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1. Introduction

It is well known that emission processes reflect certain inherent properties of atoms, but it has
also been demonstrated, in both theory [1,2] and experimentation [3-8], that these same
processes are also sensitive to incidental boundary conditions. One example is how they can
be modified if contained inside a cavity of dimensions comparable to the emitted light
wavelength. The modification can involve emission enhancement or inhibition and is a result
of an alteration of field mode structure inside the cavity compared to free space, which can be
explained in terms of an interaction between atom and cavity modes [9,10].

The density of states (DOS) can be interpreted as a probability density of exciting a single eigen-
state of the electromagnetic (e.m.) field. When the plot of DOS vs. frequency over atomic
transition spectral range is found to be smooth, then the rate of emission can be defined by
Fermi’s golden rule. However, emission dynamics can be drastically modified by photon
localization effects [11] and sudden changes in DOS. Such modifications can be interpreted as
long-term memory effects and examples of non-Markovian atom-reservoir interactions.

Marked transformations can be induced in the DOS using photonic crystals. These dielectric
materials exhibit very noticeable periodic modulations in their refractive indices which result
in the formation of inhibited [12,13] frequency bands or photonic band gaps. The DOS inside
a photonic band gap (PBG) is automatically zero. It is proposed in literature [14-17] that these
conditions might result in classical light localization, inhibition of single-photon emissions,
fractionalized single-atom inversions, photon-atom bound states, and anomalously strong
vacuum Rabi splitting.
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There have been rigorous investigations of spontaneous decay of two-level atoms coupled
with narrow cavity resonance according to Hermitian "universal" modes as against the
dissipative quasi-modes of the cavity by reference [18]. These have concentrated in particular
on cases in which the atomic line-width is nearly equal to the cavity resonance width γ, the
so-called strong-coupling regime, when significant corrections are found into the golden rule.
When the quality factor Q of cavity resonance falls within intermediate values, then sponta‐
neous emission is seen to decay rapidly.

The emission processes investigated in this chapter regard a 1D unenclosed cavity, analysed
according to the theory of reference [18]. There is specific discussion of the stimulated release
of an atom under strong coupling regime inside a 1D-PBG cavity generated by two colliding
laser beams. Atom-e.m. field coupling is modelled by quantum electro-dynamics, as per
reference [18], with the atom considered as a two tier system, and the e.m. field as a superpo‐
sition of normal modes. The coupling is in dipole approximation, Wigner-Weisskopf and
rotating wave approximations are applied for the motion equations. An unenclosed cavity is
conceived in the Quasi-Normal Mode (QNM), as in reference [18], and so the local density of
states (LDOS) is defined as the local probability density of exciting a single cavity QNM. As a
result the local DOS is effectively dependent on the phase difference between the two laser
beams.

1.1. Quasi-Normal Modes (QNMs)

Describing a field inside an unenclosed cavity presents a problem that various authors have
confronted, with references [19-22] proposing a QNM-based description of an electromagnetic
field inside an open, one-sided homogeneous cavity. Because of the leakage, the QNMs exhibit
complex eigen-frequencies as a consequence of leakage from the unenclosed cavity, with an
orthogonal basis being assumed only inside the cavity and following a non-canonical metric.

The QNM approach was extended to open double-sided, non-homogeneous cavities and
specifically to 1D-PBG cavities in references [23,24].

It is only possible to quantize a leaky cavity [25], considered a dissipative system, if the
container is viewed as part of the total universe, within which energy is conserved [26]. A
fundamental step towards the application of QNMs to the study of quantum electro-dynamics
phenomena in cavities was already achieved in reference [27].

The second QNM-theory-based quantization scheme was extended to 1D-PBGs in reference
[28]. References [29,30] applied the second QNM quantization to 1D-PBGs, excited by two
pumps acting in opposite directions. The commutation relations observed for QNMs are not
canonical, while also depending on the phase-difference between the two pumps and the
unenclosed cavity geometry. Reference [31] applies QNM theory in an investigation of
stimulated emission from an atom embedded inside a 1D-PBG under weak coupling regime,
with two counter-propagating laser beams used to pump the system. The most significant
result in reference [31] is the observation that the position of the dipole inside the cavity
controls decay-time. This means that the phase-difference of the two laser beams can be used
to control decay-time, which could be applicable on an atomic scale for a phase-sensitive,
single-atom optical memory device.
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The present chapter discusses stimulated emission of an atom enclosed inside a 1D-PBG cavity
under strong coupling regime, generated by two counter-propagating laser beams [32,33]. The
principal observation is a demonstration that high LDOS values can be used as a definition for
a strong coupling regime. Further observations agree with literature in stating that the atomic
emission probability decays with an oscillating pattern, and the atomic emission spectrum split
into two peaks, known as Rabi splitting. What makes the observations of this chapter unique
compared to literature is that by varying the laser beam phase difference it is possible to
effectively control both the atomic emission probability oscillations, and the characteristic Rabi
splitting of the emission spectrum. Some criteria are proposed for the design of active cavities,
comprising a 1D-PBG together with atom, as active delay line, when it is possible to achieve
high transmission in a narrow pass band for a delayed pulse by applying suitably differing
laser beams phases.

In section 2, quantum electro-dynamic equations are used to model the coupling of an atom
to an e.m. field, as an analogy of the theory of an atom in free space. In section 3, the atom is
also contained within an unenclosed cavity, and the local probability density of a single QNM
being excited is considered a definition of LDOS probability density. The atomic emission
processes are modelled in section 4 with the LDOS of the stimulated emission depending on
the phase difference of two counter-propagating laser beams. Section 5 discusses the proba‐
bility of atomic emission under strong coupling regime. In section 6, the atomic emission
spectrum is defined on the basis of its poles. Some criteria for the design of an active delay line
are proposed in section 7, while section 8 is dedicated to a final discussion and concluding
remarks.

2. Coupling of an atom to an electromagnetic (e.m.) field

The present case study examines an atom coupled to an e.m. field at a point x0∈U  inside a
one-dimensional (1D) universe U = {x | x∈ − L / 2, L / 2 ,  L →∞} with refractive index n0, and
an unenclosed cavity C ={x | x∈ (0, d ),  d < L } with an inhomogeneous refractive index n(x).

The atom is quantized into two levels, with an oscillating resonance of Ω [25]. The 1D universe
modes are applied to quantize the e.m. field
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when ρ0=(n0/c)2, and c is the speed of light in a vacuum. The dipole operator μ [25] is used to
model the atom along the direction of polarization of the e.m. field, and the coupling of the
atom to the e.m. field is described using the electric dipole approximation [26].

Coherent Control of Stimulated Emission Inside one Dimensional Photonic Crystals — Strong Coupling Regime
http://dx.doi.org/10.5772/59900

145



At start time (t=0) the atom is in an excited state | +  and the e.m. field is in a vacuum state

| {0} = ∏
λ=−∞

∞
|0λ . The system dynamics under these initial conditions can be described with basis

states and corresponding eigen-values [18] as follows:
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when |+, {0}  denotes the upper state of the atom, without any photons in all the e.m. modes;
and | − , 1λ  denotes the lower state of the atom, with one photon in the λth e.m. mode but any
photons in the other e.m. modes.

2.1. Quantum electro-dynamic equations

If an initial condition |+, {0}  is assumed, then the atom-field system state at time instant t>0
can be defined as
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introducing the probability amplitudes c
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(0)=1 and c
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(0)=0, and assuming

the rotating wave approximation [26]. The time evolution equations for the probability
amplitudes c
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(t) and c
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(t) [18] are used as a starting point, thus
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the second of these can be formally integrated producing a time evolution equation for the
probability amplitude c

+
(t) as follows:
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when ε0 is the dielectric constant in vacuum and M = | + |μ | − | 2.

It is possible to establish a correspondence between the discrete modes and continuous modes
of, respectively, a 1D cavity of length L, and an infinite universe of length L →  ∞. As L →  ∞,
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the mode spectrum approaches continuity, since Δωλ =π / (L / 2) ρ0≈dω →0. When this limit is
reached, sums over discrete indices can be transformed into integrals over a continuous
variable of frequency,

( )(loc)
0

1 0

1 , ,d x
L

¥¥
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Þå ò
l

ws w (6)

when σ(loc)(x,ω) is the local density of states (LDOS), which can be interpreted as the density of
probability for an excited level of the e.m. field, at a point x, collapsed into a single eigen-state,
oscillating around the frequency ω [34,35]. Strictly speaking, in Equation (6), the range of
integration over ω only extends from 0 to ∞, given that the physical frequencies are defined as
positive. Nevertheless, it is possible to extend the range from –∞ to ∞ without significant errors,
due to the fact that most optical experiments utilize a narrow band source B [36], such that
B<<ωc, with ωc the bandwidth B as the central frequency. The time evolution Equation (5)
therefore becomes
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the kernel function K(x, t) being defined as:
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As emerges from Equation (8), there is a marked dependence of the kernel function on the
LDOS through σ(loc)(x,ω). It is possible to reinterpret the latter as the density of photon states
in the reservoir. Essentially, the kernel function (8) is a gauge of the memory of previous state
of the photon reservoir, within the evolutionary time scale of the atomic system, thus K(x, t)
could be considered the photon reservoir's memory kernel.

2.2. Atom in free space

If an atom is located at a given point x0 outside the unenclosed cavity, so that x0<0 or x0>d, then
the local DOS σ(loc)(x,ω) refers to free space (see references [26,31]):

( ) 0(loc)
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r
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The probability of atomic emission decays exponentially in free space,
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( ) ( )2
0=exp    ,   0,c t t t+ -G ³ (10)

being Г0 the atomic decay rate:

2

0 0
0 2 2

0 0 0 0

11 .
4

M M
n n

é ùæ ö
ê úG = W + ç ÷ç ÷ê úè øë û

h h
r r

e e
(11)

Free space is an infinitely large photon reservoir (a flat spectrum), and so it should respond
instantaneous, with any memory effects associated to emission dynamics being infinitesimally
short relative to any time intervals of interest. According to the so-called Markovian [26]
interactions, an excited state population gradually decays to ground level in free space,
regardless of any driving field strength. This result is generally valid for almost any smoothly
varying broadband DOS.

The following parameter is now introduced as a step for the analysis of the next section,
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interpretable as the degree of atom-field coupling, and with the possibility of expressing
Equation (8) as:
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3. Atom inside an unenclosed cavity

Assuming 0<x0<d, which represents an atom embedded at a point x0 inside an open, inhomo‐
geneous cavity with refractive index n(x), if the resonance frequency Ω of the atom is coupled
with the nth QNM oscillating at frequency Reω

n
, then the coupling will exhibit frequency

detuning:

Re .n
n R

-W
D =

w
(14)

3.1. Density Of States (DOS) as the probability density to excite a singleQNM

By filtering two counter-propagating pumps at an atomic resonance Ω≈Reωn, it emerges that
only the nth QNM, and no other QNMs, can be excited, because the nth QNM is the only one
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oscillating at the frequency Reωn and within the narrow range 2|Imωn|<<|Reωn|, which is
sufficiently remote to exclude the other QNMs [23,24]. Around point x, the local probability
density that the e.m. field is in fact excited on the nth QNM is [31]
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2(loc) N1,    ,   0 ,n n n
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x x f x x x d
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= " < <s w s w r (15)

which is related directly to the (integral) probability density σ
n
(ω) for the nth QNM. In Equation

(15), ρ(x)=[n(x)/c]2, I
n
 denotes an appropriate overlapping integral [28], while

f n
N(x)= f n(x) 2ωn / f n | f n  is the normalized QNM function, with f n | f n  representing the

QNM norm.

For the investigation of spontaneous emissions, the two pumps are modelled as fluctuations
of vacuum, based on the e.m. field ground state (for examples, see references [26,28-30]). The
(integral) probability density that the nth QNM is excited within the unenclosed cavity can be
expressed as [31]:
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It is possible to deduce a normalization constant α
n
 from the condition:
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From Equation (16) it was deduced that the probability density due to fluctuations in vacuum
for the nth QNM is a Lorentzian function, with parameters including real and imaginary parts
of the nth QNM frequency. There is a relation between the overlapping integral I

n
 and the

statistical weight of the nth QNM in the DOS. Equation (17) also integrates the probability
density σn

(I)(ω) into the range of negative frequencies ω∈ −Reωn − | Imωn | , −Reωn + | Imωn | ,
since with Reωn >0 the QNM frequency ωn is also represented by frequency ω−n = −ωn

∗ with
Reω−n <0 [23,24].

Stimulated emissions are considered by modelling the two pumps as a pair of laser beams in
a coherent state (see references [26,28-30] for examples). When the symmetry property is
achieved by the refractive index n(x), so that n(d/2–x)=n(d/2+x), then the probability density
that the e.m. field is excited to the nth QNM inside the cavity can be written as [31]:

( ) ( ) ( )(II) (I) 1 1 cosΔ . n
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Equation (18) shows that the phase-difference Δφ of the pair of counter-propagating laser
beams can be used to control the probability density for the nth QNM.

4. Atomic emission processes

With an atom at point x0 of an unenclosed inhomogeneous cavity, so that 0<x0<d, and electro‐
magnetic field coupling limited to the nth QNM ωn, f n

N(x)  of the unenclosed cavity, then the
local probability density σn

(loc)(x, ω) is related to the integral probability density σn(ω) as in
Equation (15) and the atomic emission processes exhibit a characteristic kernel function K(x,t),
which can be expanded as [see Equation (13)]:
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4.1. Spontaneous emission: DOS due to vacuum fluctuations

If the unenclosed cavity is only affected by fluctuations of vacuum filtered at the atomic
resonance Ω and close to the cavity's nth QNM frequency (Ω≈Reω

n
), then Equations (16) and

(17) can be used to express the integral probability density σn
(I)(ω) for the nth QNM, and atomic

spontaneous emission exhibits a characteristic time evolution [see Equation (7)] in which the
kernel function K

n
(x,t) can be expressed as [see Equation (19)]:
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The resulting signal x(t) can easily be transformed into the Fourier domain [37]:
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Applying Equations (20) and (21) for the kernel function of the spontaneous emission process
gives:
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Now, in Equation (7), deriving under the integral sign [37] gives
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and deriving Equation (22) again, sampled at point x0, relative to time,
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which after some algebraic transformations produces a second order differential equation in
time for spontaneous emission probability:
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4.2. Stimulated emission: DOS dependant on the phase difference of a pair of counter-
propagating laser-beams

If the unenclosed cavity is pumped coherently by two counter-propagating laser beams with
a phase difference Δφ, tuned to the atomic resonance Ω and closed to the nth QNM frequency
(Ω≈Reω

n
), then the probability density σn

(II)(ω) for the nth QNM, for the state of the two laser
beams, is related to σn

(I)(ω), which is calculated using Equation (18) when vacuum fluctuations
are present. The atomic stimulated emission exhibits a characteristic kernel function K

n
(x,ω),

which can be expressed as follows [see Equation (20)]:
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n
–Ω) can be re-expressed in terms of frequency detuning (14), as (ω

n
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Ω)=(Reω
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n
 so that the second order differential equation for emission

probability becomes:
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5. Atomic emission probability

The initial conditions being the same as Equation (25), the algebraic equation associated with
the Cauchy problem (27) can be recast as:
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( ) ( )2
0Im , 0 0.n n np R i p K x t+ D + + = =w (28)

This is solved with two roots,
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which permit expression of the particular integral of the differential Equation (27) as:
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The atom and the nth QNM are coupled under a strong regime when the behaviour of the
particular integral (30) is oscillatory, and when the two roots (29) of the relative algebraic
Equation (28), are complex conjugates [18].

5.1. Strong coupling regime

Spontaneous emission is examined in order to assess the atom - nth QNM coupling under strong
regime. Given that,
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there is a strong coupling regime if [18]:
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Equation (32) shows that a strong coupling regime is present when the probability density (16)
inside the unenclosed cavity, sampled at atomic resonance in units of DOS (9) with reference
to free space, is in excess of the inverse of the atomic parameter R [see Equation (12)]. An
interpretation of parameter R as a level of atom field coupling is thus legitimated: the greater
R becomes, the better Equation (32) is satisfied. The two roots (29) become complex conjugates
in the hypothesis of a strong coupling regime (32),
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and the behaviour of the particular integral (30) is oscillatory:
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In reality [see Equation (22)] Kn
(I)(x0, t =0)= −Kn

(I)(x0, t =0). It is possible to interpret the oscilla‐
tory behaviour as emission re-absorption of a single photon and so the net decay rate can thus
be determined from the rate of photon leakage, which is |Imω

n
|/2.

In the case of stimulated emissions, the coupling between atom and the nth QNM can again be
considered under strong regime. Given a phase difference of ∆φ for the pair of counter-
propagating laser beams, then the atom - nth QNM coupling exhibits the kernel function (26).
Assuming hypothetical strong coupling as expressed by a similar condition to Equation (32),
the behaviour of the particular integral (30) is oscillatory,
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when Kn
(II)(x0, t =0) is linked to the phase difference ∆φ through Equation (26). The quantity of

atomic emission probability oscillations is dependent on the position of the atom inside the
cavity and so the phase-difference of the paired laser-beams can be used to control it. The
condition,

( )1 1 cos 0,n+ - D =j (36)

is satisfied if the atom is coupled to an odd QNM, i.e. n=1,3,... and the paired laser beams are
in phase, i.e. ∆φ=0; or if the atom is coupled to an even QNM, i.e. n=0,2,... and the paired laser
beams are out of phase, i.e. ∆φ=π. When Equation (36) is satisfied, the probability of emission
is over-damped within the entire cavity. Even under strong coupling, no oscillation occurs [see
Equation (35)]:
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6. Atomic emission spectrum

An atom located at point x0 is in its upper state at initial time (t=0) and there are no photons
present in any normal mode, i.e. c+(x0,t=0)=1. Following atomic decay (t=∞), Equation (4) can
be used to derive the coefficient of probability c-,λ(x0,t) of finding the atom in its lower state
with one photon in the λth e.m. mode and no photons in all the other modes:

( ) ( ) ( ), 0 0 02
0 0 0

, ( ) , exp .
2

c x t g x c x t i t dt
n

¥
*

- +

- +
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l
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m w w
e

(38)

Applying the Laplace transform for probability coefficient c+(x0,t),

( ) ( ) ( )0 0
0

1, , exp ,
2

C x s c x t st dt
¥

+ += -òp
(39)

Equation (38) can thus be re-formulated as:
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(40)

If decay has occurred (t=∞), it is possible to define the atomic emission spectrum as the
probability density that the atom at point x0 emitted at frequency ω [18], i.e.

( ) ( ) ( )2

0 , 0
1

, , ,W x c x t
¥

-
=

= = ¥ -å l l
l

w d w w (41)

when δ(t) is the Dirac delta distribution. Integrating Equation (40) into Equation (41), gives:
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(42)

If sums over discrete quantities are converted to integrals over continuous frequencies, using
Equation (6), then the Dirac delta properties can be used to reduce the emission spectrum (42)
to:

( ) ( ) ( )
2(loc)
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0

, , 2 , ,
2
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r (43)
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when α´ is a suitable normalization constant and σ(loc)(x,ω) is the local density of states (DOS).
Equation (12) is used to define the atomic parameter R.

Given that most optical experiments apply a narrow band source [36], it is possible to extend
the frequency range from –∞ to ∞ without significant errors, and the closure relation can be
applied to establish the normalization constant α´

( )0 , 1,W x d
¥

-¥

=ò w w (44)

which derives directly from the interpretation of emission spectrum probability (43). Assum‐
ing 0<x0<d and n(x0)>n0, the atom is embedded inside an unenclosed cavity with inhomogene‐
ous refractive index ρ(x)=[n(x)/c]2. The atom with resonance frequency Ω can be assumed
coupled to the nth QNM and oscillating at the frequency Reω

n
. This atom to nth QNM coupling

is characterized by frequency detuning Δ
n
 (14). The normalization condition (44) can be

reduced to:

( )
Im

0
Im

2 , 1.
n

n

n
W x d

W+

W-

=ò
w

w

w w (45)

Integrals over positive frequencies are multiplied by a factor of 2 in Equation (45) in order to
include the contribution of negative frequencies [see comments following Equation (17)].

Equation (15) showed that the local probability density σn
(loc)(x, ω) for the nth QNM was

proportional to σ
n
(ω). Now if Equation (15) is included into Equation (43), the atomic emission

spectrum is expressed as

( ) ( ) ( ) ( ) ( )
22(N) ( )

0 0 0 0
0

1, 2 , ,
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when α ′
n is the normalization constant that satisfies Equation (45).

The atomic emission processes exhibit a characteristic kernel function K
n
(x,t), here expressible

as in Equation (22), while for stimulated emission as in Equation (26). By including Equation
(22) into Equation (46), the emission spectrum (46) assumes the form:
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The emission spectrum W
n
(x0,ω) emerging from Equation (47) depends on both the probability

density σ
n
(ω), and the initial kernel function value Kn

(I)(x0, t =0).
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Now, by applying the Laplace transformation of the Cauchy problem (27), and the initial
conditions derived from Equation (25), gives finally [37]

( ) ( ) ( )
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i R iC x i
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+ D +
= -

+ D + + =
x wx
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when ξ is the shifted frequency (ω–Ω), with Ω denoting atomic resonance.

6.1. Poles of the emission spectrum

The two poles that solve Equation (28), p1 and p2, can be used to describe the atomic emission
spectrum, as expressed in Equation (29). Hypothesizing a strong coupling regime [see
Equation (32)], the atomic emission spectrum W

n
(x0,ξ) as a function of the shifted frequency ξ

=(ω–Ω), exhibits two characteristic peaks, centred approximately in the Rep1 and Rep2

resonances with bandwidths linked to 2│Imp1│and 2│Imp2│. There is thus a Rabi splitting
with the two peaks separated by:

1 2Re Re .p pD = -x (49)

Considering stimulated emission processes, the paired counter-propagating laser beams are
set to a phase difference ∆φ, and so the emission spectrum W

n
(x0,ξ) can be described using a

kernel function K
n
(x0,t=0) associated with ∆φ [see Equation (26)]. The Rabi splitting thus

depends not only on the position of the atom inside the cavity, but can also be imposed by the
phase-difference of the paired laser-beams.

If the operative condition is close to that defined by Equation (36), such that K
n
(x0,t=0)≈0, the

spectrum W
n
(x0,ω) as a function of the pure frequency ω is limited to two pulses that almost

superimpose each other: 1) a Lorentzian function centred in the nth QNM frequency Reω
n
, with

bandwidth 2| Imωn | , superimposed on 2) a Dirac distribution of atomic resonance Ω≈Reω
n
,

so that [see Equations (16)-(18)]
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when α ″
n is the normalization constant that satisfies condition (45). The two poles, ω1 and ω2,

can be simplified as [see Equations (14), (28) and (29)]:
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7. Criteria for designing an active delay line

In references [23,24] and subsequent papers, the QNM theory was applied to a photonic crystal
(PC) as a symmetric Quarter-Wave (QW) 1D-PBG cavity. The present study considers a
symmetric QW 1D-PBG cavity with parameters λref=1μm, N=5, nh=2, nl=1.5 (see Figure 1). The
motivation for choosing this cavity is that it provides a relatively simple physical context for
discussion of criteria in order to design an active delay line. An atom is located in the centre
of the 1D-PBG, so that x0=d/2 (see Figure 1). Reference [28] discusses how in a symmetric QW
1D-PBG cavity with reference wavelength ωref and N periods, the [0, 2ωref) range includes 2N
+1 QNMs, which are identified as |n , n∈ 0, 2N  (with the exclusion of ω=2ωref). If the location
of the atom is the centre x0 of the 1D-PBG cavity, then it can only be coupled to one of the even
QNMs n because the QNM intensity | f n | 2 in this position has a maximum for even values of
n and is almost null for odd values of n.

The active cavity consists of the 1D-PBG cavity containing one atom, and it is characterized by
a G(x0,ω) global transmission spectrum, this being the product of the 1D-PBG |t(ω)|2 trans‐
mission spectrum, and the W(x0,ω) emission spectrum of the atom [in units of s], so

[ ]2
0 0( , ) ( , ) ( in uni f .) ts oG x W x st=w w w (52)

It is possible to define the active cavity's “density of coupling” (DOC) σC(x0,ω), as the proba‐
bility density that an atom embedded at point x0, is coupled to only a single QNM, with a
oscillation close to the frequency ω. The DOC σC(x0,ω) [in units of s2/m] is the product of the
atomic emission spectrum W(x0,ω), and the DOS σ(ω) [in units of s/m]. It is possible to introduce
an “acceleration of coupling” aC(x0, ω) inside the active cavity as:

2
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0 0 0

1 1 v( )( , )
( , ) ( , )
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.
( , )C
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a x m s
x W x W x

é ù= = = ë û
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when v(ω)=1 / σ(ω). If the active cavity is to be designed as an ideal delay line, then the pulsed
input needs to be retarded and highly amplified, but free of any distortion. For a narrow pass
band the global transmission (52) needs to be very high, with a quasi-constant acceleration of
coupling (53).

As described above, an atom embedded in the centre of a symmetric QW 1D-PBG cavity with
N=5 periods (Figure 1) can only be coupled to a single QNM, oscillating close to an even
transmission peak n=0,2,...,2N. If it is assumed that the atom is coupled to the (N+1)th QNM,
close to the edge of the high frequency band, then the 1D-PBG cavity quality factor will be

1
1

,
ImN

N

Q +
+

W
=

w (54)
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when Ω is the atom's resonance frequency. If it is also assumed that a strong coupling regime
is in force, then the active delay line directories can be satisfied by an appropriate coupling
degree value,

0 ,R G
=
W

(55)

when Γ0 denotes the atomic decay rate in vacuum, and by a suitable atomic frequency detuning
value - (N+1)th QNM coupling,

1
1

Re .N
N R

+
+

-W
D =

w
(56)

If spontaneous emission occurs, assuming perfect tuning so that Δ
N+1

=0, then the oscillation of
the atom is at the frequency of the (N+1)th QNM, which is Ω=Reω

N+1
. A suitable value of coupling

degree R thus exists (see Figures 2.a and 2.b) as R*=0.002506, making the two poles [Equations
(29) and (22)] of the atomic emission spectrum distinct for R>R* or coincident for 0<R<R*.
Alternatively stated, when R>R*, there is a Rabi splitting (see Figure 3.a) in the atomic emission
spectrum [Equations (47), (48) and (22)], generating an oscillation (see Figure 4.a) in the atomic
emission probability [Equations (34) and (22)]. Conversely, when 0<R<R*, the emission
spectrum comprises two superimposed peaks, indicating over-damping of the emission
probability. In an attempt to identify Rabi splitting under strong coupling and consistent with
experimentation (Γ0 ~ |Imω

N+1
|) [38], the following degree of coupling is postulated:

1
1

1 .N
N

R R
Q+

+

= = (57)

The two spontaneous emission spectrum poles, shifted by the atomic resonance Ω, are
ξ1=0.06383+i0.01770 and ξ2=–0.06383+i0.01995 in units of ωref (see Figures 2.a and 2.b). They
describe the two emission spectrum peaks in resonance and bandwidth, with maxima of
W1=21.87 and W2=15.66 in units of ωref (see Figure 3.a). Assuming the disappearance of emission
probability after the second oscillation, then the decay time value is τ=94.3 in units of 1/ωref

(see Figure 4.a). The active cavity designed in this way is a less than ideal optical amplifier, in
the sense that the amplification of an input pulse is accompanied by distortion. In the case of
spontaneous emission plotted in Figures 5.a and 5.b the pass band is narrow, with ξ = ω–Ω ≈
(–0.06, 0.06) (in units of ωref), where the global transmission spectrum exhibits relatively high
values, GC,N +1∈ (Gmin, Gmax)= (2.881,  14.43) in units of 1/ωref. While the coupling acceleration is
modulated close to the value vC,N+1=0.03445 in units of ωref/vref.

An example of stimulated emission is now considered, with the atom inside the symmetric
QW 1D-PBG cavity being excited by a pair of counter-propagating laser beams. The phase
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difference ∆φ of the two laser beams can thus be added as a new degree of freedom for the
realization of an active delay line. If perfect tuning is assumed during stimulated emission,
when Δ

N+1
=0, the atom again oscillates at the frequency of the (N+1)th QNM, which is Ω=Reω

N

+1
. The phase difference range ∆φ, this being (Δφ1, Δφ2)= (2.747,  3.524) in rad units, is adequate

(see Figures 2.c and 2.d) to make the two poles [Equations (29) and (26)] of the atomic emission
spectrum distinct for ∆φ<∆φ1 and ∆φ>∆φ2, but coincident for ∆φ1 <∆φ<∆φ2. In other terms,
when ∆φ<∆φ1 and ∆φ>∆φ2 Rabi splitting (see Figure 3.a) occurs in the atomic emission
spectrum [Equations (47), (48) and (26)], with an oscillation (see Figure 4.a) in the probability
of atomic emission [Equations (35) and (26)]. When ∆φ1<∆φ<∆φ2, the emission spectrum
comprises two superimposed peaks with over-damping of emission probability. The Rabi
splitting and decay time oscillations can therefore be controlled using the phase difference of
the paired laser beams.

Using stimulated emission to obtain an ideal delay line, requires that the paired laser beams
have higher quadrature, so ∆φ>π/2. Compared to spontaneous emission, the emission
spectrum must show narrower Rabi splitting and the emission probability must have a longer
decay time. The active cavity comprising the 1D-PBG together with the atom can thus act as a
delay line, because the active cavity delay time is linked to the atomic decay time (for examples,
see references [39-41]). As noted above, then it is necessary that the phase difference remains
within a maximum of ∆φ1=2.747 (in rad units), beyond which the Rabi splitting tends towards
zero. In the same time domain, increasing the phase difference relative to ∆φ ≈ π/2, causes the
decay time to become even longer, while in the frequency domain the global transmission (52)
exhibits high gain but instead the acceleration of coupling (53) exhibits a narrow pass band.
The active cavity thus acts as an active but not ideal delay line when ∆φ →  ∆φ1. This leads to
the conclusion that the 1D-PBG cavity should be pumped by paired laser beams exceeding a
tilt angle quadrature of:

.
2 10

D = +
p pj (58)

The two stimulated emission spectrum poles are shifted by the resonance Ω, and are respec‐
tively ξ1=0.05205+i0.01787 and ξ2=–0.05205+i0.01978 (in units of ωref) (see Figures 2.c and 2.d).
The two poles are closer by Δξ=0.02356 compared to spontaneous emission. They describe the
resonance and band width of the two stimulated emission spectrum peaks, with maxima of
W1=14.36 and W2=10.93 (in units of ωref) (see Figure 3.a). Compared to spontaneous emission,
the two maxima are reduced by ΔW1=7.51 and ΔW2=4.73. If an emission probability of almost
zero is assumed after the second oscillation, then the stimulated emission decay time is τ=113.5
(in units of 1/ωref) (see Figure 4.a). Compared to spontaneous emission, this time is increased
by Δτ=19.2. The phase difference of the two laser beams thus enables control of atomic decay
time and of active cavity delay time [39-41]. At this point a less than ideal delay line has been
designed, in which an input pulse is retarded and amplified but somewhat distorted. The plots
of Figures 5.a and 5.b show that, compared to spontaneous emission, there is a narrower pass
band, with ξ = ω–Ω ≈ (–0.04, 0.04), with the global transmission spectrum exhibiting similar
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values, so GC,N +1∈ (Gmin, Gmax)= (3.270,  9.24) (in units of ωref), and most significantly the
acceleration of coupling is now slightly modulated around the value vC,N+1=0.05310 (in units of
ωref/vref).

Finally, stimulated emission is considered in the presence of a degree of detuning, when the
atom inside the symmetric QW 1D-PBG cavity remains coupled to the (N+1)th QNM, but no
longer oscillates at the (N+1)th QNM frequency. The active delay line design can be improved
with a final degree of freedom by varying the frequency detuning of the atom - (N+1)th QNM
coupling (56). The application of maximum detuning is proposed to improve the active delay
line. The atomic resonance Ω is lowered to within the photonic band gap, close to the (N+1)th

QNM frequency Reω
N+1

, and the atom only remains coupled to the (N+1)th QNM if the atomic
resonance is within the limit

1 1Re Im ,N N+ +W = -w w (59)

when detuning is maximum:
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+ +
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ww
(60)

Detuned in this way, the two stimulated emission spectrum poles are shifted by the resonance
Ω and exhibit real parts Reξ1=0.03738 and Reξ2=–0.07380, and imaginary parts Imξ1=0.01176
and Imξ2=0.02588 (both in units of ωref) (see Figures 2.c and 2.d). Compared to perfect tuning,
the real parts are reduced by ΔReξ1=0.01467 and ΔReξ2=0.02175, while one imaginary part is
reduced by ΔImξ1=0.00611 and the other is raised by ΔImξ2=0.0061. They describe the reso‐
nance and bandwidth of the two peaks of the stimulated emission spectrum when detuned,
with maxima of W1=38.83 and W2=0.2974 (in units of ωref) (see Figure 3.b). Compared to perfect
tuning, the first peak is raised by ΔW1=24.47 and the second peak is lowered by ΔW2=10.63. If
the atomic emission probability is assumed to be almost zero after the second oscillation, then
the stimulated emission decay time (linked to the active cavity delay time) in the detuned
example is τ=111.2 (in units of 1/ωref) (see Figure 4.b). Compared to perfect tuning, the emission
probability (and thus the input pulse) is somewhat warped and retarded by Δτ=2.3.

The result is the design of a close to ideal delay line, with an input pulse being retarded,
amplified and only slightly distorted. The plots of Figures 5.c and 5.d show that compared to
stimulated emission, the detuned example has an even narrower pass band, at ξ =ω–Ω ≈ (0.02,
0.06), with the global transmission spectrum exhibiting higher values, with
GC,N +1∈ (Gmin, Gmax)= (6.005,  36.77) (in units of 1/ωref). Most significantly, the coupling acceler‐
ation is completely no modulated and almost constant at vC,N +1≅0.007182 (in units of ωref/vref).
As seen in Figure 5.d, the coupling acceleration modulation is shifted into the unused fre‐
quency range ξ ≈ (–0.07, –0.04).
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Figure 1. Symmetric Quarter-Wave (QW) one dimensional (1D) Photonic Band Gap (PBG) cavity with λref=1μm as ref‐
erence wavelength, N=5 periods, consisting of two layers with refractive indices nh=2 and nl=1.5 and lengths h=λref/4nh

and l=λref/4nl. Terminal layers of the symmetric QW 1D-PBG cavity with parameters: nh and h=λref/4nh. Length of the
1D-PBG cavity: d=N(h+l)+h. One atom is present, embedded in the centre of the 1D-PBG, so that x0=d/2 (Figure repro‐
duced from references [32,33]).

Figure 2. If the atom embedded inside the 1D-PBG cavity of Figure 1 oscillates at the (N+1)th Quasi-Normal Mode
(QNM), close to the high-frequency band limit [i.e. perfectly tuned ∆

N+1
,=0, see Equation (56)], spontaneous emission

under strong coupling regime exhibit two characteristic atomic emission spectrum poles, each pole being shifted by
the atomic resonance Ω [see Equations (29) and (22)]; the real (Figure 2.a) and imaginary (Figure 2.b) parts, in units of
the 1D-PBG reference frequency ωref, are plotted as functions of the degree of coupling R=0/Ω, this being the ratio be‐
tween the atomic decay-rate in vacuum 0, and resonance Ω [see Equation (55)].
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Figure 3. The emission spectrum of the atom embedded inside the 1D-PBG cavity of Figure 1 is plotted in units of the
1D-PBG reference frequency ωref, and as a function of the dimensionless shifted frequency ξ=(ω–Ω)/ωref, with Ω denot‐
ing atomic resonance. The atom is coupled to the (N+1)th QNM frequency and emission occurs under strong coupling
regime [for R

N+1
=1/Q

N+1
]. Figure 3.a illustrates hypothetical tuning, with the spontaneous atomic emission spectrum [see

Equations (47) and (48)] compared to the stimulated emission spectrum [see Equations (47) and (48)], when the 1D-
PBG is pumped by paired laser beams with an appropriate phase difference: ∆φ=(π/2)+(π/10) [see Equation (58)]. Fig‐
ure 3.b instead illustrates a case of stimulated emission, comparing the perfectly tuned atomic emission spectrum with
the detuned emission spectrum (Figure reproduced from references [32,33]).

Figure 4. The emission probability of the atom embedded inside the 1D-PBG cavity of Figure 1 is plotted as a function
of the normalized time ωreft, with ωref being the 1D-PBG reference frequency. With reference to the operative conditions
of Figure 3: hypothetical tuning is shown in Figure 4.a, comparing the spontaneous atomic emission probability [see
Equation (34)], with stimulated emission probability [see Equation (35)] when the 1D-PBG is pumped by paired laser
beams with an appropriate phase difference: ∆φ=(π/2)+(π/10). Figure 4.b illustrates stimulated emission, comparing
atomic emission probability under perfect tuning with emission probability when detuned (Figure reproduced from
references [32,33]).

If a pair of counter-propagating laser beams are tuned to the resonance Ω and the atom is
coupled to the (N+1)th QNM, [i.e. Q

N+1
=Ω /Imω

N+1
, see Equation (54)], the stimulated emission
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under strong coupling [for R
N+1

=1/Q
N+1

, see Equation (57)] exhibits two characteristic atomic
emission spectrum poles, each pole being shifted by the resonance Ω [see Equations (29) and
(26)]. The real (Figure 2.c) and imaginary (Figure 2.d) parts, in units of the 1D-PBG reference
frequency ωref, are plotted as functions of the phase difference ∆φ between the paired laser
beams regardless of whether the atom oscillates at the (N+1)th QNM frequency [i.e. perfectly
tuned ∆

N+1
=0] or at a frequency in the band gap close to the high frequency band limit [i.e.

detuned ∆
N+1

=Imω
N+1

/ R
N+1

, see Equation (60)] (Figure reproduced from references [32,33]).

Figure 5. A delay line using an active cavity comprising the 1D-PBG cavity plus atom (Figure 1) can be designed by
characterizing the line according to global transmission [see Equation (52)], and “coupling acceleration” [see Equation
(53)] of the electromagnetic (e.m.) field. Global transmission, in units of the 1D-PBG reference frequency ωref, and cou‐
pling acceleration, in units of ωref/vref, being vref the group velocity of the e.m. field in vacuum, are plotted as functions
of the dimensionless shifted frequency ξ=(ω–Ω)/ωref, with Ω denoting atomic resonance. With reference to the opera‐
tive conditions of Figure 3: perfect tuning is shown in Figure 5.a (Figure 5.b), comparing the global transmission (cou‐
pling acceleration) of the active delay line for spontaneous emission, with the global transmission (coupling
acceleration) for stimulated emission when the 1D-PBG is pumped by paired laser beams with an appropriate phase
difference: ∆φ=(π/2)+(π/10). Figure 5.c (Figure 5.d) compares the global transmission (coupling acceleration) of the ac‐
tive delay line when perfectly tuned, with the global transmission (coupling acceleration) when detuned under stimu‐
lated emission (Figure reproduced from references [32,33]).

Coherent Control of Stimulated Emission Inside one Dimensional Photonic Crystals — Strong Coupling Regime
http://dx.doi.org/10.5772/59900

163



8. Final discussion and concluding remarks

This chapter discussed atomic stimulated emission processes, under strong coupling, inside a
one dimensional (1D) Photonic Band Gap (PBG) cavity, which is pumped by a pair of counter-
propagating laser beams [32,33]. The atom-field interaction was modelled by quantum electro-
dynamics, with the atom considered as a two level system, the electromagnetic (e.m.) field as
superposition of its normal modes, and applying the dipole approximation, the Wigner-
Weisskopf equations of motion, and the rotating wave approximations. The unenclosed cavity
example under investigation was approached applying the Quasi-Normal Mode (QNM),
while the local density of states (LDOS) was interpreted as the local probability density of
exciting a single QNM within the cavity. In this approach, the LDOS depends on the phase
difference of the paired laser beams, and the most significant result is that the strong coupling
regime can occur with high LDOS values. The investigation also confirms the well known
phenomenon [39-41] that atomic emission probability decays with oscillation, causing the
atomic emission spectrum to split into two peaks (Rabi splitting). The novelty that emerged in
this chapter is that it appears to be possible to coherently control both the atomic emission
probability oscillations and the Rabi splitting of the emission spectrum using the phase
difference of the paired laser beams. Finally, some criteria were proposed for the design of an
active cavity comprising a 1D-PBG cavity plus atom, to serve as an active delay line. It is seen
that suitable phase differences between the paired laser beams make it possible to achieve high
delayed pulse transmission in a narrow pass band.

The issue of e.m. field interaction with atoms when the e.m. modes are conditioned by the
environment (inside a cavity, or proximal to walls) can be approached in several ways. For
example, the dynamics of the e.m. field can first be established inside and outside the cavity
(or proximal/distant from walls), and then atomic coupling with the normal modes (NMs) of
the combined system [42-46] can be considered. An alternative approach applies the discrete
(dissipative) QNMs of the unenclosed cavity in place of the continuous (Hermitian) NMs.
When applying the QNMs, the internal field cavity is coupled to the external e.m. fields
(beyond the two cavity limits) by boundary conditions [47-50].

A third approach is proposed in the present chapter, combining both those described above
with the aim of merging their analytic potentials. Canonical quantum electro-dynamics is
applied for the definition of an e.m field as a superposition of NMs, while an unenclosed cavity
is defined adopting a QNM approach, when LDOS is interpreted as the local probability
density of exciting a single QNM of the cavity. The DOS is linked to the cavity boundary
conditions. The e.m. field satisfies incoming and outgoing wave conditions on the cavity
surfaces, and so the DOS depends on the externally pumped photon reservoir. When the cavity
is excited by paired counter-propagating pumps, the DOS expresses the probability distribu‐
tion of exciting a single QNM of the cavity.

In the case of spontaneous emission, the paired pumps are modelled as vacuum fluctuations
from the ground state of the e.m. field, while the DOS is construed simply as a feature of cavity
geometry. Instead, in the case of stimulated emission, the paired pumps are modelled as two
laser beams in a coherent state, so that the DOS depends on the cavity geometry and can be
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controlled by the phase difference of the paired laser beams. These results clearly highlight
how the DOS of an unenclosed cavity is determined by the cavity excitation state.
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