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1. Introduction

Bone regeneration is a complex, well-orchestrated physiological process involving a number
of cell types and intracellular and extracellular molecular signaling pathways [1]. Bone grafts
provide a structural framework for clot development, maturation and remodeling that
supports bone formation in osseous defects. These materials must possess biocompatibility
and osteoconductivity, as well as the properties that support osteogenesis. The ideal charac‐
teristics of a bone graft are that it must be nontoxic, non-antigenic, resistant to infection, easily
adaptable, readily and sufficiently available to stimulate new attachment and able to trigger
osteogenesis [2].

Osseous defects in the oral cavity have been successfully managed with a variety of biological
and synthetic materials, including autografts, allografts, xenografts and alloplastic materials.
Although autografts are unequivocally accepted as the gold standard, donor site morbidity
and limitations on the quantity of bone that can be harvested demand that clinicians seek
alternatives [3]. In light of the immunological and disease transfer risks from allogeneic bone,
research has focused extensively on developing alloplastic bone substitutes that are predom‐
inantly based on ceramics, such as calcium phosphates (CaP), calcium sulfates, and bioactive
glasses [4]. In general, these ceramic materials are renowned for their osteoconductive and
bioactive properties [5]. The most commonly used ceramics are the CaP-based ceramics
hydroxyapatite (HA) and beta tricalcium phosphate [6].

Considering engineered grafts, the most important factor is to prepare a three-dimensional
structure consisting of biodegradable material, generally called a scaffold [7]. The nature and
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structure of the scaffold should support cell proliferation and differentiation, accelerating the
process of tissue regeneration. Furthermore, the growth factor providing a scaffold to an injury
site should enhance progenitors, causing inflammatory cells to migrate and activate the healing
process [8, 9]. However, among the basic challenges for scaffold implantation is to control
infection due to bacterial load, which can create immune problems and finally result in implant
rejection. To overcome implant-related infection and bacterial load on the scaffold, antibiotic
drug incorporation and its controlled release have been suggested as a promising strategy [10].
Bone is among the few tissues of the human body that has high endogenous healing capacity.
Various concepts for local drug delivery to bone have been developed in recent decades to
overcome such healing deficits.

Several methods are used for drug loading and release from scaffolds. However, the basic aim
for drug release is to reduce infections and bacterial load to the site of implant, but if the drug
is released too quickly, there could be a chance of infection because the entire drug has drained
from the scaffold in the initial time itself. Similarly, if there is too much delay to drug release,
infection can set in further, making it more difficult to manage the healing of wounds. Hence,
better options for drug release would incorporate higher antibiotic release at the initial time
and sustained release at an effective rate to inhibit the risk of infection from bacteria in the
scaffold at an effective level [11]. Different techniques have been used for drug loading to the
scaffold, and controlled release has been studied. One of the simplest strategies is the appli‐
cation of biodegradable polymer coatings loaded with specific drugs onto the scaffold
structure. The other methods reported for coating the drug-loaded polymer have included
solvent casting, thermally induced phase separation, evaporation, freeze drying and foam
coating. Among these methods, an interesting approach for drug loading and release consists
of combining drug-loaded microspheres with a macroporous scaffold `matrix’ [12-15].

In a recent study, a biodegradable nanoporous bioceramic system was used as a highly
bioresorbable matrix for drug delivery. This study emphasized the efficacy of hydroxyapatite-
based material having interconnected nanoporosity as a vehicle for a therapeutic agent. An in
vitro experiment was conducted with the goal of assessing this material and comparing it with
commercially available gentamicin-loaded PMMA cement. It was found that the nanoporous
bioceramic granules could act as antibiotic carriers, exhibiting a high initial burst effect
followed by sustained low-level release for 3 weeks. It was very effective, confirming that the
concentration of drug eluted was greater than that needed to maintain bactericidal levels [16].

In addition to the above-mentioned technique, magnetic nanoparticle-incorporated materials
have also been used as a bone regeneration scaffold, and they are schematically represented
in figure 3 [17]. To obtain homogenous dispersion of magnetic particle loading and surfactant,
a porous structure generated by ceramic crystals, the in-situ method was followed. Further, it
was made to a specific shape, and the specific drug was loaded via dip loading or other
methods. The drug-loaded scaffold was placed at the defective site in the presence of a
magnetic field (MF), which facilitated easy drug release from the scaffold, helping to protect
it from bacterial colonization, and the MF stimulated the scaffold for cell proliferation. Recently
released in vitro results support MF-induced bone regeneration [18-20].
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Engineered biomaterials combined with growth factors, such as bone morphogenetic protein-2
(BMP-2), have been demonstrated to constitute an effective approach in bone tissue engineer‐
ing because they can act both as a scaffold and as a drug delivery system to promote bone
repair and regeneration. Despite the substantial progress made in developing porous materials
as bone substitutes, the realization of synthetic structure able to harness fully bone’s capability
of regenerating and remodeling itself and to mimic the complicated physiochemical attributes
of bone continues to present challenges.

In the following sections of this chapter, the materials and drug delivery techniques used to
enhance bone regeneration and to control infection are discussed. The methods to enhance the
surface of titanium implants to promote osseointegration are also detailed.

2. Bone regeneration materials

2.1. Calcium phosphate ceramics

The calcium phosphates have been widely studied due to their biocompatibility, tailorable bio-
absorbability and bioactivity. Calcium phosphates have been used as novel delivery carriers
for antibiotics, anti-inflammatory agents, analgesics, anticancer drugs, growth factors, proteins
and genes [21, 22]. Furthermore, they can be synthesized using simple methods, and these
drugs can easily be incorporated via different routes, such as wet chemical processes, solid
state reactions, hydrothermal and micelle-mediated processes, etc. [23, 24]. Most of the
polymeric systems show an acidic nature, and their degradation by-products can alter drug
activity. The major advantages of CaPs, compared with other biodegradable polymeric
systems, is that the degradation ions are Ca2+ and PO4

3- ions, which already exist in the body
in higher concentrations [25].

Nanotechnology-derived calcium phosphates have also successfully maintained a sustained
and steady drug release over time. Calcium phosphate scaffolds not only provide initial
structural integrity for bone cells but also direct their proliferation and differentiation and
assist in the ultimate assembly of new tissue. Therefore, ceramic nanoscaffolds are usually 3-
D and porous, although in some cases they consist of 2-D coatings or films. They mimic the in
vivo environment of cells more completely than nanoparticles.

Therefore, most drug-eluted ceramic nanoscaffolds serve multiple functions, such as drug
delivery, directing cell growth or tissue generation, and mechanical support. Indeed, the
mechanical support provided by ceramic scaffolds far exceeds that provided by polymeric
scaffolds. Studies have shown that drug-release kinetics could be further controlled by
tailoring calcium phosphate nanoparticle grain size, surface area and calcium-to-phosphorus
ratios [26]. Hollow silica nanospheres have been fabricated into well-controlled shapes and
sizes using self-templating molecules [20]. For example, studies have shown that hollow silica
nanospheres were capable of entrapping an eight-fold greater quantity of drug species than
solid silica nanospheres. Time-delayed multiple-stage release profiles were also possible with
these hollow silica nanospheres [27].
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Figure 1. The micromorphology (SEM) of calcium sulfate-phosphate injectable cement. a) The set cement surface of
unmodified low-dimensional medical grade calcium sulfate (crystal sizes less than 5 microns). b) The phosphate-con‐
taining material, which inhabits very small crystal formations grown into folding sheets. Energy dispersive (EDS) data,
corresponding to the samples, are shown below each. The phosphorous content in the second sample is evident,
whereas no separate phosphate phase appeared in XRD. The phosphate content resides as a substitution in the calcium
sulfate crystals.

2.2. Porous spherical hydroxyapatite granules for drug delivery

Calcium phosphate-based bioceramics, such as hydroxyapatite (HA), are known for their
excellent biocompatibility due to their similarity in composition to the apatite found in natural
bone [28]. Various forms of HA bone grafts, such as dense and porous blocks, dense and porous
granules, and powder forms, are available as bone substitutes [29]. The porous matrices enable
cell migration and provide favorable conditions for nutrient transport, tissue infiltration, and
vascularization [30, 31]. The spherically shaped particles are suitable for implantation as
injectable bone cements, and the inter-granular space promotes cell migration and the growth
of extracellular matrix [32, 33].

Porous HA is produced using methods such as ceramic slip foaming [34], positive replication
of reticulated foam scaffolds [35], burnout of sacrificial porogens, such as polymer beads [3],
and techniques that exploit naturally occurring porous calcium-based structures, such as the
hydrothermal conversion of either coral or bone [36, 37]. Porous spherical HA granules can be
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used for drug delivery systems. The various pore and channel structures of spherical granules
were obtained by adjusting the ratio of water to HA powder and the amount of sodium chloride
(NaCl). Earlier studies focused on the use of anti-inflammatory or anti-bacterial drug release
from HA, to control inflammation and infection at the site of implantation [38]. Currently,
several drugs have been found to enhance bone formation, and the loading of HA with these
drugs and agents could be a very effective method for enhancing bone formation at the site of
implantation [39, 40]. Research is under way to control the drug release rate using the complex
micro-channel structures of HA granules [41].

Figure 2. Scanning electron microscopic images of: a) polycaprolactone polymer microspheres; and b) magnetic hy‐
droxyapatite-loaded polycaproctone polymer microspheres.

2.3. Demineralized bone matrix

Bone void fillers, such as demineralized bone matrix (DBM), offer a broad range of materials,
structures and delivery systems to use in bone grafting procedures. Allogenic DBM possesses
osteoinductive properties and could serve as an ideal drug delivery device for prophylactic
treatment in a variety of different anatomical locations [42, 43]. The use of DBM would allow
for the release of the entire quantity of antibiotic as the material is being remodeled.

2.4. Carriers and delivery systems for growth factors

Growth factors (GFs), such as bone morphogenetic protein, transforming growth factor-beta,
fibroblast growth factor, platelet-derived growth factor, and insulin-like growth factor, are
proteins secreted by cells that act on the appropriate target cell or cells to perform specific
actions. A variety of so-called bone-graft substitutes, including demineralized bone matrix,
calcium phosphate-containing preparations and Bioglass (BG), are also potential carriers for
recombinant proteins [44]. Bioglass and calcium phosphate-based materials, such as hydrox‐
yapatite, coralline hydroxyapatite, and tricalcium phosphate, have been shown to be biocom‐
patible and to provide osteoconductive scaffolds that could potentially be combined with GFs
to enhance bone repair [45].
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Demineralized bone matrix preparations are particularly attractive as potential carriers for
growth factors because they are osteoconductive and can have some osteoinductive potential
as well. The disadvantages of these materials include poor handling characteristics and
concerns about their overall bio-resorbability, as well as limited potential for remodeling and
an unclear understanding of their effects on bone strength [46]. Recombinant bone morpho‐
genetic protein (BMP) has been used to enhance the bone regeneration in graft and implant
osseointegration in dentistry [47]. Recombinant human BMP-2 (rhBMP-2) has been shown to
be effective in bone regeneration [48].

Among surface modification techniques, coating the implant surface with bone stimulating
agents, such as GFs, is very promising. The most commonly used GFs include bone morpho‐
genetic proteins (BMP-2), TGF-β1, platelet-derived growth factor, insulin-like growth factor
and combinations [47, 49]. The actual mechanisms of GF combinations are not fully under‐
stood. From early reported studies, after implantation, both GFs (TGF-β and BMP) could
directly increase the local pool of osteoprogenitor cells by stimulating their migration [50]. The
circulation of pathways acts as a source of osteoprogenitor cells throughout ectopic BMP-
induced bone regeneration. Similarly, the presence of both TGF-β1 and BMP-7 cooperatively
interact to increase angiogenesis and vascular invasion after their co-administration increased
vessel constitution [51]. The results demonstrated that the presence of GF associated with
implant surfaces improved bone regeneration, vascular invasion and angiogenesis. Research
is under way to optimize the carrier properties and the characteristics of the GF and its dose
to maximize the regeneration potential.

2.5. Nanoscaffolds

The application of nanotechnology for drug delivery and the use of nanometer scale materials
has helped to develop innovative approaches in this field. At this scale, materials display
different physicochemical properties due to their small size, surface structure and high surface
area. The nanoparticles based ceramic scaffolds have also demonstrated great potential for
controlled drug delivery and is currently a fast growing research area. The ceramic nanoscaf‐
folds have several advantages such as high porosity, high volume-to-area ratios, high surface
area, high structural stability and long degradation times. These properties make them potent
systems for controlled release of drugs. At the implantation sites drugs/chemical agents are
applied for decreasing infection, reducing inflammation, and increasing bone growth on
titanium surfaces. The nanotubular titania and calcium phosphate-based nanoscaffolds have
showed good potential for drug and growth factor delivery.

2.6. Magnetic nanoparticles (FE-hydroxyapatite)

Superparamagnetic nanoparticles (MNPs) have been progressively explored for their potential
in biomedical applications and in particular as contrast agents for diagnostic imaging, for
magnetic drug delivery and, more recently, for tissue engineering applications [52-54]. MNPs
have been used for biomedical applications, such as in hyperthermia [55], as a contrast agent
for diagnostic imaging [56], for magnetic drug delivery [57, 58] [13], and for cell mechanosen‐
sitive receptor manipulation to induce cell differentiation [59].
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The most popular MNPs used in medicine and biotechnology are iron oxide-based phases, but
their potential as a tissue engineering scaffold has not yet been fully assessed [60]. Although
Fe is a vital element in the human body, its concentration within hard tissue is low, and its
presence into the body scarcely affects bone remodeling [61]. In contrast, the biocompatibility
and bioactivity of HA are already well established [62-64], and, in fact, more than 60% of the
currently available bone graft substitutes involve calcium phosphate-based materials [65].
Hence, a Fe-HA phase endowed with superparamagnetic ability could be used as an active
scaffold for bone and osteochondral regeneration or as a nontoxic, biodegradable, magnetic
nanocarrier [17, 66, 67].

2.7. Chitosan hydroxy apatite

Chitosan is considered an appropriate functional material for biomedical applications because
of its high biocompatibility, biodegradability, non-antigenicity and adsorption properties [68,
69]. The mechanical and biological properties of chitosan scaffolds could be improved by the
incorporation of bioceramics, such as HA, β-tricalcium phosphate and calcium phosphate

Figure 3. Schematic presentation of engineered magnetic scaffold preparation and implantation.
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biomaterials, such as gelatin alginate, or inorganic material, such as wollastonite [70, 71].
Chitosan scaffolds are osteoconductive and can enhance bone formation both in vitro and in
vivo [72]. Currently, the development of chitosan-nanohydroxyapatite (nHA) composites
through in situ hybridization by ionic diffusion processes, freezing and lyophilization,
stepwise co-precipitation, and mineralization via double diffusion are being undertaken
successfully [73-75].

3. Surface functionalization of titanium implants

The long-term success of dental implants also depends on the complex biointegration of these
alloplastic materials, determined by the responses of the different surrounding host tissues.
The osteoinductivity of calcium phosphate coatings has attracted significant interest, using
various coating techniques, including plasma spraying, magnetron sputtering, electrophoretic
deposition, hot isostatic pressing, sol-gel deposition, pulsed laser deposition, ion beam
dynamic mixing deposition, electrospray deposition, biomimetic deposition, and electrolytic
deposition [76]. Non-ceramic implant coating is also used, allowing for drug incorporation
during the coating process. The currently available techniques can be broadly divided into
three categories, including hydrogel coatings, layer-by-layer coatings, and immobilization.
Techniques such as ‘dip-coating’ methods and ‘layer-by-layer’ (LbL) coating techniques are
used for the incorporation of BMP-2 and TGF-β1 to the implant surface [77].

Figure 4. a) Scanning electron microscopic pictures of HAP microspheres; b) high-resolution SEM picture showing in‐
terconnected nanopores.

3.1. Nanotubular titanium surface

Nanotubular titania structures can be readily fabricated via direct anodization of titanium
implants into an electrochemical cell that uses the titanium as an anode and platinum as a
cathode in the presence of fluorine-based electrolytes [78, 79]. Penicillin-based antibiotics could
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be loaded to the nanotubular titania as a drug delivery platform by co-precipitating the drug
and calcium phosphate crystals onto the nanostructures [80, 81].

Anodic oxidation has many advantages for surface modification, such as its ability to fabricate
porous TiO2 films through dielectric breakdown, the changeability of the crystalline structure
and the chemical composition of the oxide film depending on the fabrication conditions, and
it has been suggested to provide storage room for the delivery of GFs, such as rhBMP-2, to
enhance osseointegration [82, 83]. In vitro studies have suggested that a dose response could
be produced with appropriate period of delivery of the GF to the cells [84].

Figure 5. Scanning electron microscopic image of an anodized titanium implant surface showing uniform nano-tubules
of titanium oxide throughout the surface.

3.2. Hydroxyapatite

Coating of titanium implant surfaces with HA has shown better integration with bone. HA
can be coated to the surface by plasma spraying, sputtering, pulse laser deposition and
electrostatic multilayer assemblies, fabricated using the layer-by-layer technique [85]. HA
coatings enhance new bone formation on implant surfaces with a line-to-line fit, in areas with
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gaps of 1-2 mm between the coated implant and the surrounding bone. The coating also helps
to prevent the formation of fibrous tissue that would normally result due to the micro-
movements of an uncoated titanium implant [86].

HA coatings have been used as a method for the delivery of GFs, bioactive molecules, and
DNA [85, 87, 88]. HA coatings augmented with bone morphogenetic protein-7 (BMP-7), placed
on segmental femoral diaphyseal replacement prostheses, improved bone ingrowth in a canine
extra-cortical bone-bridging model. Titanium alloy plasma-sprayed porous HA coatings,
infiltrated with collagen, recombinant human bone morphogenetic protein (rhBMP-2) and
RGD peptide, improved mesenchymal stem cell (MSC) adhesion, proliferation and differen‐
tiation in vitro and increased bone formation in ectopic muscle and intra-osseous locations in
vivo [85].

Another group used hydroxyapatite nanoparticles complexed with chitosan into nanoscale
non-degradable electrostatic multilayers, which were capped with a degradable poly(b-amino
ester)-based film incorporating physiological amounts of rhBMP-2 [89]. Plasmid DNA, bound
to calcium phosphate coatings deposited on poly-lactide-co-glycolide (PLG), was shown to be
released in vitro according to the properties of the mineral and solution environment [87].
These methods of delivery of bioactive molecules extended the function of HA as a coating to
enhance new bone formation around implants.

3.3. Antibiotics: Surface tethering of antibiotics

The initial adhesion and colonization of bacteria to an implant surface are considered to play
key roles in the pathogenesis of infections related to biomaterials [90]. Two recent strategies
are: (1) coating implants with antibiotics; and (2) covalently attaching antimicrobial molecules
onto the implant surface. The objective of these bioactive surfaces is to disrupt the colonization

Figure 6. a) An anodized titanium implant; b) An anodized titanium implant coated with hydroxyapatite.
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of the microbes or to prevent bacterial adhesion to the implant and subsequent development
of biofilm [91]. Hydrophilic surfaces have been shown to be less prone to become infected with
microorganisms than hydrophobic surfaces [92]. The topical application of antibiotics on the
implant surface might be more efficient because bacteria are killed locally directly upon
binding, before the formation of biofilm. Local delivery of antibiotics has long been applied in
bone cements used to repair orthopedic and dental implants [93].

Antibiotics such as gentamicin are incorporated into the cement, which slowly releases the
drugs after setting in situ. Local delivery can prevent adhesion and growth of significant
numbers of bacteria. HA coatings are frequently applied to dental implants to stimulate
osseointegration and to accelerate bone formation. Antibiotics can be co-precipitated on
titanium surfaces to obtain drug-releasing surface coatings. Studies have shown that antibi‐
otics with optimal calcium-chelating properties had long lasting antimicrobial properties [94,
95]. Alt et al [96] demonstrated that both gentamicin-hydroxyapatite and gentamicin-RGD
(arginine-glycineaspartate)-HA coatings could release antibiotics for up to twenty-four hours
without inhibiting new bone formation. Erythromycin-impregnated strontium-doped calcium
polyphosphate (SCPP) was found to inhibit bacterial growth completely for up to 14 days [97]

Figure 7. Hydroxyapatite-coated titanium implant.
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Nanoporous implants are suitable for the incorporation of antibiotics to obtain controlled
release of drugs [98]. Nanostructured surfaces play a major role in advanced biomedical
implant design because these surfaces have been studied for their enhanced bioactive prop‐
erties, as well as their antagonistic behavior toward bacterial colonization. To maintain
sustained drug elution properties and better bone bonding ability, significant efforts have been
undertaken to develop bioactive hollow nanostructures on implant surfaces [99]. In this
context, one of the implant titania nanotubular surfaces created via anodization showed
enhanced bioactivity, conjugated with the capacity to store diverse compounds and control
their elution. The anodization technique could create porous structures with controlled sizes
of three-dimensional networks on metallic surfaces [100].

Anodization followed by HA coating was adopted as a surface modification technique to make
drug-loadable Ti implants for dental applications. Self-organized titania nano-tubes were
grown on titanium substrate as drug-carrying vehicles by coating HA ceramic using laser
deposition. Nanostructured surfaces were achieved on titanium via anodization in a glycerol-
NH4F electrolyte system, followed by annealing. The nano-tubules were then capped with HA
deposited with pulsed laser ablation. HA-coated polished titanium, nano-structured titanium
and hydroxyapatite coated nano-structured titanium were analyzed for their drug-carrying
capacity using gentamicin sulfate. The ceramic-coated anodized substrates were found to be
most efficient among the aforementioned three compounds in controlled delivery for longer
than 160 h, with drug content of 0.5 μg/cm2, compared to the anodized substrate, which
delivered the whole drug within 140 h. It was thus evident that laser deposition facilitated the
controlled release of drug, compared to the anodized and bare substrates. This study proposed
the application of laser deposition of bioceramics, such as HA, over nano-structured titanium
for drug-eluting metallic implants [101].

3.4. Tan-Ag coatings

Due to the risk of the development of antibiotic resistance associated with antibiotic-loaded
coatings, non-antibiotic agents in the coating have been used as alternatives. Among the
various dopants, silver nanoparticles are among the most popular agents used due to their
inhibition of bacterial adhesion, broad anti-bacterial spectrum, long lasting anti-bacterial
effects, and propensity for being less prone to the development of resistance. Ag and Cu are
known to be efficient antibacterial agents because of their specific antimicrobial activity and
the nontoxicity of active Ag and Cu ions to human cells [102, 103]. Sputter coating of Ag, along
with HA, resulted in an antibacterial-bioactive coating, which inhibited bacterial attachment
without cytotoxic effects [104]. TaN-Ag nano-composite coating of titanium dental implants
also showed significant antibacterial properties without any cytotoxic effects. Hence, it could
be concluded that coating of titanium implants with materials having antimicrobial properties
might be useful in preventing infection [105].

3.5. Bisphosphonate

Bisphosphonates (BPs) constitute a group of drugs that inhibit osteoclast action and the
resorption of bone, and they are used to treat metabolic diseases such as osteoporosis, Paget’s
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disease, hypercalcemia of malignancy and multiple myeloma [106]. The nitrogen-containing
BPs are more potent, and they accumulate in maximum concentrations in the matrix and
osteoclasts [107]. BPs have a high affinity for bone minerals and bind strongly to HA, resulting
in selective uptake to the target organ and high local concentrations in bone, particularly at
sites of active bone remodeling. The BPs have similar chemical structures to pyrophosphate,
but their chemical stability is greater. In pyrophosphates, the phosphate group is bonded
through phosphoanhydride bond (P-O-P), whereas in BP, P is bonded through a germinal
carbon atom (P-C-P); hence, these bonds are resistant to hydrolysis under acidic conditions
[108]. The affinity of BP to Ca2+ ions helps to target specific bony sites, and BP can be coupled
with a gamma-emitting radioisotope, such as technetium, for simultaneous bone scanning
[109]. BPs inhibit osteoclast differentiation, reduce their activity, and induce their apoptosis
[110]. The nitrogen-containing BPs bind to and inhibit farnesyl pyrophosphate synthase
(FPPS), a key enzyme of the mevalonate pathway, thereby preventing the prenylation and
activation of small GTPases, which are essential for the bone-resorption activity and survival
of osteoclasts [111].

Systemic and local delivery of BPs improved the osseointegration of dental implants in
osteoporotic animal models [112-116]. Improved osseointegration and the mechanical stability
of titanium implants were reported in ovariectomized rats supplemented with alendronate
[112]. Kurth et al [113] showed enhanced integration of HA-coated titanium implants via the
administration of ibandronate to osteoporotic rats. Similar observations of enhanced osseoin‐
tegration have been reported in other studies via the local release of BPs (pamidronate and
zoledronic acid) from the surface coatings of implants [115, 116]. An experimental study in an
ovariectomized rabbit model showed that systemic zoledronic acid (ZA) administration
improved the osseointegration of titanium implants [117].

3.6. Simvastatin

Statins are prescribed to decrease cholesterol biosynthesis by the liver, thereby reducing serum
cholesterol concentrations and lowering the risk of heart attack. A liposoluble statin, simvas‐
tatin, could induce the expression of bone morphogenetic protein (BMP) 2 mRNA and, as a
result, promote bone formation on the calvaria of mice following daily subcutaneous injections
[118, 119]. Another study showed that the topical application of statins to alveolar bone
increased bone formation and concurrently suppressed osteoclast activity at the bone healing
sites [120]. Yang et al [119] demonstrated that simvastatin-loaded porous titanium surface
potently increased ALP activity and the extracellular accumulation of proteins, such as
osteocalcin and type I collagen, in mouse preosteoblast MC3T3-E1 cells. Du et al [121] dem‐
onstrated that administration of simvastatin resulted in significant improvement in the
osseointegration of titanium implants in osteoporotic rats. This finding could be attributed to
the increased expression of bone morphogenic protein 2, which stimulates osteoblast differ‐
entiation [118]. Statins are known to enhance the expression of VEGF (vascular endothelial
growth factor), a bone anabolic factor, in osteoblasts and to regulate osteoblast function by
increasing the expression of bone sialoprotein (BSP), osteocalcin (OCN), and type I collagen
(COL-I), as well as suppressing the gene expression of collagenases, such as matrix metallo‐
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proteinase (MMP)-1 and MMP-13 [122, 123]. Thus the competitive inhibition of simvastatin
interferes with the malevonate pathway, leading to decreased protein prenylation, which is
necessary for normal osteoclast function [118].

Figure 8. A trabecular implant that could be used to load drugs.

3.7. Calcitonin

Calcitonin (CT), produced by the C-cells of thyroid tissue, has been reported to stimulate hard
tissue formation [124]. It acts on bone tissue via the suppression of osteolysis and the induction
of Ca2+ release. It was reported that CT inhibited osteoclastic bone resorption by binding to
specific cell surface receptors [125]. This hormone favors bone formation, inhibits osteoclastic
activity and prevents osteopenia [126-128]. In vitro and in vivo studies have shown that this
hormone stimulates the growth of bone tissue [40, 129, 130]. Calcitonin also showed increases
in the amount and rate of bone formation, as observed in rat calvaria and extraction sockets
in dogs [131].

3.8. Pantaprazole

A class of substituted benzimidazoles known as proton pump inhibitors (PPIs) have been
shown to promote bone regeneration and peri-implant healing. Examples of these drugs
include omeprazole and pantoprazole, which are employed clinically in the treatment of
gastroesophageal reflux disorder (GERD). PPI-loaded calcium phosphate cements demon‐
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strated not only inherent biocompatibility and osteoconductivity but also the ability to retard
bone resorption through a drug delivery mechanism [132, 133]. Pantoprazole-loaded calcium
phosphate cements inhibited osteoclastic resorption without interfering with the peri-implant
bone resorption rate in a study performed rat femoral condyles [134]. Another advantage of
the addition of omeprazole is that it inhibits osteoclastic acidification, which help to inhibit
bone resorption and increases the lifespan of osteoclasts [135]. The drugs were dissolved in
dimethyl sulfoxide to the desired concentration and were added to the liquid phase of the
calcium phosphate.

4. Conclusions

Drug delivery systems (DDS) targeting specific organs and tissues and their bioavailability at
specific sites have become critical issue in modern medicine. Local drug delivery systems in
bone could be used to promote regeneration, prevent infection, or treat post-surgical pain. The
quest for new bone scaffold materials to overcome the shortcomings of existing materials, such
as ceramics and polymers, is undertaken to overcome the limited mechanical properties
required for temporary bone substitutes. Mixing of polymers, natural or synthetic, and
inorganic components, such as HA, TCP and BG, might help to develop better composite
scaffolds that combine the advantages of both biodegradable polymers and bioactive ceramics
[136].

If DDS are used in combination with implants, the coating strategies should allow for the choice
of a drug or combination of drugs and their doses, localization and release due to intra-
operative considerations. HA coatings on titanium implants themselves provide an osteocon‐
ductive and an osteoinductive approach for the enhancement of bone formation. These
biological properties could be augmented further by adding growth factors and other mole‐
cules to produce a truly osteoinductive platform.

Proteins or glycosaminoglycans, such as collagen and chondroitin sulfate, provide a biomi‐
metic coating on the surface of an implant, which can improve osseointegration [137]. Biomo‐
lecules such as GFs are also widely used for implant coatings, to modulate cellular functions,
such as decreasing inflammation, enhancing stem cell differentiation, inducing blood vessel
formation, or acting as chemoattractants for circulating osteoprogenitors [138, 139]. Although
the implant materials available for the reconstruction of craniofacial bone defects have shown
favorable results in most craniofacial and dental applications, the presence of complications
related to infection and poor osseointegration still represent challenges in the biomedical field.

The current trend in the field of bone repair indicates that the tissue engineering field is moving
toward the development of biomaterials with improved surfaces that will stimulate bone
formation and avoid infections through the incorporation of surface modification techniques
and antibacterial coatings and agents, as well as the incorporation of GFs, stem cells and other
pharmacological drugs.
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