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1. Introduction

The last decade based on orthogonal transform has been seen a quiet revolution in digital video
technology as in Moving Picture Experts Group (MPEG)-4, H.264, and high efficiency video
coding (HEVC) [1-7]. The discrete cosine transform (DCT)-II is popular compression struc-
tures for MPEG-4, H.264, and HEVC, and is accepted as the best suboptimal transformation
sinceits performance is very close to that of the statistically optimal Karhunen-Loeve transform
(KLT) [1-5].

The discrete signal processing based on the discrete Fourier transform (DFT) is popular in wide
range of applications depending on specific targets: orthogonal frequency division multiplex-
ing (OFDM) wireless mobile communication systems in 3GPP-LTE [3], mobile worldwide
interoperability for microwave access (WiMAX), international mobile telecommunications-
advanced (IMT-Advanced), broadcasting related applications such as digital audio broad-
casting (DAB), digital video broadcasting (DVB), digital multimedia broadcasting (DMB))
based on DFT. Furthermore, the Haar-based wavelet transform (HWT) is also very useful in
the joint photographic experts group committee in 2000 (JPEG-2000) standard [2], [8]. Thus,
different applications require different types of unitary matrices and their decompositions.
From this reason, in this book chapter we will propose a unified hybrid algorithm which can
be used in the mentioned several applications in different purposes.

Compared with the conventional individual matrix decompositions, our main contributions
are summarized as follows:

I NT E C H © 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
open science | open minds and eproduction in any medium, provided the original work is properly cited.
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* We propose the diagonal sparse matrix factorization for a unified hybrid algorithm based
on the properties of the Jacket matrix [9], [10] and the recursive decomposition of the sparse
matrix. It has been shown that this matrix decomposition is useful in developing the fast
algorithms [11]. Individual DCT-II [1-3], [6], [7], [12], DST-II [4], [6], [7], [13], DFT [3], [5],
[14], and HWT [8] matrices can be decomposed to one orthogonal character matrix and a
corresponding special sparse matrix. The inverse of the sparse matrix can be easily obtained
from the property of the block (element)-wise inverse Jacket matrix. However, there have
been no previous works in the development of the common matrix decomposition sup-
porting these transforms.

* We propose a new unified hybrid algorithm which can be used in the multimedia applica-
tions, wireless communication systems, and broadcasting systems at almost the same
computational complexity as those of the conventional unitary matrix decompositions as
summarized in Table 1 and 2. Compared with the existing unitary matrix decompositions,
the proposed hybrid algorithm can be even used to the heterogeneous systems with hybrid
multimedia terminals being serviced with different applications. The block (element)-wise
diagonal decompositions of DCT-II, DST-II, DFT and DWT have a similar pattern as Cooley-
Tukey’s regular butterfly structures. Moreover, this unified hybrid algorithm can be also
applied to the wireless communication terminals requiring a multiuser multiple input-
multiple output (MIMO) SVD block diagonalization systems [15], [11,19], [22] and diagonal
channels interference alignment management in macro/femto cell coexisting networks [16].
In [15-16, 19, 22- 23], a block-diagonalized matrix can be applied to wireless communications
MIMO downlink channel.

In Section 2, we present recursive factorization algorithms of DCT-II, DST-II, and DFT matrix
for fast computation. In Section 3, hybrid architecture is proposed for fast computations of
DCT-II, DST-1I, and DFT matrices. Also numerical simulations follow. The conclusion is given
in Section 4.

Notation: The superscript ()" denotes transposition; I); denotes the N x N identity matrix; 0

j2mn

denotes an all-zero matrix of appropriate dimensions; C/'=cos(int /1) ; S/ =sin(irn /1) ; W=e ¥ ;

® and @ , respectively, denote the Kronecker product and the direct sum.

2. Jacket matrix based recursive decompositions of Fourier matrix
2.1. Recursive decomposition of DCT-II

Definition 1: Let | ={a, ;} be a matrix, then it is called the Jacket matrix when Jy'= %{(ai/ ].)‘I}T.

That is, the inverse of the Jacket matrix can be determined by its element-wise inverse [9-11].
The row permutation matrix, Py, is defined by
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1 0 0 00 - O]
0 00 1 0 -+ 0
P —I.and P 01 0 0 0 -0 ,
=1,an = .
2 Mlo oo o0 01 -0 @
00 0 - 00 1
where P, elements are determined by the following relation:
A . N
pi =1 if i=2j, 0<j<—5--1,
o . N |
pi’]:l, if i=(2j+1)modN, TS]SN—L
p; ].=0, others.
The block column permutation matrix, Q, is defined by
1 0
0, =1, and QN{ N4 _N”}, N >4. @)
Oy Iy

where I , , denotes reversed identity matrix. Note that Q'=Qy and Py # P, whereas Qy!=Q,

and P'=P}.

Proposition 1: With the use of the Kronecker product and Hadamard matrices, a higher order block-
wise inverse Jacket matrix (BIJM) can be recursively obtained by

then
Jokh =l @)
N

1 1
where the lowest order Hadamard matrix is defined by H, ={ 7 - J

Proof: A proof of this proposition is given in Appendix 6.A.

Note that since the BIJM requires a matrix transposition and then normalization by its size, a
class of transforms can be easily inverted as follows:
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1
-1 T
Yoy =JonXon, and X,y =J, Y,y ZNJ2NY2N' ®)

Due to a simple operation of the BIJM, we can reduce the complexity order as the matrix size
increases. In the following, we shall use this property of the BIJM in developing a hybrid
diagonal block-wise transform.

According to [1-4] and [7], the DCT-II matrix is defined as follows:

1 1 1
V2 2 2
2 2k, D 2k ® 2k ® 2
C:_Coo COI ___CON—I:_X 6
N IT; 41\:/ 41?/ ) 4N: NN (6)
Cj]’:/zvﬂq)o Cj]li,N’z(Dl . Ci]/iINQCDN—I

where @;=2i+1 and k;=i+1. We first define a permuted DCT-II matrix

Cy=Py'Cy QA}1=\/%P&1XN Qx'- We can readily show that the matrix Xy can be constructed

recursively as follows:

X —p {X vz Xnn }Q _p {X N/2 0 “:IN/Z Iy, }Q %
NIy N = fN N
By, —Byp 0 By, [ Inn ~Iyp

Here, the matrix B, in (7) is given as:
By ={ By (mon) = c/\™"] (8)

where f(m, 1)=2m-1and f(m, n+1)=f(m, n) +2f (m, 1) form, n€{1, 2, ..., N /2}. Forexample,
the matrix B, is given by

_C116 C136 C156 C’176 |
g |G ~Ch G -ci| o
C156 _C116 C176 C136
¢ ]

Since Xy = %XIT\] pand Byl,= %BIE 1 the matrix decomposition in (7) is the form of the matrix
product of diagonal block-wise inverse Jacket and Hadamard matrices. The matrix By, is

recursively factorized using Lemma 1.



Jacket Matrix Based Recursive Fourier Analysis and Its Applications
http://dx.doi.org/10.5772/59353

Lemma 1:The matrix By, can be decomposed as:
By =LyX yDy 10)

where a lower triangular matrix L  is defined by L ={L (m, n)} with elements

V2(=1)"" Wmand n=1
Ly (mn)=12(=1)"" (1), m<n (11)

0,m>n

and a diagonal matrix Dy, is defined by Dy, =diag{C4q;}], Cf;}, e 4?,”’1}.
Proof:A proof of this Lemma is provided in Appendix 6.B.
Using (10), we first rewrite (7) as

XN:PN|:XN/2 0 :||:IN/2 IN/2 :|QN

0 LN/ZXN/2DN/2 IN/2 'IN/2

(12)
1 0 1 0 |1 1
:PA{ N/2 }[Iz ®XN/2]|: N/2 M N2 AN j|QN
0 Lyp 0 Dyp | Inn -Inn
which can be evaluated recursively as follows:
Iy, O I, 0 I, o][L, I,
Xy=P L® | L,o| P I, ®X
N N{ 0 LN/2:|X 2 ® 2®{ 4{0 L [1,®X,] 0 DI, -I, Q4‘ .
- (13)
L XN/Z |

1 0 1 1
){ N/2 }{ N2 AN i|QN'
0 Dyp [ Inn ~Iyp

1
Note that in (13) a 2x2 Hadamard matrix is defined by X2={ . Also, applying the Kro-

)
1 -1
necker product of I, and X4, Xg can be obtained. Keep applying the Kronecker product of I,
and Xy, the final equivalent form of Xy is obtained. Thus, the proposed systematic decom-

position is based on the Jacket and Hadamard matrices.
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In [17], the author proposed a recursive decimation-in-frequency algorithm, where the same
decomposition specified in (10) was used. However, due to using a different permutation
matrix, a different recursive form was obtained. Different recursive decomposition was
proposed in [18]. Four different matrices, such as the first matrix, the last matrix, the odd
numbered matrix, and the even number matrix, were proposed. Compared to the decompo-
sition in [18], the proposed decomposition is seen to be more systematic and requires less
numbers of additions and multiplications. We show a complexity comparison among the

proposed decomposition and other methods in Table 1-2.

Conventional methods Proposed
Reference number
Addition Multiplication Addition Multiplication
W. H. Chen at el
[18] 3N /2(log,N -1)+2 Nlog,N-(3N /2) +4 Nlog,N N /2(log,N +1)
DCT-II
Z. Wang[13] DST-
. N(Z1og,(N)-2) +3 N(J1og,(N)-1) +3 Nlog,N N /2(log,N +1)
Cool d Tuk
coley and THEEY  Nlog,N (N /2)log,N Nlog,N (N /2)log,N

[21] DET

Table 1. The comparison of computation complexity of conventional independent the DCT-II, DST-II, DFT, and hybrid
DCT-II/DST-1I/DFT

Matrix Conventional Proposed
Size, N Addition Multiplication Addition Multiplication
4 8 6 8 6
8 26 16 24 16
16 74 44 64 40
DCT-II 32 194 116 160 96
64 482 292 384 224
128 1154 708 896 512
256 2690 1668 2048 1152
4 9 5 8 6
8 29 13 24 16
16 83 35 64 40
DST-1I 32 219 91 160 96
64 547 227 384 224
128 1315 547 896 512
256 3075 1283 2048 1152
4 8 4 8 4
DFT 8 24 12 24 12
16 64 32 64 32
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Matrix Conventional Proposed
Size, N Addition Multiplication Addition Multiplication
32 160 80 160 80
64 384 192 384 192
128 896 448 896 448
256 2048 1024 2048 1024

Table 2. Computational Complexity: DCT-II/DST-II/DFT

Applying (13), we can readily compute Cy =@XN. The inverse of Cy; can be obtained from

the properties of the sparse Jacket matrix inverse:

—1 1
a0 [N | Iyp Iy | [ Xy 0|
(CN) = _(QN) L 7 1 sz1
2 N2 Inn 0 By,

) (14)
_ I[N Iy, Iy, ||Xyn O T
= [>0y . |Pr
27 Iy AIyp]l 0 By,
The corresponding butterfly data flow diagram of C,, is given in Fig. 1.
] i X N1 0 B
R T T |0

9

1‘}1/ I/ Gt
o D UBAN o _

........ — I L | ¥ LI
P. N Y I e i JT S E— P o
G
J— | — | 3 AN : : |
....... CIEIPUNI S g
A X e
. 7 l_yl/ 2>< A : B
— I — | 2 AP UN -1 N l
Ly P,, R TR I i
L GG L :
— I (I I (- ] LN - : -
....... RTINS W -
Wl 1 1n Es-odl
— ] T TIN G : I
— — — — — — N A E I : f‘; /-1 . |
I, 0 L 0|71, 1
0 L [12®X2] 0 D,| |1 -1
Xy

Figure 1. Regular systematic butterfly data flow of DCT-II.

9
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2.2. Recursive decomposition of the DST-II

The DST-II matrix [1-4] and [7] can be expressed as follows:

2ky @, 2k @, 2kg @y |
SiN Sin Sin
2k @, 2k D, 26D,y
SiN Sin Sin
2 : :
2kN—ZCDO 2kN—Z‘:DI 2kN—2(I)N—1
SiN SiN Sin
1 1 1
V2 J2 V2

(15)

Similar to the procedure we have used in the DCT-II matrix, we first define the permuted DST-

Il matrix, S as follows:

o _ _ 2 -
Sy =PN1SNQN1 :\/;PN]YN Nl' (16)
From (16), we can have a recursive form for Yy as
Ayp 0 :||:IN/2 Iy }
Yy=P 0 (17)
N N[ 0 Yypllve Iyal "
where the submatrix A, can be calculated by

where U, and D, are, respectively, upper triangular and diagonal matrices. The upper

triangular matrix U ={U, (m, n)} is defined as follows:

V2(-1)"" Ymand n=N

Uy (m,n) = 2(—1)'"_1 (—l)n_1 ,m>n

0,m<n

(19)

whereas the matrix D) is defined as before in (10). The derivation of (18) is given in Appendix

C. Recursively applying (18) in (17), Recursively applying (18) in (17), we can find that
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YN :PN|:AN/2 0 j||:IN/2 IN/2 j|QN :PN|:UN/2YN/2DN/2 0 i||:IN/2 IN/2 j|QN

0 Yynlldnn -Inn 0 Yyl Inn 20)
U 0 D 0 (|7 1
:PN{ N/2 }[12 ®YN/2]|: N/2 }{ N2 Ini2 :|QN'
0 Iy, 0 Iyp |l Inn Iyn

Further applying (17) to the Kronecker product [I,® Yy 2], the following general recursive

form for DST-II matrix can be obtained as:

21)

><|:l)N/2 0 j||:IN/2 1N/2j|Q )
0 IN/Z IN/2 'IN/Z N
Note that if we compare (21) and (13), a similarity can be found in the proposed matrix

decompositions. That is, starting from the common lowest order Y2={ 1 }, the discrete sine

-1
kernel matrix is recursively constructed. Especially, applying the relationship of
- — - - 0o - 1 o . : :
Uy=IyL Iy, wherely= | denotesthe opposite diagonal identity matrix, the

butterfly data flow of the DST-II matrix can be obtained from the corresponding that of the
proposed DCT-II decomposition. The butterfly data flow graph of the DST-II matrix is shown
in Fig. 2.

Now utilizing the properties of the BIJM, we can first obtain
1 7
Ay, 0 20 Ay, O
=— ’ (22)
0 Yy NI 0 Yy,

such that the inverse of the matrix Sy is given by

- N IN/2 IN/Z ]{//2 0 T
s = |2 A pl. 23
N 2QN{ 0o Y[ @)

IN/2 'IN/2 N/2

11
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Note that applying again the properties of the BIJM and (18), a recursive form of the inverse
DST-II can be easily obtained.

Figure 2. Regular systematic butterfly data flow of DST-II.

2.3. Recursive decomposition of DFT

The DFT is a Fourier representation of a given sequence {x(n)},

N—
Zx W 0<n<N-1. (24)

m=0

where W =¢ /2N The N -point DFT matrix can be denoted by F,, ={W ""}. The N x N Sylvester
Hadamard matrix is denoted by Hj. The Sylvester Hadamard matrix is generated by the

successive Kronecker products:

Hy=H,®Hy,, (25)

1 1 ~
for N=4, 8, ... In (25), we define H2={1 _J. We decompose a sparse matrix E, =Py F Wy

in the following way:
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Fy=[P,] Fy

Fo— {FNQ Fy), } _ |:FN/2 0 Mlzv/z Iy } (26)
= =
Ey;n -Eyp 0 Eyp|Une -Inp
where E , is further decomposed by Lemma 1
Ey), = PN/ZFN/zWN/Z (27)

where W, is the diagonal complex unit for the N-point DFT matrix. That is, we have
W =diaglw?, ..., wN1},

- B N R\
_ L I ><><

N R e >< _______ B |
— - P74 N - f
] I o ><><
r| X T AN
— — R e
— 0T s
] B el T ;:::::; W ><><
— HH R R A
o alerls w ][ 5]
F4

Figure 3. Butterfly data flow of DFT.

Similar to the development for DCT-II and DST-II, we first rewrite (26) using (27) as

FN _ [ﬁzv/z ) 0 }{Izm Iy, }
0 PyoFyoWypn [ Ivn Inn

_|:IN/2 0 :|[I ®I~7 :||:IN/2 0 :||:IN/2 IN/2:|
- 2 N/2 .
0 PN/Z 0 WN/2 IN/2 'IN/2

(28)
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[I,® F N 2] in (28) can be recursively decomposed in the following way:

X

I, 0 .| 1 017, I
L®|.-P|? [[2®F2] 2 LA
0 P o w1, -1

F,

F :|:IN/2 0 :| ><|:IN/2 0 j||:IN/2 IN/2:| (29)
N 0 PN/Z 0 WN/2 IN/2 'IN/Z

Fy)

It is clear that the form of (29) is the same as that of (13), where we only need to change L ; to
P,and D, to W, forl €12, 4,8, ..., N /2} to convert the DCT-II matrix into DFT matrix. Conse-

quently, the butterfly data flow of the DFT matrix can be drawn in Fig. 3 using the baseline
architecture of DCT-IL

3. Proposed hybrid architecture for fast computations of DCT-II, DST-II,
and DFT matrices

We have derived recursive formulas for DCT-II, DST-II, and DFT. The derived results show
that DCT-II, DST-II, and DFT matrices can be unified by using a similar sparse matrix decom-
position algorithm, which is based on the block-wise Jacket matrix and diagonal recursive
architecture with different characters. The conventional method is only converted from DFT
to DCT-II, DST-IIL But our proposed method can be universally switching from DCT-II to DST-
II, and DFT vice versa. Figs. 1-3 exhibit the similar recursive flow diagrams and let us motivate
to develop universal hybrid architecture via switching mode selection. Moreover, the butterfly
data flow graphs have log,N stages. From Fig.1, we can generate Figs. 2-3 according to the

following proposed ways:

3.1. From DCT-II to DST-II

The N-point DCT-II of x is given by

2 & m2n+ )z 2
XPTamy=c | =% x(n)cos——2= =¢ [ =Cyx
V) = 2, m)eos =T = S Cy

where m,n=0,1,..,.N-1, ¢, =

1 ,m#0 (30)
1/42 ,m=0

The N-point DST-II of x is given by
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2 & . (m+DQ2n+rx 2
XO5Tmy=5 =3 x(n)sin =5 . [—SyvX
N (m)=s, an:;) () N my| N

1 ,m#=N -1
1/J2 ,m=N-1

(31)
where m,n=0,1,..,N -1, s, ={

Let Cy and S, be orthogonal NxN DCT-II and DST-II matrices, respectively. Also,

x=[x(0) x(1) ... x(N-1)]" denotes the column vector for the data sequence x(n). Substitut-
ing m=N-k-1, k=1, 2, ..., N into (30), we have

N-1 o
Cy(N—k—)=cy | = Y x(mycos ZDNZE=DT 615 N-1 (32)
N = 2N
Using the following trigonometric identity
C05((2;1 +D7 Qn+1)(k+ l)ﬂ'j
2 2N
_ COS((zn +)r jcos((zn +1)(k + l)nj . Sin((zn + D”jsin( 2n+1)(k + 1);:] 33)
2 2N 2 2N
_ 1y sin((zn +1)(k + 1)7[]
2N
(32) becomes
2 . Qun+D)(k+D)x
Cy(N—k-D=cy_i.|— > (=" —_ 34
v )= Cne N,go( ) x(msin=———"C (34)

where Cy, =(N -k-1) represents the reflected version of Cy (k) and this can be achieved by
multiplying the reversed identity matrix I , to Cy,. (34) can be represented in a more compact

matrix multiplication form [13]:
Sy =1yCyMy < Cy =1y SyM, (35)

10}

where, My =[M,®1y ], Ml:[o -1

Then, the DST-II matrix is resulted from the DCT-II matrix. Note that compatibility property
exists in the DCT-II and DST-IL

15
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3.2. From DFT to DCT-II

The (m,n) elements of the DCT-II kernel matrix is expressed by

[, = \/% COSW (36)

A new sequence x V(n) is defined by

{ x(l)(n)zx(zn) Jor0<n<N/2-1 -

x(l)(N—n—l)zx(2n+l) for0<n<N/2-1
For the sequence x M(11), we see that we can write

4n+1)7r 2 = m 1
XPCT (4 =c, *Wn m( — *W@n cos2ﬂ—(2n+—j
N (m) Z (n)co N ,Z(:) (n) oy 5

- N-1
— Cm\/zR Zx(l)(n)e—jZHm(2n+l/2)/2N _ Cm\/zR e—jﬂm/ZN Zx(l)(n)e—jZHmn/N (38)
N n=0 N n=0
—c \/ER (e—jirm/2NFNX(1))
"\ N

where R indicates a real part.

With the result above we have avoided computing a DFT of double size. We have
W,, = diag{Wwo,...,WN_l} _ diag{l’e—jﬁ/ZN’e—jﬂ2/2N,_._,e—jﬁ(N—l)/ZN} (39)

Now, the result can be put in the more compact matrix-vector form

2
Cy =cy \/;R(W4NFN ) (40)

Then, the DCT-II matrix is resulted from the DFT matrix.

3.3. From DCT-II and DST-II to DFT

We develop a relation between the circular convolution operation in the discrete cosine and
sine transform domains. We need to measure half of the total coefficients. The main advantage
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of a proposed new relation is that the input sequences to be convolved need not be symmetrical
or asymmetrical. Thus, the transform coefficients can be either symmetric or asymmetric [21].

From (30) and (31), it changes to coefficient for circular convolution (C) format. Thus, we have
the following equations:

N-1
chr—nc(m) _ ZZ x(n)cos{m(?;\:l)} m=0,1,---,N—1
n=0

(41)
N-1
XJQST_HC(M) = 22 x(n)sin[mj, m=1,---,N
! 2N
We can rewrite the DFT (24)
N-1 ,
X(m) = Z x(n)e_-’zm’m/N, m=0,1,.....,N —1. (42)
n=0
Multiplying (42) by 2¢~™/N  we can get
—jazm/N _ ~ _—jam/N & —j2zmn/N _ & —jam/N —j2zmn/N
2e X(m)=2e Zx(n)e —22 x(n)e e
n=0 n=0
y _ {M} N . _ (43)
I SV A ()HM} : ,[MD
n=0 n=0 N N

Comparing the first term of (41) with first one of (43), it can be seen that
N-1

2 x(n) mQ2n +1)n

n=0

COS[T}) is decimated and asymmetrically extended of (41) with index

sin[wn is decimated and symmetrically extended of

N-1
m=0:N —1. Similarly, 22 x(n)
n=0

(41) with index m=1:N. It is observed that proper zero padding of the sequences, symmetric
convolution can be used to perform linear convolution. The circular convolution of cosine and
sine periodic sequences in time/spatial domain is equivalent to multiplication in the DFT
domain. Then, the DFT matrix is resulted from the DCT-II and DST-II matrices.

3.4. Unified hybrid fast algorithm

Based on the above conversions from the proposed decomposition of DCT-II, we can form a
hybrid fast algorithm that can cover DCT-II, DST-II, and DFT. The general block diagram of
the proposed hybrid fast algorithm is shown in Fig. 4. The common recursive block of
L, I
I, -1,

[P],, j,n«L blockdiagonal ()[ I, ® Z,]Rblockdiagonal () Qujp is multiplied repeatedly

N /2/1

17
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according to the size of the kernel with different transforms as like as bracket ((((-)))). The
requiring computational complexity of individual DCT-II, DST-II, and DFT is summarized in
Table 1 and Table 2. It can be seen that the proposed hybrid algorithm requires little more
computations in addition and multiplication compared to Wang's result [13]. However, the
proposed scheme requires a much less computational complexity in addition and multiplica-
tion compared to those of the decompositions proposed by [11,13,18]. In addition, compared
to these transforms, the proposed hybrid fast algorithm can be efficiently extensible to larger
transform sizes due to its diagonal block-wise inverse operation of recursive structure.
Moreover, the proposed hybrid structure is easily extended to cover different applications. For
example, a base station wireless communication terminal delivers a compressed version of
multimedia data via wireless communications network. Either DCT-II or DST-II can be used
in compressing multimedia data since the proposed decomposition is based on block diago-
nalization it can significantly reduce its complexity due to simple structure[11,19, 22], for
various multimedia sources. The DCT image coding can be easily implemented in the
proposed hybrid structure as shown in Fig. 4(b). From (45), the DCT-II is obtained by taking

a real part of multiplication result of e~ /™/N with F ={w ™}, If the DCT-II is multiplied by
I,,CyM,, then we get DST. If the DCT and DST are convolved in time and frequency domain

and multiplied by 2¢ /N the DFT matrix can be obtained. Thus, the proposed hybrid
algorithm enables the terminal to adapt to its operational physical device and size.

Hybrid Algorithm for DCT-II/DST-I/DFT

DST-I Mode

|
! 1
it2 ! S

AR N o

} 1 - | switch 101-DFT

| | MO

! Q. .S ! 110-DCTI

! o [ | 11DSTI

L __ |
Data ~—~ "~~~ T oo T T T e e e e e
In m. .1 [ '
[

o
2
switch —; switch —» — e switch @
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Figure 4. Recursive DCT-II/DST-II/DFT Structure Based on Jacket matrix.
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3.5. Numerical simulations

As shown in [7] the coding performance DST outperforms DCT at high correlation values (p)
and is very close to that of the KLT. Since the basis vectors of DCT maximize their energy
distribution at both ends, hence the discontinuity appears at block boundaries due to quanti-
zation effects. However, since the basis vectors of DST minimizes their energy distribution at
other ends, DST provides smooth transition between neighboring blocks. Therefore, the
proposed hybrid transform coding scheme provides a consistent reconstruction and preserves
more details, as shown in Fig. 6 with a size of 512 x 512 and 8 bits quantization.

Now consider an N x N block of pixels, X, containing X; i i, j=1,2, ..., N. We can write 2-D

transformation for the kth block X as Y¢=T;QX,Q" and Y -=T-X,.

Depending on the availability of boundary values (in top- boundary and left-boundary) in
images the hybrid coding scheme accomplishes the 2-D transform of a block pixels as two
sequential 1-D transforms separately performed on rows and columns. Therefore the choice
of 1-D transform for each direction is dependent on the corresponding prediction boundary
condition.

* Vertical transform (for each column vector): employ DST if top boundary is used for
prediction; otherwise use DCT.

* Horizontal transform (for each row vector): employ DST if left boundary is used for
prediction; otherwise use DCT.

What we observed from numerical experiments is that the combined scheme over DCT-II only
performs better in perceptual clarity as well as PSNR. Jointly optimized spatial prediction and
block transform (see Fig. 5 (e) and (f)) using DCT/DST-II compression(PSNR 35.12dB) outper-
forms only DCT-II compression(PSNR 32.38dB). Less blocky artifacts are revealed compared
to that of DCT-II. Without a priori knowledge of boundary condition, DCT-II performs better
than any other block transform coding. The worst result is obtained using DST-II only.

4. Conclusion

In this book chapter, we have derived a unified fast hybrid recursive Fourier transform based
on Jacket matrix. The proposed analysis have shown that DCT-II, DST-II, and DFT can be
unified by using the diagonal sparse matrix based on the Jacket matrix and recursive structure
with some characters changed from DCT-II to DST-II, and DFT. The proposed algorithm also
uses the matrix product of recursively lower order diagonal sparse matrix and Hadamard
matrix. The resulting signal flow graphs of DCT-II, DST-II, and DFT have a regular systematic
butterfly structure. Therefore, the complexity of the proposed unified hybrid algorithm has
been much less as its matrix size gets larger. This butterfly structure has grown by a recursive
nature of the fast hybrid Jacket Hadamard matrix. Based on a systematic butterfly structure,
a unified switching system can be devised. We have also applied the circulant channel matrix
in our proposed method. Thus, the proposed hybrid scheme can be effectively applied to the
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heterogeneous transform systems having various matrix dimensions. Jointly optimized DCT
and DST-II compression scheme have revealed a better performance (about 3dB) over the DCT
or DST only compression method.

() DCT-II compressed Lena image (e) DCT/DST-1I compressed Lena image
(PSNR=32.38dB) (PSNR=35.12dB)

y’

(b) Zoomed original Lena image (d) Zoomed DCT-II compressed Lena image (f) Zoomed DCT/DST-II compressed
Lena image

Figure 5. Image Coding Results showing DCT-II only and jointly optimized DCT/DST-II compression (a) Original Lena
image (b) zoomed original Lena image (c) DCT-II compressed Lena image(PSNR=32.38 dB) (d) Zoomed DCT-II com-
pressed Lena image (e) DCT/DST-II compressed Lena image (PSNR=35.12 dB) (f) Zoomed DCT/DST-II compressed Le-
na image.

Appendix

Appendix A

A Proof of Proposition 1

We use mathematical induction to prove Proposition 1. The lowest order BIJM is defined as

Jy = (44)



H2
where C,=—=. Since
2= h
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(45)

equation (4) holds for 2N = 8. Now we assume that the BIJM ], satisfies (4), i.e., J ] n = %I N-
Since Joy T =Ty ® Hy)(Jy ® H)T=(JyJ,T) @ (H,H)= 5T, ®2I,=N1,,, this proposition is

proved by mathematical induction that (4) holds for all 2N . If N =1, certainly J,J,/ =L,.

Appendix B

A Proof of Lemma 1

According to the definition of an N x N matrix By, By, is given as follows:

(DO
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where k;=i + 1. Since cos((2k +1)®,,)=2cos(2k @, )cos(®,,)—cos((2k ~1)D,,),we have
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Using (47), B, can be decomposed as:
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which proves (10) in Lemma 1.

Appendix C

A Proof ofEquation (18)

By using the sum and difference formulas for the sine function, we can have

2k v q2k)®; L, 2k, L@ 10,
Sz(w % C4N S4N Sz(w * 28,y C4N_S4(1N ) >

2k, 2D D 2k, -1)D,
Sz(wl R 2S4N C4N Sc(w )',

_2S(2k° )fc4N Sf"l v
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sl g,

§@hrao, (2S<zkm> e

_ ()0 oy _ g2k,

where k=i +1, @;=2j+1, i, j=0,1, -, N-1.

By taking (49) and into the right hand side of (18), we have
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The left hand side of (18) matrix [A]y from [Y]y can be represented by

B (2ky-1)g S(Zk -Dg S(Zk 1Dy 7
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We can obtain (50) and (51) are the same and the expression of (18) is correct.

(49)

(50)

(D)
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