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1. Introduction

In general, physiological processes are basically isothermal and isobaric. Several mechanisms
contribute to keep constant pressure in systems such as blood vessels, among them diameter
distribution and peristaltic motion. In this, it is to be understood that pressure constancy refers
to time-averaged or extreme values.

Many pathologies make the human body develop fever, which raises temporarily body
temperature. It is common practice to use, in some cases, medicines that restore, albeit for a
given period of time, normal temperature. Fever is not the only cause of body heat-transfer.
This process also occurs with body adjustment to changes in ambient temperature, physical
exertion, metabolism acceleration due to food ingestion, drug effects, and others. During these
body changes, blood and other fluid vessels undergo heat-transfer processes that pose
considerable difficulties to physical modeling. Some pertinent variables are fluid composition,
vessel elasticity, peristaltic motion in some cases, unsteadiness, and complex vessel geometry.

Heat-transfer in tube-flow has been investigated for several decades. One main practical
driving force for such studies is the need to understand and design efficient heat-transfer
equipment, widely used in several industrial areas. Models of simple tube-flow heat-transfer
problems are now textbook´s standard contents.

These include laminar Newtonian steady flow in round tubes with simple boundary condi‐
tions. More recently, as it is reviewed in the next section, Newtonian and non-Newtonian flows
in tubes of geometry other then circular have been modeled and analyzed. One important
finding as to this chapter´s objective is the effect of the interplay between tube geometry and
non-linear viscoelasticity.
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and eproduction in any medium, provided the original work is properly cited.



Such coupling leads to the development of secondary flows, or helicoidal flows, that increase
the transversal transport capacity of the flow, a phenomenon that can be applied, or related,
to heat-transfer enhancement, or to other transversal transport processes, such as cross-
sectional transport of particles immersed in the fluid.

Especially in blood flow, cells and other components introduce viscoelasticity [1, 2] that
becomes relevant in smaller blood vessels. The understanding of its effect on the flow charac‐
teristics may become very relevant in cases such as heart arteries, and when artificial implants
affect the blood flow. Also blood plastic effects appear is smaller vessels due to the aggregation
of red blood cells at low shear rates, which develop a yield stress to be overcome for the flow
to ensue.

Drawing on the above results, in this chapter it is presented a summary of relatively new
analytical findings that may be useful for the better understanding of heat-transfer and
complex flow phenomena in vessels that share some characteristics with biological vessels,
particularly when these work under abnormal conditions. Also it is analyzed the effect of
geometry in energy dissipation. This chapter is closely related to [3].

2. Mathematical models

Non-linear viscoelasticity and fluid plasticity are related in the following to heat- transfer and
energy dissipation processes. Next are presented the mathematical models to be considered
together with some remarks as to the corresponding state-of-the art, and relevant develop‐
ments with related references.

2.1. Viscoelastic flow

The physical model considered is a straight tube of arbitrary cross-sectional shape, in which a
non-Newtonian fluid moves along the axial coordinate z impelled by a pressure gradient,
which can be a function of t =  time. Secondary flows are induced when the necessary conditions
operate. The flow is assumed laminar, incompressible and with constant properties. Consid‐
ering Cartesian coordinates, the velocity field can be expressed as (u, v, w) in which the velocity
components align with the (x, y, z) axes respectively. The temperature and velocity fields are,
in general, dependent on x, y, z  and t .
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Figure 1. Definition diagram
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Two well-known problems are here relevant, i.e.,

1. Flow with constant wall heat-flux, in which the wall temperature is assumed constant at
any cross-section, with prescribed axial variation.

2. The “Graetz problem”, in which the flow is assumed isothermal up to a point z =0, from
which on a different constant temperature is applied at the wall, so that the fluid is
progressively heated or cooled.

Experimental findings concerning heat-transfer characteristics of aqueous polymer solutions
flowing in straight tubes point at considerable enhancement as compared to its Newtonian
counterpart driven by the same conditions and in the same geometry. Specifically it is reported
that heat-transfer results for viscoelastic aqueous polymer solutions are considerably higher
in flows fully developed both hydrodynamically and thermally, as much as by an order of
magnitude depending primarily on the constitutive elasticity of the fluid and to some extent
on the boundary conditions, than those found for water in laminar flow in rectangular ducts
[4, 5]. Heat-transfer phenomena in laminar flow of non-linear fluids has not been the subject
of many investigations with the exception of round pipes, and the case of inelastic shear-
thinning fluids in tubes of rectangular cross-section, in spite of the widespread use of some
specific contours in industry such as flattened elliptical tubes.

This statement is true for all cross-sectional shapes for both steady and unsteady phenomena
including quasi-periodic flows. Heat-transfer with viscoelastic fluids has been declared to be
a new challenge in heat-transfer research in the early nineties [6], but progress has been limited
since that time. The physics of the phenomenon has not been entirely clarified.

Highly enhanced heat-transfer to aqueous solutions of polyacrylamide and polyethylene of
the order of 40–45% as compared to the case of pure water in flattened copper tubes was
observed by Oliver [7] and later by Oliver and co-workers as early as 1969. Recent numerical
investigations in rectangular cross-sections of Gao and Hartnett [8, 9], Naccache and Souza
Mendes [10], Payvar [11] and Syrjala [12] establish the connection between the enhanced heat-
transfer observed and the secondary flows induced by viscoelastic effects. The former
researchers as well as Naccache and Souza Mendes predict for instance viscoelastic Nusselt
numbers as high as three times their Newtonian counterparts. Gao and Hartnett [8, 9].report
numerical results in rectangular contours which provide evidence that the stronger the
secondary flow (as represented by the dimensionless second normal stress coefficient Ψ2) the
higher the value of the heat-transfer (as represented by the Nusselt number Nu) regardless the
combination of thermal boundary conditions on the four walls. Constant heat flux is imposed
everywhere on the heated walls in their numerical experiments with the remaining walls being
adiabatic. The combination of boundary conditions plays some role in the enhancement
reported with the largest enhancement occurring when two opposing walls are heated. Despite
these efforts heat-transfer characteristics of viscoelastic fluids in steady laminar flow in
rectangular tubes remains very much an open question (quoted from Siginer and Letelier [13]).

Coelho et al [14] presented an analytical solution for the Graetz problem for the MPTT fluid
for a circular tube, steady flow, including several computations for negative heat flux (flow
cooling). Valko [15] published a solution of the Graetz problem using a power-law fluid model;
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he determined the influence of the Brinkman number for several flow conditions in circular
tubes. Kin and Özisik [17] published work on transient laminar forced convection of a power-
law fluid in ducts with sudden change in wall temperature. In these and related references it
is reflected the actual state-of-the-art in this subject.

Concerning numerical analysis, there is only one available commercial package for viscoelastic
fluid flow computations, POLYFLOW. However POLYFLOW cannot handle even relatively
high Weissenberg number flows and although convergent, gives erroneous results of the order
of 400% as compared to analytical test cases, Filali et al. (2012). In addition it cannot handle
heat-transfer in steady viscoelastic fluid flow in tubes. Thus to study problems of this type a
numerical algorithm has to be built from scratch and tested for stability (Hadamard-type).
Numerical analysis is not considered in this chapter.

Two well-known models of non-linear viscoelastic fluids are next described:

Modified Phan-Thien-Tanner (MPTT)

2ηmD = (1 +
�0λ
ηm0

tr  τ)τ + λ(V ∙∇τ -φτ - τφ T ) (1)

Giesekus

τ + λτ̌ + αλ
η0
τ ∙τ =η0D

τ̌ = - ((∇  V )T ∙τ + τ ∙∇V )
(2)

In the following, the MPTT model is applied to the flow field analysis. For the purposes of this
presentation, there is some evidence [17] that both models lead to qualitatively similar results.

The applicable equation of motion for 3-D, steady and incompressible flow are, in cylindrical
coordinates:

Continuity

∇ ∙V =0 (3)

Momentum

V ∙∇V =∇ ∙σ (4)

or, in expanded form

u ∂u
∂ r + υ

r
∂u
∂θ + w ∂u

∂ z - υ 2

r = 1
r

∂
∂ r (rσrr) + ∂

∂θ (σθr) + ∂
∂ z (rσ zr)) -

σθθ

r (5)
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u ∂υ
∂ r + υ

r
∂υ
∂θ + w ∂υ

∂ z - uυ
r = 1

r
∂
∂ r (rσrθ) + ∂

∂θ (σθθ) + ∂
∂ z (rσ zθ) -

σrθ

r (6)

u ∂w
∂ r + υ

r
∂w
∂θ + w ∂w

∂ z = 1
r

∂
∂ r (rσrz) + ∂

∂θ (σθz) + ∂
∂ z (rσ zz) (7)

In the above, u,  v,  w are the radial, tangential and axial velocity components, σ is the stress
matrix and P  is the piezometric pressure. Scale factors applied are a (base radius) for r ,  w0 for
the velocity components, and ηN w0 / a for the stress components, in which ηN  is the Newtonian
viscosity.

The MPTT model of viscoelastic fluid is next expressed, in dimensional variables, through the
following equations, i.e. [18].

σ = - PI + 2ηND + τ (8)

2ηmD = f (ε0, trτ)τ + λτ∇ (9)

τ∇= ∂ τ
∂ t + V ∙∇τ - (∇V T - ξD)τ - τ(∇V T - ξD)T (10)

where D is the rate of deformation tensor and τ is the non-Newtonian component of the shear
stress.

Defining

φ =∇ ∙∇V T -  ξD (11)

then, a more compact form of (10), is

τ∇=V ∙∇τ -φτ -  τφ T (12)

In this ηm is a viscosity, ε0 ,  ξ are material parameters, and λ is the relaxation time.

The function f, as defined in the MPTT model can be simplified for small values of ε0, yielding

f (ε0, trτ)= exp
( ε0λ

ηmo
trτ)

= ∑
n=0

∞ 1
n ! ( ε0λ

ηmo
trτ)n

=1 +
ε0λ
ηmo

trτ + O(ε0
2) (13)

where from

2ηmD = (1 +
ε0λ
ηm0

tr  τ)τ + λ(V ∙∇τ -φτ - τφ T ) (14)
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For this constitutive equation the viscosity is defined as

ηm =ηm0
1 + ξ(2 - ξ)λ 2κ 2

(1 + λ 2κ 2)(1-m)/2 (15)

in which

κ = 2trD 2 (16)

and where ηm0,  and m are additional material parameters. If m=1, then (15) reduces to

ηm =ηm0 1 + λ 2ξ(2 - ξ)κ 2 (17)

Coming back to dimensionless variables and parameters (14) becomes

2(1 + 2ξ(2 - ξ)Wi2trD 2)D = (1 + ε0 Wi trτ)τ + Wi τ∇ (18)

in which Wi is the Weissenberg number, or dimensionless relaxation time, defined as

Wi =
w0λ

a (19)

By combining equations (18), (8) and (5-7), it is obtained the set of working equations in full,
i.e.

u ∂u
∂ r + υ

r
∂u
∂θ + w ∂u

∂ z - υ 2

r = Fr - ∂ P
∂ r +∇2 u - u

r 2 - 2
r 2

∂ ν
∂θ (20)

u ∂υ
∂ r + υ

r
∂υ
∂θ + w ∂υ

∂ z - uυ
r = Fθ - 1

r
∂ P
∂θ +∇2 υ - υ

r 2 - 2
r 2

∂u
∂θ (21)

u ∂w
∂ r + υ

r
∂w
∂θ + w ∂w

∂ z = Fz - ∂ P
∂ z +∇2 w (22)

in which the functions Fr ,  Fθ and Fz are the viscoelastic forcing functions that determine the

transversal flow. For developed flow, all derivatives with respect to z, excepted for the
pressure, must be put equal to zero.

The explicit expressions for the extra forcing terms are:

Fr = (∇ ∙τ∇)r = 1
r
∂
∂ r (rτ∇rr) + 1

r
∂ τ ∇θr

∂θ -
τ ∇θθ

r
(23)
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Fθ = (∇ ∙τ∇)θ =
∂ τ ∇rθ

∂ r + 1
r
∂ τ ∇θθ

∂θ + 2
r τ

∇
rθr  (24)

Fz = (∇ ∙τ∇)z = 1
r
∂
∂ r (rτ∇rz) + 1

r
∂ τ ∇θz

∂θ
(25)

Energy

For steady flow of an incompressible fluid with constant properties, the energy equation, in
terms of the temperature T can be written as

ρ0Cp
DT
Dt =Φ +∇ ∙ (k∇T ) (26)

Where ρ0 is the density, Cp is the specific heat at constant pressure, ϕ is the dissipation function,
and k is the thermal conductivity coefficient. Further, it is assumed negligible dissipation and
constant k. Under these assumptions (26) becomes

ρCp(u ∂T
∂ r + υ

r
∂T
∂ r + w ∂T

∂ z )=k ( ∂2 T
∂ r 2 + 1

r
∂T
∂ r + 1

r 2
∂2 T
∂θ 2 + ∂2 T

∂ z 2 ) (27)

2.2. Viscoplastic flow

Viscoplastic fluids are fluids that exhibit yield stress, which must be overcome before the
material develops deformation. As already mentioned plasticity appears in small blood vessels
due to red cell aggregation.

Also, many industrial fluids exhibit yield stress, and are found in areas such as mining
(slurries), food (pastes), construction (concrete and mud), cosmetics, etc. Flow and heat-
transfer description in tubes and other configurations is compounded by their geometry, which
brings in non-linear constitutive equations, except for very simple shapes. Some recent
research in this field include flow around a cylinder by Tokpavi et al. [19] particle sedimenta‐
tion, Yu and Wachs [20], flow in an eccentric annular tube, Wachs [21], and Walton and
Bittleston [22],a general analysis for flow in non-circular ducts, Letelier and Siginer [23] and a
preliminary analysis of the velocity field in non-circular pipes, Letelier, et al. [24]. Other
pertinent references can be found in the previous ones.

The constitutive characteristics of viscoplastic flow determine complex structures of velocity
and shear fields in tube flow when the tube cross-sectional contour differs from circular. This
is true even for the case of the Bingham model of viscoplastic fluid, which is one of the simplest
mathematical expressions for this kind of fluids.

Plasticity implies existence of fluid yield stress, which may induce both plug zones and
stagnant zones within the tube cross-section, when in there the tube geometry determines
zones of shear stress below the value of the yield stress. Such solid regions of the flow make
it necessary to apply greater pressure gradients in order to keep a given rate of flow which, in
turn, leads to greater energy dissipation and heating inside the fluid.
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In the following Bingham´s model of fluid is used. Simple plastic flows in straight non-circular
tubes do not develop secondary flows. The flow is, therefore, parallel when the motion is
laminar, and only the axial component of the velocity exists. Under these conditions, the
momentum equation, in terms of shear stress components, is

∂τrz

∂ r +
τrz

r + 1
r
∂ τθz

∂θ = - ∂ P
∂ z (28)

The constitutive relations are

τrz = - (1 + N
I ) ∂w

∂ r (29)

τθz = - (1 + N
I ) 1

r
∂w
∂θ (30)

in which

I = ( ∂w
∂ r )2 + ( 1

r
∂w
∂θ )2

1
2 (31)

is an invariant related to the rate of deformation matrix. Also

N = a
ηw0

τy (32)

where τy is the dimensional yield stress. The parameter N is a dimensionless yield stress that
greatly influence the flow characteristics.

The momentum and constitutive equations can be written in more compact form by using
natural coordinates, i.e.

d τnz

dn +
τnz

ρ = - ∂ P
∂ z (33)

τnz = N - dw
dn (34)

In the above, n is a coordinate normal to isovels and ρ= radius of curvature of isovels

The dissipation function ϕ can be used as an index of energy dissipation. For parallel flow ϕ
is given by

ϕ =τn
dw
dn =τn(τn - N ) (35)
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3. Analysis of secondary flows and their effect on heat-transfer

The equations of motion and energy are next solved by using a double perturbation method,
as follows. First, and for all boundary conditions, the tube cross-section boundary is defined
by

G =1 - r 2 + εr nsin nθ =0 (36)

In which G is here labeled as a “shape factor”, that can describe a wide array of shapes
according to the given values of the parameters n and ε [1]. The shape perturbation parameter
is ε, which can take values in between 0 and a limiting values for the curve (36) staying closed.
The parameter n must be given integer values in order to get regular shapes.

Next all velocity components are expanded in series in terms of the Weissenberg number, i.e.

u =Wi u1 + Wi2u2 + ...

v =Wiv1 + Wi2v2 + ... 

w =w0 + Wi w1 + Wi2w2 + ...

(37)

Complementarily, all velocity component, at any order, are defined as

V =G ( f 0 + ε f 1 + ε 2 f 2 + ...) (38)

where V is a generic velocity component, at any order in Wi, and f 0, f 1, ... are functions specific
for every V, to be determined by solving the momentum equations. Similarly, all other
dependent variables are expressed in series, i.e.

τ =τ0 + Wiτ1 + Wi2τ2 + ... 

P = P0 + WiP1 + Wi2P2 + ...
(39)

More details can be found in references [13, 25]. The velocity field is first found by substituting
(37-39) in (20-25) and related equations. For the axial velocity, the following expressions can
be determined, i.e.

w0 = p(1 - r 2 + εr nsin nθ)= pG (40)

p = - 1
4
∂ P
∂ z    (41)
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w1 =0

w2(r , θ)=w0p 3( 4(1 - ξ)�0 - ξ(2 - ξ) (1 + r 2) +
ξ(2 - ξ)(3n - 1) - 4(1 - ξ)(n 2 + 2n - 1)�0

(n + 1) �rnsin(nθ)) (42)

Further, albeit more involved, exact solutions can be found for w3 and higher order terms in
Wi. In these results, since the parameter ε has a maximums value of 0,3849 for n=3, which
decreases as n increases, the series in ε shown in brackets in (38) were developed up to (ε)
yielding accurate results.

Computations show that up to 0(W i 2) the transversal velocity field is zero. Viscoelastic forcing
terms in (20-22) are non-zero from 0 (Wi3) upwards, which implies u1 =u2 =v1 =v2 =0.

At third order inWi, the viscoelastic forcing terms become non-zero. These are

Fr3 = (∇ ∙τ∇2)r

Fθ3 = (∇ ∙τ∇2)θ

Fz3 = (∇ ∙τ∇2)z

(43)

If the velocity components at third order inWi are expressed in terms of a stream-function
Ψ3, i.e.

u3 = 1
r
∂Ψ3

∂θ v3 = -
∂Ψ3

∂ r (44)

then it is found

r∇4 Ψ3 =
∂ (r Fθ3)
∂ r -

∂ F r 3

∂θ (45)

and

r∇4 Ψ3 =8∈ (ξ - 2)ξ 2(n - 1)n(n + 4)p 4r n+1cos(nθ) (46)

The solution of (46) is

Ψ3(r , θ)= 1
4 �ξ 2(2 - ξ)p 4 1 - r 2 + �r nsin(nθ) 2 n(n - 1)(n + 4)

(n + 1)(n + 2) r ncos(nθ) (47)

Where from

u3(r , θ)= -
ξ 2(2 - ξ) p 4n 2(n + 4)(n - 1)w0

2�r n-1sin(nθ)
4(n + 1)(n + 2)

v3(r , 0)=
ξ 2(2 - ξ)n(n + 4)(n - 1) p 4w0 n - (n + 4)r 2 �r n-1cos(nθ)

4(n + 1)(n + 2)

(48)
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Plots of (47) are shown in figures 2, 3, 4 and 5

Figure 2. Characteristics plots of transversal streamlines for n=3 and ε=0.3849

Figure 3. Characteristics plots of transversal streamlines for n=3 and ε=0.33
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Figure 4. Characteristics plots of transversal streamlines for n = 4 and ε =0.25

Figure 5. Characteristics plots of transversal streamlines for n=4 and ε=0.2

It is to be noted that the vortical shape does not change with the slip parameter ξ, the pressure
coefficient p or the Weissenberg number. As these parameters change, the strength of the
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vortices change. Also, other parameters being equal, the strength of the vortices increases
significantly with ε, and thus transversal transport capacity. In all these cases the Reynolds
number is Re = 180. Similar results are found for n = 4, 5... in which the number of vortices is 2n.

In Figure 6 is shown the internal distribution of the normal axial shear stress for the case of
ε =0.3849

Figure 6. Characteristics plots of normal axial shear stress for n=3,  ε=0.3849,  Wi=0.3 and ξ=0.2

Curves are similar for all values of parameters, but the values of the normal axial shear stress
vary withWi, being of the order of 70% greater than the Newtonian counterpart for Re =180
and Wi =0,3.

The temperature field can be computed once the velocity field is known, through the energy
equation (27). To this end, the temperature T is expressed as

T =T0 + Wi T1 + Wi2T2 + ...  (49)

In the following the temperature field and heat-transfer are computed for the case in which
there is a constant heat flux through de tube wall, so that the temperature difference between
de wall and the average temperature, i.e., Tw - Ta remains constant and also ∂Ta / ∂ z is constant.
This is problem 1 described in the section Mathematical Models.

The above leads to

∇2 T0 =a0Prw0 (50)

in which
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a0 = 1
T w - T a

∂T a

∂ z (51)

and Pr  is the Prandtl number, i.e.

Pr =
C pμ

k (52)

Applying the condition that the temperature, at all orders in Wi be zero at the tube contour,
i.e., that the fluid temperature is equal to Tw at the wall, then it is found

T0 =
Pr w0 pa0

16 r 2 - 3 + ε
(n - 3)
(n - 1) r nsin nθ (53)

Higher order terms of T  can be found in similar way, but the expressions become very involved
and are omitted here.

Heat exchange is computed through the Nusselt number Nu, i, e.

Nu =
Dnh

k   (54)

where

h =
k ∫

dT
dn d p̄

p̄(T w - T a)   (55)

Dn = 4 S
p̄ =hydraulic diameter   (56)

S = ∬ r  dr  dθ (57)

In the above p̄ is de contour perimeter and S is de cross-sectional area. A plot of Nu in terms
of Wi is shown in Figure 7 for different values of the Reynolds number Re,  defined as

Re =
ρ0waDh

ηm0
 (58)

in which wa is the axial average velocity.

Numerical values related to Figure 7 are given in the following table, where they can be
compared with the Newtonian case

Typical plots of temperature distribution appears in Figures 8 and 9.
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Figure 7. Please add caption

Table 1. Nusselt number values

Figure 8. Characteristics plots of isothermal curves for n = 3 and ε =0.3849
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Figure 9. Characteristics plots of isothermal curves for n=3 and ε=0.2

These results, as initially presented and discussed in [13, 25, 26] show that the Nusselt number,
i.e., the heat-transfer between fluid and wall, increases as the viscoelastic parameter Wi
increases, with an asymptotic trend, for a given value of the Reynolds number. As Re increases,
also Nu increases for a given value of Wi.

The relevance of these findings for biological flows may be related to vessel deformation due
to wall elasticity and peristaltic motion.

The preceding analysis shows that a very small deviation of the cross-section contour from the
circular geometry, as represented by the value of the parameter ε, may induce secondary flows,
and so increase the transversal transport capacity of biological flows. It seems to be an open
research area the study of physiological and morphological changes that, in this context, may
induce pathologies that accelerate heat transfer inside the human body. Such changes may
create conditions that improve or worsen transport processes that should lead to restore
normal physiological states.

Previous results associated to the flow of viscoelastic fluid in channels of axially-varying cross-
section [27] show also that axial change of geometry, as found in biological vessels, also
augment transport capacity.

4. Plastic flow

The velocity field and related variables for the flow of a Bingham fluid in non-circular tubes
is next found using a similar technique. The axial velocity is defined as
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w =w0 + εw1 + ε 2w2 + .. (59)

The constitutive equations (29, 30) can be expanded in series around the parameter ε by using
(58), where from [24]

τrz = N -
∂w0

∂ r - ε
∂w1

∂ r + 0(ε 2) (60)

τθz = - ε
r ( ∂w0

∂ r - N )
∂ w1
∂ θ
∂ w0
∂ r

+ 0(ε 2) (61)

From the above the governing equation for w1 are found, i.e.

r  (r - N
2 )( ∂2 w1

∂ r 2 + 1
r
∂w1

∂ r ) +
∂2 w1

∂θ 2 =0 (62)

which can be solved by separation of variables.

The dissipation function, in terms of the normal axial shear stress, is given in equation (35) and
can be computed, as an indicator of energy dissipation due to friction.

Typical results for the velocity field and dissipation function are shown in the following
figures.

Figure 10. Plots of isovels for n=3,   ε=0.3849 and N=0.2
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Figure 11. Plots of isovels for n=3,  ε=0.3849 and N=0.5

Figure 12. Plots of isovels for n=3,  ε=0.3849 and N=1.0

One significant feature of plastic flows are plug (or solid) and stagnant zones, which, as a
general rule, tend to decrease the rate of flow for a given pressure gradient, or require that
more energy by supplied in order to keep constant the rate of flow.

Figure 13 shows that energy dissipation is greatly affected by the tube geometry. The maximum
energy dissipation in the case of an equilateral triangle appears in the middle of the sides,
where the axial shear stress is maximum. Also the shear stress is zero at the corners, which is
a factor that determines stagnant areas close to such corners.

The plug zones are defined through the following joint conditions
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dw
dn =0   ;     w =const  (63)

which can be met up to certain value of N according to the cross-section shape.

Abnormal vessel geometries may occur in biological flow arising from many sources. Espe‐
cially in the case of stenosis, or geometry change due to solid deposition in artery walls, plastic
effects may lead to blood clotting in corners, when the arteries are small.

5. Concluding remarks

Some analytical results concerning the effects of fluid elasticity and plasticity, coupled with
tube cross-sectional geometry variation have been presented in this chapter.

The analysis is unified through some concepts that make it possible to explore, in a rather
general fashion, the mechanisms of transversal transport that arise with the coupling of
viscoelasticity and non-circular shape.

The circular shape is the most energy-efficient shape when only longitudinal mass transfer is
considered. However, this not the case when transversal motion becomes important, as in heat-
exchange processes, or in cases when also particle distribution is relevant.

General results indicate that viscoelasticity tends to increase transversal transport, which can
be demonstrated by analytical means. These in particular, show that starting at third order in
Wi, secondary flows appear when the fluid exhibits non-linear viscoelasticity, as prescribed by
the fluid models of Giesekus and Phan-Tien-Tanner. Such secondary, or transversal motions,
when coupled with the temperature, through the energy equation, determine a temperature
field that improve heat-transfer between the fluid and the tube wall.

Figure 13. Plots of the dissipation function (35) for n=3,  ε=0.3849 and N=0.5
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Plastic effects, on another perspective, do not induce transversal motion if the cross-section is
not circular. Rather plasticity increases energy consumption when maintaining a given rate of
flow is a priority. Shapes that include sharp corners lead to stagnant zones of fluids in the
vicinity of those corners, thus decreasing the flow. The analytical method herein applied can
be used for determining plug-zones of limiting values of the yield parameter N for which such
zones exist properly.

The application of these findings to biological flows have been commented in previous sections
of the chapter.
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