 carriers [260]. These results
are replicated by the Rotterdam study [250]. However, the Einstein Aging Study reported an
association between the VV genotype and slower memory decline and AD risk, and a recent
meta-analysis by Li et al. reported no association between AD and the 1405V CETP polymor‐
phism [253, 261]. Clearly, more research is required to elucidate the specific role of CETP in
the brain and its contribution to AD.

3.5. ApoE receptors

APP endocytosis is regulated by several members of the lipoprotein receptor family leading
to increased or reduced Aβ generation [74]. These receptors are also critical for Aβ clearance.
LRP1 can bind Aβ directly or bind apoE-associated Aβ to internalize and transport soluble
Aβ across the BBB to plasma for eventual degradation, or mediate degradation within cell
lysosomes [262-266]. APOE genotype impacts clearance of Aβ-apoE complexes with Aβ-apoE4
having the slowest net clearance rate [267]. Findings in knockout mice imply LDLR may also
enhance Aβ clearance [268, 269]. Other apolipoproteins such as clusterin may play a role in
mediating Aβ degradation and clearance though the LDLR family of receptors [83]. In addition
to Aβ removal, apoE receptors also regulate tau phosphorylation. Reelin signaling through
apoER2 and VLDLR inhibits the activity of GSK- 3β and blockade of this pathway increases
hyperphosphorylated tau in the brain [270, 271]. Although apoE receptors are clearly impli‐
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cated in AD pathogenesis by a number of mechanisms, genetic evidence for their role is not
robust, despite mutations in LDLR being highly associated with hypercholesterolemia in
humans [272]. For example, a polymorphism in exon 3 of the LRP1 gene (rs1799986) has been
weakly correlated with increased risk of AD, although subjects with both this LRP1 allele and
a tau polymorphism (MAPT, intron 9, rs2471738) have 6.2-fold higher risk of developing AD
than those without this genotype [273-275]. A polymorphism in LRP2 (rs3755166) has also been
reported to be associated with AD [276, 277]. By contrast, the neuronal sortilin-related receptor
(SORL1, also known as LR11) is an apoE receptor that has been shown to be significantly
associated with AD risk by multiple groups and in a GWAS [278, 279]. SORL1 levels are
reduced in AD brains [280] and risk variants that decrease SORL1 expression, particularly in
childhood and adolescence, predict increases in amyloid pathology [281].

4. Conclusions and future directions

ApoE is the major apolipoprotein produced within the CNS and is intimately involved in the
risk, progression, and pathogenesis of AD. Allelic differences in APOE appear to confer
isoform specific effects with respect to Aβ deposition, degradation and clearance, tau phos‐
phorylation, neuronal injury and inflammation. Given its gain of toxic or loss of beneficial
function, strategies aimed at increasing functional apoE may be of therapeutic interest,
although it is possible that elevated levels of dysfunctional apoE4 may actually be detrimental
for APOE4 carriers. However, as over 50% of AD patients carry at least one APOE4 allele,
development of future therapies must take into account the structural and functional differ‐
ences of this lipoprotein isoform, and seek to develop ways to either correct or bypass the
“dysfunction” of apoE4. Long ignored, the importance of clusterin in CNS health and disease
is now rapidly expanding. While clinical evidence is mounting that clusterin may be involved
in AD disease risk, severity, and rate of decline both with respect to cognitive function and
Aβ metabolism, the mechanism(s) by which clusterin confers these roles is poorly understood.
ApoA-I may also influence AD pathology, potentially by modulating cerebrovascular integrity
and function by assisting in the removal of Aβ peptides from cerebrovascular smooth muscle
cells and decreasing inflammation. Indeed, the known effects of common AD comorbidities
such as type II diabetes and hypercholesterolemia, on apoA-I function, should be taken into
account in clinical studies on dementia risk and potential therapeutic approaches.

In the cardiovascular field, many preclinical and clinical studies have endeavored to increase
the net concentration of circulating HDL to protect against cardiovascular disease. Many of
these studies may also have implications for CNS function. However, as some of these
approaches, such as the inhibition of CETP, have failed to meet their primary endpoints for
cardiovascular disease despite significantly increasing HDL cholesterol levels, the lipoprotein
field is now deeply invested in understanding the functional complexities of HDL. Therapeutic
interventions aimed at increasing the function of HDL particles and their cargo may be of much
greater importance than increasing its net levels, in both the peripheral and CNS compart‐
ments. Given the complexity of the HDL proteome and lipidome, it will be critical to divest
the same details in the CNS to allow for therapeutic development targeting lipoprotein species.
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