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1. Introduction

Soil salinity is a worldwide problem as well as in Central and Northern Mexico. Nearly 8.4
million ha worldwide are affected by soil salinity and alkalinity, of which about 5.5 million ha
are waterlogged [1]. The problem worsens in arid and semiarid areas, in soils with insufficient
drainage [2] and high evaporation [3]. In Mexico, there are 6.46 million ha irrigated mainly in
the center and north territory areas [4]; 10-30 % of irrigated land is affected by salinity and
nearly two thirds of this area is located in the North [5].

The salinization of these irrigated areas is an increasing problem and the lands are abandoned;
therefore, a technical and economic alternative to recover this land is needed. Agricultural
subsurface drainage is a solution which takes into account the technology by environment
interaction, as well as lowering the water table levels along with the salt concentration in the
soil profile [1].

The dynamics of water drainage systems has been studied by applying the Boussinesq
equation [6] for unconfined aquifers using the finite element technique [7,8] and the finite
difference [9,10], and the solutes dynamics has been studied by applying the Fick’s law
[11,12,13]. These results in the advection-dispersion equation, namely by gravity and Fick’s
law.

The solutes are also found in the gas phase and adsorbed by soil in the solid phase, the first
phase is disregarded for purposes of transport modeling in water, but it is really important in
terms of the amount of fertilizer transferred into the atmosphere at a given time [14,15,16], and
incorporating the adsorbed substance in the solid phase. The relationship between the
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substance which transported by the water flow and the substance which adsorbed and
exchanges in the soil solid structure is known as the adsorption isotherm [11,12,13].

A large number of models for simulating solute transport in the unsaturated zone are now
increasingly being used for a wide range of applications in both research and management
[17], some of the more popular models include SWAP [18], HYDRUS-1D [19], STANMOD
(STudio of ANalytical MODels) [20], UNSATH [21] and COUP [22] but the majority of
applications for water flow in the vadose zone requires a numerical solution of the Richards
equation [23], also requires more calculation time in order to find the equation solution.

This study aims to solve the one-dimensional advection-dispersion equation using the
technique of finite differences, coupled with the Boussinesq equation in order to model the
transport of solutes in subsurface drainage systems, assuming that the solute is concentrated
in the liquid phase.

2. Theory

2.1. The Boussinesq equation

In the study of the water dynamics in agricultural subsurface drainage systems using the
Boussinesq equation, the variations in hydraulic head along the drain pipes (direction y) are
negligible with respect to head variations in the cross section (direction x). It is the one-
dimensional Boussinesq equation which is a result of the continuity equation,
∂ (υH ) / ∂ t + ∂ (Hq) / ∂ x =Rw, and the Darcy’s law, q = −Ks∂H / ∂ x, namely:

( ) ( )m ¶ ¶ ¶é ù= +ê ú¶ ¶ ¶ë û
w

H HH T H R
t x x

(1)

where μ(H ) is the storage capacity, H =H (x, t) is the elevations of the free surface or hydraulic
head above the impervious layer L , and is a function the horizontal coordinate (x) and the
time (t), T (H ) is the transmissivity given by T (H )=KsH  L 2T −1 , Rw is the volume of recharge
in the unit of time per unit of the aquifer L 3 , υ =υ(H ) is the drainable porosity as a head
function, and Ks is the saturated hydraulic conductivity L T −1 .

The storage capacity, see [24], is: μ(H )=θs −θ(H −Hs), where θs is the saturated volumetric
water content L 3L −3 , and θ(H −Hs) represents the water content evolution in the position
z =Hs, while the free surface decreases, and z is the elevation of ground surface L .

2.2. The drainable porosity

To calculate the storage capacity and the drainable porosity it is necessary to provide the soil
water retention curve. The model of van Genuchten [25] was accepted in field and laboratory
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studies: θ(ψ)=θr + (θs −θr) 1 + (ψ /ψd )n −m, where ψ is the soil water potential defined by
ψ =(H − z) L , ψd  is the pressure scale parameter L , θs is the saturated volumetric water
content L 3L −3 , θr  is the residual volumetric content L 3L −3 , m and n are parameters
(dimensionless) that determine the shape of the soil water retention curve. The introduction
of this equation in the storage capacity results in the following expression for storage capacity:
μ(H )= (θs −θr){1− 1 + ((Hs −H ) / |ψd |)n −m}.
The saturated volumetric water content can be assimilated to the soil porosity (ϕ), dimension‐
less, this is calculated with the formula ϕ =1−ρt /ρo, where ρt  is the bulk density ML −3  and
ρo is the particles density ML −3 ; the residual volumetric water content (θr) is considered to
be zero.

2.3. Initial and boundary conditions

To study the agricultural drainage with equation (1), the initial and boundary conditions
should be defined at the domain. The initial condition is established from the water table
position at the initial time. Dirichlet and Neumann boundary type conditions can be used on
drains to solve equation (1), the pressure head on the drains is required in the first condition
whereas the drainage flux is required in the second one [8]. A third type of boundary condition
is a linear combination of the precedent conditions; this condition includes a resistance
parameter to the flow at the soil–drain interface. Null resistance corresponds to the Dirichlet
condition and infinite resistance corresponds to Neumann condition. The third condition is a
radiation type condition [26]. In the case of drainage, the radiation condition establishes that
drainage flux is directly proportional to the pressure head on the drain and inversely propor‐
tional to the resistance in the interface between soil and the drainpipe wall in concordance to
the Ohm law.

The hydraulic head measured above the impermeable barrier H (x, t) is associated with the
head h (x, t) measured from above the drains using: H (x, t)=Do + h (x, t), where Do is the
distance from the impermeable barrier to the drains L . Transversal variation of h at the
beginning is considered as the initial condition h (x, 0)=h s(x), where h s is the head on the drain
in the initial time L . The fractal radiation condition for the Boussinesq equations is given by
[8]:

2

0 0 0
æ ö¶

- ± = = =ç ÷
¶ è ø

s

s s
s

h hK q ; x ,Lx ,L
x h

(2)

where the positive sign corresponds to x =0 and the negative sign to x = L . L is the distance
between drains; qs is the corresponding flux to h s and it is function of the soil-drain interface
characteristic L T −1 . For the s parameter, the authors argued that it is defined by s =D / E ,
where D is the effective fractal dimension to the soil-drain interface, and E =3 is the Euclidean
dimension of physical space. The relation of the s parameter and effective porosity is obtained
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from the equation (1−ϕ)s + ϕ 2s =1 given by [27]. Equation (2) contains as particular cases the
lineal radiation condition when s =1 / 2 and the quadratic radiation condition when s =1. In a
system of parallel drains, the drained water flows by length unit at each drain is:
Qd (t)=2 Do + h (0, t) qs h (0, t) / h s 2s, and the cumulative drained depth is calculated by

ℓ(t)= 1
L ∫

0

t

Qd (t̄)d t̄ , where t̄  is the integration variable.

2.4. Solute transport equation

The advection-dispersion equation used to study the solute transport [28,29,30], in a one-
dimensional form, is a result of the continuity equation, ∂ (HCT ) / ∂ t + ∂Qs / ∂ x =Rs, and the
dynamic law given by Qs =HqC −υHDa(∂C / ∂ x), namely:

( ) ( ) u
¶ ¶ ¶ ¶é ù+ = +ê ú¶ ¶ ¶ ¶ë û

T
s

HC HqC C   HDa  R
t x x x

(3)

where Da is the diffusion coefficient in the water L 2T −1 ; CT  is the total solute concentration
in soil ML −3 ; C  is the solute concentration in water ML −3 ; and Rs is the term which includes
gains or losses of the solute due to chemical reactions and the extraction plant M . Note that
q and υ are obtained from the water flow model. The diffusion coefficient in the water is
calculated by Da=λv, where λ is the dispersivity L  and v the interstitial velocity of water
calculated by v =q / υ L T −1 .

The water soluble compounds which have a negligible vapor pressure can exist in three phases
of soil: 1) dissolved in water, 2) as vapor in the soil atmosphere and 3) as stationary phase
adsorbed to soil organic matter or in the clay mineral surfaces [11,12,13]. The total concentra‐
tion of the compound (CT ), expressed in units of mass per volume of soil can be written as:
CT =υC + ρtCa, where Ca is the concentration of the adsorbed compound ML −3  and is a
function of the concentration of the solute in the mobile phase (Cd) ML −3  and the adsorption
constant of the solute to the stationary phase surface (κ), Ca=κCd , namely linear isotherm. Thus,
the concentration of the substance compared to the volume of the porous medium (CT ) will
be the result of a part that is in the water, air and the dynamic equilibrium with the phase that
generates it. Generally, in studies in small time scales, such as irrigation and drainage in a
porous medium, the gas phase is not considered [29]. Thus, in this work, the concentration in
the adsorbed phase, the concentration in the gas phase and the term Rs are ignored.

2.5. Numerical scheme

The numerical scheme used is based on the assumption that the solute is concentrated mainly
in the liquid phase. Thus, the advection-dispersion equation in one-dimensional is given by
equation (3). To solve this equation, we use the same discretization scheme to transfer water
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in the Boussinesq equation [10], for which two interpolation parameters are introduced:
γ = (xi+γ − xi / xi+1− xi) and ω = (t j+ω − tj / t j+1− tj), where 0≤γ ≤1 and 0≤ω ≤1; i =1, 2, ... and j =1, 2, ...

are the space and time indices, respectively.

The dependent variable (Φ) in an intermediate node i + γ for all j is estimated as:

( ) 11gF g F gF+ += - +j j j
i i i (4)

while the intermediate time j + ω for all i is estimated as:

( ) 11wF w F wF+ += - +j j j
i i i (5)

The discretization of the temporal derivative in the equation (3) is:

( ) ( ) ( ) ( ) ( )1 11 1
1
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+

+

- + -¶
= = - + = -
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j j j j jj j j j
i i t di t di j ji i i i

i i j j j
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H C H C H C H CHC
b C b C b ; t t t

t t
(6)

where:

( ) ( ) ( ) ( )1 11
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D D D
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j j j jj j
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j j j
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b ; b ; b

t t t
(7)

The spatial derivative discretization in the continuity equation is:

( ) ( )( ) ( )1
1 11

w ww
g g D g g
D

+ ++
+ - -

- +

-¶
= = - - + -

¶

j jj
i i

i i i i i
i i

Qs QsQs ; x x x x x
x x

(8)

According with the dynamic law:

( ) ( ) ( ) 1

1

w w
w w w ww

gg g gg
u

+ +
+ + + ++ +

++ + ++
+

-
= -

-

j j
j j j jj i i

ii i ii
i i

C C Qs Hq C H Da
x x (9)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

11 1 11
1

w w
w w w ww
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+ +
+ + + ++ -

- -- - - - - -- -
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-
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-

j j
j j j jj i i

ii i ii
i i

C C Qs Hq C H Da
x x (10)
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According with the equation (4), the spatial interpolation is:

( ) ( ) ( )1 111 1g gg g g g+ + -- -= - + = - +j j j j j j
i i i i iiC C C ; C C C (11)

and according with the equation (5) the temporal interpolation is Ci j+ω =(1−ω)Ci
j + ωCi

j+1.

The dependent variables involved in the advective term of the equations (9) and (10) are
defined by:

( ) ( ) ( ) ( )1 1 1
1 11 1 1 1w

g g gw w w g g w g g+ + + +
+ + + + +é ù é ù= - + = - - + + - +ë û ë û
j j j j j j j

i i i i i i i C C C C C C C (12)

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1
1 11 1 11 1 1 1w

g g gw w w g g w g g+ + + +
- -- - - - - -

é ù é ù= - + = - - + + - +ë û ë û
j j j j j j j

i i i ii i i C C C C C C C (13)

while the dependent variables involved in the dispersive term of the same equations are
defined by:

( ) ( ) ( )1 1 1
1 1 1 1 1 11 1 1w w ww w w w w w+ + + + + +

+ + + - - -= - + = - + = - +j j j j j j j j j
i i i i i i i i iC C C ; C C C ; C C C (14)

Equation (8) considering equations (9) and (10) can be written as:

( ) ( ) ( )1 2 1 3 4 11

w
w w w w w w
g g

+
+ + + + + +
+ + -- -

¶
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¶

j
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i

Qs a C a C C a C a C C
x

(15)

where:
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(16)

Substituting equations (12)-(14) in equation (15) and associating similar terms allows obtain‐
ing:

( ) ( ) [ ]

( ) ( ) ( ) ( )
( )[ ]

1 1 1
4 3 1 1 2 3 4 1 2 1

4 3 1 4 3 2 1
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(17)
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Substituting equations (6) and (17) in the continuity equation, the following algebraic equa‐
tions system is obtained:

1 1 1
1 1 2 3 1+ + +
- ++ + = = -j j j

i i i i i i iAs C Bs C Ds C   Es ; i , ,...,n (18)

where

( )4 31w g= - é + - ùë ûiAs  a a (19)

( ) 1 2 3 4 21w g g= é - + - + ù +ë ûiBs a a a a b (20)

[ ]1 2w g= -iDs a a (21)

( ) ( )
( ) ( ){ } ( )[ ]
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+
-

+

= + - é + - ùë û
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i i i

j j
i i

Es   Rs a a C

a a a a b C a a C  b
(22)

The water flow and the head are obtained from the Boussinesq equation solution, so that they
should be included in the system (18). To find the solution of the water transfer equation, it is
necessary to specify the initial and boundary conditions, equation (18) can be solved with the
Thomas Algorithm, see [31,10].

The Thomas algorithm, also known as the tridiagonal matrix algorithm (TDMA), is a simplified
form of Gaussian elimination that can be used to solve tridiagonal matrix systems (equation
18) [32]. It is based on LU  decomposition in wich the matrix system Mx = r  where L  is a lower
triangular matrix and U  is an upper triangular matrix. The system can be efficiently solved by
setting Ux = p and then solving first Lp = r  for p and then Ux = p for x. The Thomas algorithm
consist of two steps. In the first step decomposing the matrix into M = LU  and solving Lp = r
are accomplished in a single downwards sweep, taking us straight from Mx = r  to Ux = p. In the
second step the equation Ux = p is solved for x in an upwards sweep [33].

2.6. Linear radiation condition

The radiation boundary condition, or mixed condition, is used to accept a linear variation
between the dispersive flux and concentration difference with the external medium (Cext) and
the border, for all time. The linear radiation condition is due originally to Newton, who
postulated that the heat flow at the border of a body is proportional to the temperature
difference between the body and the medium that surrounds it; the result is equivalent to a
Ohm law into electricity. To linearize these conditions, we introduce a generalization of the
dimensionless conductance coefficient (κs), as follows: − (∂C / ∂ x) + κs(C −Cext / L )=0. If we
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observe the one-dimensional equation of solute transport, the dimensionless conductance
coefficient (κs) must be zero by the advective component, however, the solution is allowed only
for purposes of illustration to derive the boundary conditions.

2.7. Selection of the space (Δx) and time (Δt) increments

In reference [10] the authors discuss the selection of spatial and temporal increments pointing
out a comparison of the depletion of the free surface for all time between the results obtained
with the finite difference solution of the Boussinesq equation and the results obtained with an
analytical solution reported in the literature. The same authors [10] concluded that the optimal
interpolation that minimizes the sum of the squares errors are γ =0.5Δx (cm) and ω =0.98Δt  (h),
for space and time respectively.

3. Application

3.1. Laboratory experiment

To evaluate the descriptive capacity of the numerical solution, a drainage experiment was
conducted in a laboratory. The drainage module (see Figure 1) is the one used by [8] and [10].
The module dimensions are: L =100 cm, Hs =120 cm and Do =25 cm. The drain diameter is d =5
cm and the drain length is ℓ=30 cm.

Figure 1. Drainage module
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The module was filled with altered sample of salty soil of Celaya, Guanajuato, México (see
Figure 2). Soil passed through a 2 mm sieve and was disposed on 5 cm thick layers, in order
to maintain the bulk density at a constant value. The soil was saturated by applying a constant
water head (no salt) on its surface until the entrapped air was virtually removed. Once the
drains were closed, the water head was removed from the soil surface; the surface of the
module was then covered with a plastic in order to avoid evaporation. Finally, the drains were
opened to measure the drained water volume; the initial condition was equivalent to h (x, 0)=h s
and the recharge was null Rw =0 during the drainage phase. Soil porosity (ϕ) was calculated
with the formula ϕ =1−ρt /ρo (the bulk density was determined by the weight and volume of

the soil of drainage module ρt =1.14 g / cm 3 and the particles density ρs =2.65 g / cm 3, ϕ =0.5695

cm 3 / cm 3 was obtained). The soil fractal dimension obtained was equal to 0.7026.

Figure 2. Study site

3.2. Analysis of the salt content

During the module drainage process (154 h), measurements of pH, temperature and electrical
conductivity of water samples were made at defined time intervals (each hour the first 20 hours
and subsequently increased to the range 2, 4, 6 and 8 h). The sensor used for measurement is
a CONDUCTRONIC PC 18 sensor. The electrical conductivity at room temperature was
recorded with it. However, in order to accurately quantify conductivity, it is important to
consider a standard value of 25° C, which can be used to correct the values obtained. The
correction factor used in accordance with [34] is 2-3 % for every Celsius degree that is measured
under standard temperature. According with [34] (1964), the relationship between electrical
conductivity and concentration is:
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640=C x EC (23)

where C  is the concentration given in mg / l  and EC  the electrical conductivity given in dS /m
or mmhos / cm.

3.3. The hydrodynamic characteristic

To solve the Boussinesq equation, the van Genuchten model [25] for the water retention curve
was used, along with a model of hydraulic conductivity of Fuentes [27] namely geometric
mean model {K (Θ)=Ks 1− (1−Θ 1/m)sm 2} with the restriction 0< sm=1−2s / n <1; where Θ is the
effective saturation defined by Θ = (θ −θr) / (θs −θr).

3.4. The granulometric curve

The m and n form parameters from the water retention curve are obtained from the granulo‐
metric curve [35] adjusted with the equation F (D)= 1 + (Dg /D)N −M , where F (D) is the
cumulative frequency, based on the weight of the particles whose diameters are less than or
equal to D; Dg  is a characteristic parameter of particle size, M  and N  are two form empirical
parameters. These parameters are rewritten as follows: M =m and N = 1 / 2(1− s) n.

3.5. Inverse problem

To evaluate the capacity of the numerical solution of the Advection-Dispersion Equation, the
experimental information presented by [36] is used. The characteristics of the drainage module
and the soil parameters used in the simulation are: h s =120 cm, D0 =25 cm, L =100 cm, ϕ =0.5695

cm 3 / cm 3, and s =0.7026. The hydrodynamic characteristics used are those of van Genuchten
and Fuentes [25,27]. The scale parameters (ψd , Ks) are obtained from the inverse problem, using
the experimental drained depth and the drained depth calculated with the numerical solution
of the Boussinesq equation [10], given an error criterion between the previous and the new
estimator (1x10−12 cm), using a constant head test and fractal radiation condition with variable
storage capacity and a nonlinear optimization algorithm [37]. The calculations were performed
on a dual-core AMD Opteron machine with 2.6 GHz CPU and 8 GB RAM. The computational
time required to solve the inverse problem was 5 h.

In order to model the salt concentration in the soil profile, with the numerical solution of the
solute transport, the hydraulic parameters obtained from the previous analysis were used. In
the numerical solution, the unknown parameter is the dispersivity coefficient (λ), which is
estimated by minimizing the sum of squares errors between the salt concentration measured
and the salt concentration calculated with the numerical solution over time, using a Levenberg-
Marquardt [37], given an error criterion between the previous and the new estimator
(1x10−9 g / l). The initial condition is the sample initial, taken as a constant in all the system and
radiation as the boundary condition applied in the drains.
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4. Results and discussion

4.1. The granulometric curve

The adjusted parameters are shown in Table 1. Figure 3 shows the experimental granulometric
curve and best fit is obtained with Dg =36.2993 μm and m=0.3410 with a root mean square error
RMSE =0.1477.

Model Ajusted parameters

Ks ψd κ RMSE

(cm/h) (cm) (non-dimensional) (cm)
Geometric mean model 1.5458 143.87 0.0616 0.2195

Table 1. Values of the adjusted parameters from the granulometric curve and the drained depth.
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Figure 3. The experimental granulometric curve and adjusted with the model

4.2. The hydrodynamic characteristic

In order to obtain the values of ψd  and Ks, the spatial and temporal increments used in all the
simulation are Δz =0.0010 cm and Δt =5x10−5 h . Figure 4 shows the experimental drained depth
and the drained depth calculated with the finite difference solution [10], using a storage
capacity variable, fractal radiation condition in the drains and the geometric mean model. To
linearize the boundary condition, one generalization of the conductance coefficient is opti‐
mized (κ) [8,10]. The residual volumetric water content is considered to be zero (θr =0.0

cm 3 / cm 3) [38].
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Figure 4. Comparison between the experimental drained depth and the calculated drained depth.

4.3. Analysis of the salt content

The EC data are shown in Figure 5 using a 2.5% like correction factor. Applying equation
(23) to the data shown in Figure 5, we obtain the concentration in grams per liter (see Figure
6). The initial condition using in the numerical solution is the sample initial (Cini =2.4g / l), taken
as a constant in all the system and radiation as the boundary condition applied in the drains.
The dispersivity value obtained is λ =91.80 cm, with RMSE = 0.1063 g / l  between the experi‐
mental values and the values obtained from the numerical solution. The computational time
required to solve the advection-dispersion model was 2.7 h. The dispersivity value found is
only for this soil, because this value change with depth [39], increase with the flow rate and is
a soil type function. This increase was explained by the activation of large pores at higher flow
rates [40]. Figure 6 shows the experimental salt concentration evolution and the concentration
obtained with the numerical solution.

Comparison shows that the salt concentration obtained with the numerical solution, according
to RMSE, reproduce the experimental salt concentration. Figure 7 shows that in the short time,
when the water flow increased, the salt concentration increases sharply, and in the long time
tends to an asymptote, indicating that the system could not continue removing salts from the
system. However, the value of the dispersivity obtained (λ =91.80 cm) overestimates the
measured data in the long time. Second simulation was performed with the accumulated mass.
To obtain the accumulated mass, it is necessary to obtain the solute flow, which is estimated
by multiplying the water flow by the measured salt concentration in the time interval (see
Figure 7). The cumulative solute mass is obtained by multiplying the solute flow by the time
interval (see Figure 8).
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Figure 6. Comparison between the experimental and the calculated drainage water salt concentration with numerical
solution

The results obtained with the numerical solution, the solute flow and cumulative mass
evolution are shown in Figures 7 and 8, respectively, which demonstrate that the reproductions
of the data were acceptable. The solute flow decreases rapidly, as seen in Figure 7 the concen‐
tration decreased 3.5 g / l after 20 hours. In the long time, the theoretical water flow and
experimental water flow tends to be constant. Comparison showed that the solute flow and
the cumulative mass evolution obtained with the numerical solution, according to RMSE,
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reproduce the experimental salt concentration. The RMSE values for estimating the solute flow
and cumulative solute mass were 0.1842 g / l  and 0.1104 g, respectively. The dispersivity value
obtained is λ =98.03 cm, with RMSE =0.1010 g  between the experimental values and the values
obtained from the numerical solution. The dispersivity value for this new optimization
(cumulative mass evolution) compared to the previous (salt concentration evolution) increases
6.2 cm.
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Figure 7. Solute flow (g/h) in the drainage system.
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Figure 8. Cumulative mass evolution: experimental and obtained with the numerical solution.
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4.4. Using the solution to simulate the leaching of saline soils

To recover saline soils it is necessary to apply irrigation so that the salts are transported to
deeper horizons without harming the roots and are evacuated to other areas through the
drainage channel. For purposes of illustrating the leaching of salts in the soil by applying the
finite difference solution, we assumed a soil with hydraulic and hydrodynamic characteristics
previously found. The initial soil concentration was 10 dS /m and the problem was reduced to
finding the number of irrigation that must be applied to carry a given concentration.

The final average concentration obtained in the profile at the end of the first simulation was
the initial concentration in the system for the next simulation, and so on. Figure 9 shows the
reduced concentration of salts in the soil profile based on an initial concentration. The values
shown are an average concentration in the soil profile at 1-m depth. Depth of drains was
assumed to be 2.0 m.
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Figure 9. Evolution of the salt concentration in the soil by applying the leaching.

The simulations were performed with 5, 10, 15, 20 and 25 m of drains distances. It can be seen
that the decrease in the concentration of salts in the soil profile is similar in all the separations
between drains after applying 6 leachings. However, the time of drainage in each system was
different. For example, with 5 days and 5 m of separation a decrease of the water table profile
was more than one meter, while in the system with separation of 25 m decreased gives only a
few centimeters (see Figure 10), other simulations was realized with 5, 10, 15, 20 and 25 m of
drains distances, but the depth of drains was assumed to be 1.5 m (see Figure 11), therefore
the time of drainage of the soil was a function of the distance between drains
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Figure 10. Decrease of the midpoint water table at different separations between drains under a drain depth of 2.00 m.
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5. Conclusions

The irrigation in the arid and semi-arid regions to sustain agricultural production against the
unpredictable of the rainfall have resulted in the double problem of salinity in many hectares
of good agricultural land. Subsurface drainage systems are used to control the depth of the
water table and to reduce or prevent soil salinity.

The advection-dispersion equation was solved in order to model the temporal evolution of the
concentration of salts removed through an agricultural drainage system with the method of
finite differences. The solution requires the values of the flow of water previously obtained
from the solution of the Boussinesq equation. The hydrodynamic characteristic were obtained
by the inverse problem from the depth drained.

The optimization of the accumulated mass which gave better results in terms of mean square
error criterion between the theoretical and experimental values, since it is a property integrated
in the time and concentration observed at specific levels. The solution presented coupled to
the Boussinesq equation, satisfactorily reproduced the measured data, both in the short time
where the change in concentration was high, as in long times where the concentration values
tended to an asymptote. This asymptotic value of the concentration depended on the distance
between drains of the drainage system.

Finally, the solution of differential equations of transfer processes of water and solute trans‐
port, and hydrodynamic characterization of the soil in an agricultural drainage system, will
be a useful tool for designing new systems for the optimal development of crops according to
their water needs and the degree of tolerance to salinity. In addition, this study can be help us
for quantify crop yield reductions due to salinity on irrigation areas, in order to prevent future
problems such as food shortages.
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