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1. Introduction

With the discovery in 1986 of high critical temperature superconductors Tc ≥ 77K –which
belong to the type-II classification– efforts have been made to recognize which mechanism
rules its current carrying capacity in order to expand knowledge of the vortex state and,
moreover, devise new and better technological applications. Critical-state phenomenological
models for such materials have been a feasible alternative for the theoretical study of
the magnetic properties of high- or low-Tc type-II superconductors. Here we present a
brief revision of macroscopic critical-state models; following a chronological order, we
will begin with the Bean model, moving on with the generalized double-critical state
model, the two-velocity hydrodynamic model, and finalizing with the Elliptic Flux-Line
Cutting Critical-State Model (ECSM). It will be described further the main features of
type-II superconductors, the physical meaning of the critical state and the flux-line cutting
phenomenon.

1.1. Type-II superconductor critical state

In 1911 Kammerlingh Onnes discovered the superconductivity of mercury at very low
temperature. Nowadays, the characteristics of superconductors are well established: their
electric resistance abruptly drops to zero as temperature decreases through a critical
temperature value designated as Tc. They show the Meissner-Ochsenfeld effect, that is, they
completely expel a weak magnetic field as temperature decreases through the transition
point. Depending on how this diamagnetic phenomenon is destroyed, superconductors can
be classified as type I or II. Type-I superconductors are perfect diamagnets below a critical
field Hc. Because their coherence length ξ exceeds the penetration length λ, it is energetically
unfavorable for borders to be formed between the normal and superconductive phases.
However, when a type-II superconductor is subjected to a magnetic field Ha, free energy can
diminish, thus generating normal matter domains that contain trapped flux, with low-energy
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borders created between the normal core and the superconductive surroundings. When the
applied magnetic field exceeds the lower critical field Hc1, the magnetic flux penetrates in
quantized units Φ0, forming cylindrical domains called vortices. As Ha increases, vortices
will overlap increasing the interior field until the material gently enters the normal state,
once Ha has reached the upper critical field Hc2. Between the fields Hc1 and Hc2 the
superconductor state coexists with the magnetic state in a mixed state or vortex state.

Another characteristic of superconductors is the presence of a gap, just below the Fermi
energy, the energy of conduction electrons. BCS superconductivity theory demonstrated
that electrons in the vicinity of the Fermi level are grouped in the so-called Cooper pairs.
In addition, the junction of two superconductors –separated by a thin insulating layer–
shows the DC Josephson effect, in which the superconductor current tunneling is caused by
the tunneling of Cooper pairs. This effect demonstrated that the superconductor state is
a coherent state, which is associated to a macroscopic uniform-phase wave function; this
function corresponds to the order parameter κ = λ/ξ in the Ginzburg-Landau theory. Finally,
they also show the AC Josephson effect that describes the relation between the time variation of
the macroscopic wave function with the voltage produced across the junction. This voltage
arises from the quantized magnetic flux movement, and is identical to the macroscopic
voltage observed in type-II superconductors in flux flow state.

Indeed, it is well established that type-II superconductors posses a stationary vortex spatial
arrangement only if the total force over each vortex is null. If an electric current is applied
with J density, vortices move at a velocity v with a direction determined by the Hall angle. If
both the Magnus force and the Hall effect on the material are neglected, equilibrium between
the Lorentz force FL = J × B and the pinning force Fp will exist:

(J × B)− Fp = 0. (1)

In addition to being able to describe the vortex dynamics under the transport current
influence, the equation (1) can be used for the time-variable external magnetic case, in
absence of transport currents.

Indeed, Fp opposes the magnetic flux velocity v due to the local depression of the Gibbs
free energy of each vortex. This potential well may be due to inhomogeneities, defects, or
material grains. Therefore, magnetic flux movement will occur if the Lorentz force exceed
the pinning force. Any electromotive force, even small, causes the vortices to move further
into the material, inducing a local current. Initially, this superconductive current flows in
regions close to the superconductor surface because pinning centers near the sample surface
can catch the vortices in such a way that, in the interior, the Meissner state is preserved, thus
the sample is partially penetrated. For higher external magnetic field values, vortices will
completely penetrate the material.

1.2. Bean model for a type-II superconductor in critical state

Half a century ago, Charles Bean approached — with great physics intuition and from a
macroscopic point of view — the study of the magnetic properties of superconductors made
with impure metals or alloys. Bean modeled the spatial distribution of the magnetic flux, for
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partial and totally penetrated states, a couple of years before having experimental evidence
of the mixed or vortex state predicted by A. A. Abrikosov.

He relied on Mendelssohn sponge model to describe the magnetic behaviour of such
superconductors, supposing they possessed a filamental structure capable of maintaining
a maximum macroscopic current Jc, without energy dissipation in form of Joule heating,
that he called it critical current density. Due to the Jc dependence on the magnetic field, he
considered that such currents were extended into the material, preserving the magnitude Jc.

Bean argued that the macroscopic current is a consequence of the magnetic induction
gradient penetrating the material, governed by Ampère’s law ∇× B = µ0J. He also argued
that the current originates as the Lorentz force drives the magnetic flux into the interior of
the material. Therefore, he considered that any local region where an electric field (related
to heat dissipation) is perceived during the process of magnetization, it would originated a
critical current density Jc which flows in the electric field direction and it keep flowing even
if it the electric field was null [6–9]. He synthesized these ideas in the material law:

J = Jc(B) sign(E), (2)

which is valid for slabs or infinite cylinders subjected to a magnetic field parallel to the
superconductor’s surface (this is the so-called parallel geometry).

To exemplify the Bean model, Figure (1) shows the profile evolution of magnetic induction
for a PbBi plate at mixed-state, as it increased (blue curves) or decreased (red curves) the
external magnetic field magnitude Ha parallel to its surface. The hysteresis cycle of the
average static magnetization is shown when the Ha varies a full cycle, from −0.3T to 0.3T.
The superconducting plate has a 8mm thickness and a penetration field µ0Hp = 0.1015T. We
have considered the reliance on B of the critical current density Jc(B).

Subsequently, Bean studied energy dissipation in materials subjected to a magnetic field that
rotates in the specimen’s plane. He extended his arguments assuming the current density J

and the electric field E vectors would be parallel to each other [9]. For this case, the material
equation can be written as follows:

J = Jc(B)
E

E(J)
, (3)

where it is necessary to model the E(J) function form. The Bean model, corresponding to
the material equation (2) or (3), together with the Ampère’s law, have been used to calculate
magnetic induction profiles, hysteresis of magnetization cycles, and the energy dissipation of
several type-II superconductor materials. In the search for new superconducting alloys that
would produce more intense magnetic fields, or a greater current conduction capacity, these
materials were simultaneously subjected to a magnetic field and a transport current parallel
to each other. It was desirable that the electric current density J and the magnetic induction B

established a force-free configuration, that is, a zero Lorentz force FL = J × B = 0. However,
experimental evidence showed that even if FL could be considered null, a significant voltage
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Figure 1. Theoretical curves of a superconductor plate, with thickness d = 8mm and penetration field µ0 Hp = Bp = 0.1015T,
obtained with the Bean critical-state model and considering Jc = Jc(B). (Left) Evolution of magnetic induction B as it increases
(continuous blue lines) and decreases (red discontinuous lines) the magnitude of the external magnetic field Ha. When µ0 Ha =
µ0 Hp, B at the center of the plate is null. (Right) Average static magnetization cycle µ0〈M〉 against the applied magnetic field
µ0 Ha. Since this material is an irreversible type-II superconductor, µ0〈M〉 describes a hysteresis.

would arise from the material. Therefore, if the vortex velocity is equal to zero in a force-free
configuration, what is going on in this type of configuration? This question could not be
answered using the Bean model, so it was considered that another phenomenon might be
occurring. The answer to this query is the so-called flux-line cutting or flux crossing, which
will be discussed in the next section.

1.3. Flux-Line cutting

D.G. Walmsley [10] measured the magnetization and the axial resistance of a type-II
superconductor –in mixed state and with cylindrical geometry– by subjecting it
simultaneously to a magnetic axial field and a transport current, parallel to each other. The
objective was to prove under what the Lorentz force density could be null. He found that,
at low currents, the potential difference between the extremes of the sample was negligible
(∼ 10µV). However, when the superconducting sample conduced a sufficiently high current,
it measured a voltage (or a longitudinal electric field), as well as a paramagnetic moment, that
is, a positive average magnetization. He then suggested that the force-free structure could not
be established on the material’s surface, which originated the flux-flow and, consequently, a
voltage in the rest of the material.

He intuited that the measurement of a paramagnetic moment suggested a helicoidal vortex
distribution. Nonetheless, the voltage produced by the flux flow would imply a permanent
increase in the longitudinal magnetic field. For this reason, he supposed the existence of a
non-stationary process in which the magnetic flux lines would continually divide each other,
only to reconnect afterward.

As a solution for the flux-flow movement contradiction in a force-free configuration, Clem
was the first to suggest that the helicoidal instabilities were precisely the precursors of vortex
cutting or crossing; that is, considering the elastic properties of flux lines, he proposed that
they could stay fixed but they would be able to bend, calling this phenomenon flux-line
cutting.
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Even though Josephson had already established that cutting or crossing of vortices could not
occur because they were energetically too expensive, theoretical calculations done by Brandt,
Clem, and Walmsley — using the London and Ginzburg-Landau theories — proved that the
threshold of cutting of a pair of rigid flux lines was possible since the characteristics energies
of a type-II superconductor.

Subsequently, Brandt and Sudbo extended these results for the case of a pair of twisted
flux lines, they considered the tension and interaction between each flux-line or vortex.
Given that cutting is energetically plausible, they found that flux-line cutting is an effective
disentanglement mechanism of flux lines; and that the cutting energy barrier, in the case
of twisted flux lines, is lower for the rigid two-flux-lines case [11, 12]. Several groups, for
example, M.A.R. LeBlanc et. al [13–15], have done experiments in the last decades that have
shown flux-cutting presence in materials with low or high κ, and low or high Tc. In the
Clem et. al [16–18] and Brandt [19] papers, we can see flux-line cutting diagrams for the
case of rigid-vortices arrangement. Furthermore, it includes diagrams for the first theoretical
formulations for this often-studied and not completely understood phenomenon.

More recent theoretical studies have studied the scattering dynamics of vortices, and
the resulting topology after a collision between two flux lines generated by an applied
current. Using the time-dependent Ginzburg-Landau equations, numerical results yielded
two generic collision types dependent on the initial angle: one local collision that induces
changes in topology through recombination, and a double collision that can occur due to
geometrical restrictions. The second case leads to a vortex-crossing type configuration, that
is, it seems as if two vortices, while interacting, would cut themselves and join again. This
can be seen in the simulations shown in paper [20]. Experiments have been proposed using
a magnetic force microscope to monitor vortex-line dynamics and prove if these cut through
each other when they are in a liquid-vortex phase [21].

In 2008, A. Palau et al. reported results with superconductive heterostructures subjected to
an external magnetic field at a θ angle respect to the sample’s normal. For this, they designed
a device made out of a thin film of low-pinning amorphous material (Mo82Si18), sandwiched
between two Nb films– a material characterized for strongly pinning the vortices.

They measured the critical current density Jc obtained as a function of θ, the applied field
µ0Ha, and temperature T. Once obtained, they calculated the balance force between the
Lorentz force, the pinning force, and a so-called breaking force. They found that the latter
was necessary in order to consider vortex deformation and destabilization. Results showed
that the breaking force is independent of B, and that the following cross joining neither limit
vortex movement nor increase Jc. Even if a flux-line segment is strongly pinned to the area
where Nb material is found, the cut induces other vortex segments to be liberated, thus
reducing Jc [22].

Furthermore, Campbell’s revision paper can be consulted to know the state of the art about
experiments and critical state theories for flux-cutting in superconductors [23]. He included
the last proposal of Clem to determine the electric field direction, for the flux transport
regime in a type-II superconductor.

Here it is presented three critical state models created for the phenomenological study of
type-II superconductors subject to magnetic fields that vary not only in magnitude, but also
in direction. All models consider that flux pinning and flux-line cutting govern their answer.
It is undeniable that both phenomena can occur in cases when a sample oscillates in presence
of a static magnetic field, or when it is subjected to a DC magnetic field and a transversal
sweeping magnetic field is superimposed.
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2. Other critical state models

2.1. Generalized Double Critical-State Model

LeBlanc et. al proposed a model containing two critical-state equations based on their
experimental observations on the magnetic response of a disc oscillating at low frequency, in
presence of a magnetic field [24]:

dB

dx
= ±

Fp(B)

B
,

dα

dx
= ±k(B)

dB

dx
. (4)

This pair of equations is known as the Double Critical-State Model (DCSM). In their
construction, the fact that the magnetic induction B and the orientation α of flux-lines varied
spatially was considered. They assumed as well that gradients existed in critical states. In
his model, Fp(B) is a parameter that characterizes pinning intensity; k is associated to the
shearing coefficient of the flux lattice in the superconductive sample.

Clem and Perez-Gonzalez extended the DCSM based on the assumption that intersection
and cross-joining of adjacent non-parallel vortices generate a electric field different to the
electric field E = B × v. The latter field is associated to the flux flow with velocity v, for the
case in which J is perpendicular to B. For this, they proposed a pair of constitutive laws of
the form:

J⊥ = Jc,⊥ sign E⊥

J‖ = Jc,‖ sign E‖, (5)

where parameters Jc,⊥ and Jc,‖ correspond to the depinning and the flux-line cutting
thresholds, respectively. They considered that the electric field E components obey
independently the vertical laws:

E⊥ =







ρ⊥[|J⊥| − Jc,⊥] sign (J⊥), |J⊥| > Jc,⊥

0, 0 6 |J⊥| 6 Jc,⊥

(6)

E‖ =







ρ‖[|J‖| − Jc,‖] sign (J‖), |J‖| > Jc,‖

0, 0 6 |J‖| 6 Jc,‖;
(7)

here, ρ⊥ and ρ‖ are the resistivities caused by flux transport and superconductor flux-line
cutting, respectively. The group of equations (5)-(7) constitutes the Generalized Double
Critical-State Model (GDCSM.) Clem and Perez-Gonzalez did numerical calculations
considering as possible values for magnitude Jc all those defined within a rectangular region
of Jc,‖ and Jc,⊥ sides. The model reproduced successfully the experimental distributions
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of magnetic induction and magnetization, when the magnetic field oscillates at great
amplitudes [25].

The GDCSM was also used to try to reproduce Magnetization Collapse and Paramagnetism,
phenomena encountered when a type-II superconductor is subjected first to a DC magnetic
field on which an oscillating low-frequency magnetic field is superposed, perpendicular to
the former.

2.2. Two-velocities Hydrodynamic Model (TVHM)

This macroscopic model considers that electrodynamics of a type-II superconductor depends
on the translation of vortex planes and the interaction between them. It establishes two vortex
subsystems, assuming they posses no elastic properties and that the flux cutting consists of
the disappearance of interacting vortices, creating new vortices on a plane with an orientation
different to the previous one. Gibbs energy varies through small disturbances on the vortices’
coordinates considering the following: 1) magnetic energy; 2) work done by pinning forces
given the translation of the vortex network; and 3) the work done by the pinning forces to
straighten a vortex after its crossing [26–28]. Thus, the model is conformed by a continuity
equation for total vortex density n(x, t), and the average angular distribution α(x, t) of the
vortex planes:

∂n

∂t
= −

∂

∂x

[

n
VA + VB

2

]

, (8)

∂(nα)

∂t
= −

1

2

∂[nα(VA + VB)]

∂x
−

1

4

∂[nα(VA − VB)]

∂x
, (9)

where

VA = V +
U

2
, VB = V −

U

2
, (10)

correspond to the velocities of subsystems A and B, V(x, t) is the mean hydrodynamic
velocity, and U(x, t) is the relative velocity. The TVHM requires additionally two equations
obtained from force balance conditions in a superconductor, defined for the magnetic
induction gradient and for angular distribution:

∂B

∂x
= −

µ0 Jc,⊥

2
[F(VA) + F(VB)], (11)

∆αB
∂α

∂x
+ p

√

n

8
[B − µ0Ha cos(α − α0)]∆α2 sign(VA − VB),

= −µ0 Jc⊥[F(VA)− F(VB) + p sign(VA − VB)], (12)
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here p corresponds to the probability that flux-line cutting occurs. Finally, to resolve the
equation system (8)-(12) for variables VA, VB, B = nΦ0, α and ∆α, it is required to introduce
a phenomenological equation that relates ∆α to the mean orientation’s spatial derivative of
the form:

∆α = −l sign(VA − VB)
∂α

∂x
, (13)

where l is the vortex mean free path between two successive cuttings or crossings.

3. Theoretical Description of the ECSM

Now we introduce the characteristics of the Elliptic Critical-State Model (ECSM) used in this
chapter.

3.1. Geometrical aspects of a superconductor plate

x

y

z

H

x=D

x=0

D


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

j

j

Figure 2. Diagram of a portion of infinite superconducting plate. It is shown, in an instant of time t, the orientation of the
external magnetic field Ha, which is always parallel to plane yz.

The study system is a superconducting plate possessing an infinite surface parallel to a plane
yz and a finite thickness 0 ≤ x ≤ D, as it is shown in Figure (2). The plate is subjected to a
magnetic field Ha parallel to plane yz given by the expression:

Ha = Hayŷ + Haz ẑ = Ha(sin αaŷ + cos αa ẑ), (14)

where αa is an angle measured relative to z axis . This problem pertains to the parallel
geometry. Demagnetization effects are not present, the current density J, electric field E, and
magnetic induction B vectors are all coplanar with their components y and z depending only
on variable x and time t. Given the applied magnetic field Ha, local magnetic induction in a
superconducting sample is:
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