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1. Introduction

Analysing the statistics of earthquakes can contribute to a better understanding of such
processes, for example, the Omori law for the decay of aftershock activity [1] and the law of
Gutenberg-Richter as measure for the relationship between the frequency and magnitude of
earthquakes [2]. These approaches and others allow for assessing the spatial distribution of
stress on a seismic fault or estimating seismic risk following earthquakes of great magnitude
[3]. It is important to study the three quantities that characterize a seismic process, i.e.,
magnitude, space and time, as opposed to only studying magnitudes. The interevent intervals,
i.e., intervals between consecutive earthquakes in a region, have been extensively studied
using a range of different approaches [4, 5]. Furthermore, statistics pertaining to the distances
between consecutive events (or jumps) is equally important for the analysis of risks, but has
been much less studied [6].

Recent studies have shown that many complex natural systems are characterized by correla‐
tions [7]; however, the identification and quantification of the presence of these long range
correlations using spectral analysis is inadequate, because the data are non-stationary.
However, the detrended fluctuation method DFA enables the detection of correlations in non-
stationary time series, thereby avoiding spurious detections [8, 9]. Telesca et al. [10] described
the scale behaviour of seismic sequences in Southern California from 1981 to 1998 (Figure 1),
represented as a two-dimensional sequence of jumps and interevent intervals. They used the
catalogue of Richards-Dinger and Shearer (RDS) [11], which in the years mentioned above lists
284925 events. The catalogue is complete from a magnitude of M ≥ 1.5, this means that no
earthquake greater than 1.5 is missing (Figures 2 and 3). They discussed long-range entire
catalogue properties using the DFA method and applying it to the time series of jumps and
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interevent intervals, and found that in both cases the presence of long-range correlations both
in the temporal and spatial domains, because the DFA exponents were close to 1 in both
sequences. They then conducted a more general analysis consisting of a joint study of both
series; however, essentially, the results were the same as those obtained when tested sepa‐
rately. They changed the threshold from a magnitude of 1.5 to 3.8 and found 1/f behaviour for
small to intermediate (1.5 to 3) thresholds, where there was a scaling exponent almost constant
with ranges from 1.1 to 1.2 in all cases. For threshold magnitudes greater than 3.0, the scale
exponent had a linear decrease, showing a tendency of the seismic process towards Poisson
behaviour.

The results of the work by Telesca et al. are in some ways surprising, because in general, such
correlations were not expected; eventually, it was revealed that the recurrence time series (or
interevent intervals) and the series of jumps (distances between epicentres) show long-term
correlations. The objectives of the current paper are to reproduce and supplement the results
of Telesca et al. with an extended catalogue of seismicity occurring in California, then to
compare this results with a time series of synthetic earthquakes obtained using a model, and
finally, to look for patterns in the method in order to calculate the fractal dimensions of
Higuchi, which can be used as seismic precursors.

Figure 1. The zone considered in the study by Telesca et al. and in the present work.
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2. The results of Telesca et al. obtained with an earthquake catalogue from
1981 to 2014

First, it the results of Telesca et al. were checked and validated. It was then checked whether
these results would still be valid if an expanded catalogue of the Southern California seismicity
was used, but updating the data to 2014. The types of correlations that the time series of
earthquakes had in terms of magnitude was then investigated, which Telesca et al. did not
complete.

Figure 2. There are many registered events, but only events with a magnitude greater or equal to 1.5 were considered,
because the catalogue was complete for these magnitudes.

The DFA method proposed in 1993 by Peng et al. [7, 9] begins with a series of length N, which
is integrated and then divided into boxes of size n, and in each box, a straight line is adjusted
to the points; this is called the local trend, yn(k). The points of the line are subtracted from the
integrated series y(k) in each box. The quadratic mean fluctuation of the integrated series
without trends is calculated by:
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This is done on various timescales (box sizes) to check if there is power law behaviour between
F(n) and n (F(n)~nγ); if this is the case, γ reflects the properties of signal autosimilarity; γ, the
scaling exponent, or the DFA exponent, provides information about the type of signal, γ =
0.5 corresponds to white noise, γ = 1 means 1/f noise and γ = 1.5 and represents Brownian noise.

A catalogue of seismicity was used as a time series; when the DFA method is applied to a time
series, it is possible that crossovers can be obtained, i.e., the graph has two or more linear
regions, each one with a different slope; therefore, two or more DFA exponents are needed to
describe the dynamics of correlations. In the present case, Telesca et al. found crossovers in
the graphics of the DFA method, but they only considered the last part of the graphics, i.e.,
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only the large-sized boxes. In order for the results to be consistent, in this part, the adjustment
was also effected in the final part of the graph to obtain the correlation exponent, as shown in
Figure 4.

Figure 3. The time series with magnitudes greater than or equal to a threshold clearly shows fewer events.

An important aspect is the elimination of the trend; this is usually done by adjusting the graph
of F(n) versus n to a polynomial of degree 1, when in fact, it can be adjusted to any polynomial.
Apparently, Telesca et al. suspected the possible presence of linear and quadratic trends, and
therefore adjusted to polynomials of degree 3 to eliminate these tendencies. This method is
called DFA1 if it is desired that only constant trends be eliminated and as a result, polynomials
of degree 1 are used. The method is called DFA2 if polynomials of degree 2 are used, etc. Telesca
et al. used DFA3. With the goal being that the results were completely comparable to the
present work, this study also applied the DFA3 method. However, the decision of Telesca et
al. was exaggerated, because the same results are obtained with the DFA1 and DFA2 methods;
as such, there are no linear or quadratic trends in these data. In practice, it is in fact better to
use the DFA1 and DFA2 methods, because the calculations involved are quicker. With the
DFA3 method, there is an error associated with a large number of calculations, because the
data are adjusted to polynomials of a higher degree.

The procedure to build the series was as follows: first, the (RDS) catalogue was obtained
[11].This catalogue is freely available; however, for some reason, the website from which it is
discharged and six months of data were missing. It was therefore necessary to complete the
catalogue. This work was also conducted by Telesca et al. [9], but they do not mention it in
their article; instead, they simply state that the catalogue is complete for magnitudes of 1.5 and
higher. However, without the missing data of those six months this statement is not true;
therefore, the data were completed using the catalogue and its associated data from the
Southern California Seismic Network (SCSN). Missing data were obtained to complete the
RDS catalogue and data were also obtained to expand the base up to the present. The extended
catalogue was also completed for seismic events greater than or equal to a magnitude of 1.5,
as was the previous catalogue. It is useful to work with a catalogue that is complete from a
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magnitude perspective, so that small the statistical results will be more significant, given that
there are many events in the catalogue. For the same period, Mexican catalogues contain little
statistics from a magnitude of 4.0; as a result, statistical analyses concerning this data must be
conducted in a different way.

Figure 4. Graphic of the DFA method for a seismic series. In this part of the work, the least square adjustment was
carried out on the latest data from the graph. As this figure shows, this was done with the purpose of avoiding a cross‐
over effect, in which case it would have been necessary to use two correlation exponents, one before the crossover and
one after it. This approach was used because one of the objectives of the present research was to compare the results
with those reported by Telesca et al. [10]. It is necessary to emphasize that the fit to a straight line applies only for long
time scales; the first part of the graph is not included in this part of the work but is instead considered later. This
means that the results are valid for low and middle frequencies.

Once the catalogue was extended, a time series of magnitudes, recurrence times and distance
between the epicentres for different thresholds were constructed. The thresholds that were
used were almost the same as those of Telesca et al., i.e., from 1.5 to 4.0 at intervals of 0.1 and
the maximum magnitude of threshold was increased because there were more events.

The subseries had less data as the threshold increased and the magnitude series was easier-to-
build. Once the magnitude time series for each threshold had been built, as the occurrence
times of each earthquake became known, the differences between them were considered the
elapsed times between each event. As the threshold was increased, the recurrence times
became larger, because it required an extended period of time to produce an earthquake of the
same magnitude or greater. To obtain the series of distances between epicentres, the following
procedure was used: the angular distance between two events was calculated using the
following formula [14],
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where (θ1, θ2) and (ϕ1, ϕ2) are the latitudes and longitudes of the two events, respectively. The
angular distance r is multiplied by 111 km to obtain the distance between the two events.

3. Results using the DFA method, part one

The first aspect that should be highlighted is that the results of Telesca et al. were reproduced
for the data of the RDS catalogue, i.e., for a recurrence times series and a series of distances
between epicentres. The correlations are 1/f for small thresholds and these become lower as
the threshold is increased. Results for the expanded catalogue can be summarized in Figures
5, 6 and 7. The first shows the correlation in terms of the threshold for recurrence times. As
can be seen, such a series shows long term correlations or 1/f noise for small thresholds, which
will reduce as the threshold is increased. For larger thresholds, it is much closer to white noise
(absence of correlations) than to 1/f noise. Figure 6 shows the magnitude series; however, for
small thresholds of 1/f noise, this was not maintained, as is the case with the recurrence time
series. Though the DFA exponents quickly began to decrease, they nonetheless had the same
correlation values for high thresholds as the recurrence time series.

Figure 5. Graphic of the correlation exponents as the threshold is increased for the series of recurrence times. Almost
up to a threshold of magnitude 3.0 the 1/f behaviour type remains constant and then begins to decrease close to being
white noise. The DFA exponent had no units.

Finally, Figure 7 shows the results for the series of distances between epicentres. The dynamics
of correlations are practically the same as that for the recurrence time series, i.e., noise 1/f for
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small thresholds, which is kept up to almost a threshold of 3.0 and then begins to decrease
until it approaches white noise.

Figure 7. Graphic of the correlation exponents as the threshold is increased for the series of distance between epicen‐
tres. Almost up to a threshold of magnitude 3.0 it remains as 1/f behaviour, then begins to decrease until it approaches
white noise. The dynamic is practically the same as for recurrence times.

Figure 6. Graph of the correlation exponents obtained with the DFA method for the series of magnitudes; however, the
dynamic was different for these series than for times of recurrence and distances between epicentres; 1/f behaviour
was also present for low thresholds and there was white noise for high thresholds; however, 1/f noise was not main‐
tained to the threshold of 3.0, but decreased immediately, showing almost linear behaviour.
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4. Results with the DFA method, part two

Since the graphs for calculating the correlation exponents present a crossover, in this part of
the work, an integral analysis of such graphs was carried out, which included the calculation
of correlation exponents before and after the crossover, as well as the analysis of the behaviour
of the crossing points before and after events of greater magnitude. Crossovers divide the
graph into two regions, each of which can be adjusted with a straight line; values of the slope
before the crossover (high frequencies) are lower than the values of the slope after the crossover
(low frequencies) (see Figure 8).

Figure 9 shows the correlation exponents as the threshold is increased for the recurrence time
series, distance between epicentres and magnitudes. As can be seen, following the crossover,
as previously mentioned, the correlations of the recurrence time series and the distance
between epicentres series showed 1/f behaviour up to a threshold of 3.0, then began to drop
to almost white noise. Correlations after the crossover of magnitude series also began as 1/f
noise and they decreased more quickly than in the previous cases. The three graphics in the
lower part are the DFA exponents before the crossover, first they were very close to white noise
and then their values grow to the same values that the graphs after the crossover. The fact that
they crossed means that there was no crossover for large thresholds.
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Figure 8. The DFA method showing the crossover and the two regions for high and low frequencies.

Figures 10 and 11 amplify the results for the DFA before and after the crossover. Red dots
correspond to the times of recurrence series, blue dots correspond to the series of distances
between epicentres and the black dots correspond to the series of magnitudes. Before the
crossover, the correlations are not important (it is essentially white noise), when the threshold
is increased the series are long-term correlated, with the exception of the magnitude series,
which DFA exponents are close to white noise. After the crossover, series of magnitudes for
low thresholds were 1/f noise and decreased essentially in a linear fashion. The correlations of
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the series in terms of recurrence and distance between epicentre times also decreased, but not
as quickly as the magnitude series.

The position of the crossover is shown in Figure 12; behaviour for the three types of time series
were the same and the crossover moved to the left as the threshold increased.

Figure 10. Correlation exponents before the crossover for the time series of recurrence times (red), distance between
epicentres (blue) and magnitude (black).

Figure 9. Correlation exponents before and after the crossover. The upper plots are the recurrence time, distance be‐
tween epicentres and magnitude series after the crossover. The lower plots are the same but prior to the crossover; at
the end, they cross and as such, for large thresholds there were no crossovers.
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Figure 11. Correlation exponents after the crossover for the time series of recurrence times (red), distance between epi‐
centres (blue) and magnitude (black).

Figure 12. Position of the crossover.

The following section explores the results of Telesca et al. by using a synthetic seismicity model,
i.e., the model created by Olami, Feder and Christensen (OFC), which has qualitatively
reproduced many of the properties of synthetic seismicity.

5. Analysis using synthetic seismicity — The OFC model

In 1997, Bak et al. [15, 16] introduced the new concept of self-organized criticality (SOC). This
concept was introduced as a principle for describing the behaviour of complex dynamic
systems. Bak et al. affirmed that these open systems, with many elements that have nonlinear
interactions, organize themselves into a state that is critical and stationary. Spatial and
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temporal power laws characterize this critical state. When a system reaches this state, any event
can begin a chain reaction or “avalanche” that can produce a catastrophe. The presence of 1/f
noise is the temporal “finger print” of the SOC state and the appearance of a fractal structure
is the spatial signature. Fractal behaviour is a frequent property of many geological phenomena
and structures, and is reflected in empirical power laws [17]. The earth’s crust can be seen as
a hierarchical set of shapes and sizes suitable for a fractal description. The so-called Gutenberg-
Richter (GR) law for the size distribution of earthquakes is a typical power law of seismology
[2]. Bak has asserted [18] that any numerical or theoretical model based on the SOC concept
must reproduce the Gutenberg-Richter law as proof of its consistency.

Many authors [19-27] have reported SOC-versions of the Burridge-Knopoff (BK) spring-block
model [28] for earthquakes. This model mimics the behaviour of a seismic fault by using a
linear spring-block array, the dynamics of which are obtained by solving the system of
differential equations that describes it. The subsequent BK-type models were solved using
cellular automata. These models have been solved in two- and three dimensions, and have
been very successful in the qualitative reproduction of the GR law, as well as several other
properties of real seismicity [24- 25, 29-32]. These results have strengthened the notion that
earth’s crust is a SOC-system.

The OFC earthquake model is a version of the spring block BK model in two dimensions. This
model was the first attempt at obtaining self-organized criticality in a non-conservative model.
The model has many blocks located on a rectangular plate (Figure 13). Each block in this array
is joined to its four block neighbours by harmonic springs and all of them are lugged by other
springs fastened to a superior plate, which is moved at a very low and constant speed. The
upper plate is moved and causes the stress (or force) to increase in each block until the force
equals a previously established threshold (the stress for the fault breaking), and then the block
slips into a residual force state. Each sliding block transfers stress to its neighbours and when
these neighbours reach the threshold, they also slip and so on. In this way, a chain reaction or
synthetic earthquake can be generated that will not stop until all the stress values in the blocks
are less than the threshold.

Figure 13. Spring block model geometry. The relative movement of the two plates increases the stress on the blocks.
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As noted, in this model, each block has four nearest neighbours and is connected to them.
According to Olami et al. [21-22], once a block relaxes, the force in it is set equal to zero.
In the present study, the arrangement was a square of LxL  blocks.  The position of each
block is  indicated by (i,  j),  where I  and j  are integers between 1  and L.  If  the displace‐
ment of the block (i,  j)  from its relaxed position on the lattice is xi,j,  then the total  force
exerted on it by the springs is given by,

, 1 , 1, 1, , , 1 , 1 ,2 2i j i j i j i j i j i j i j L i jF k x x x x x x k x- + - +
é ù é ù= - - + - - +ë û ë û (3)

where K1, K2 and KL are the elastic constants. The force redistribution in the position (i, j) is
given by the following relationship,

1, 1, 1, , 1 , 1 , 1 ,; ; 0,i j i j i j i j i j i j i jF F F F F F F± ± ± ± ± ±® + ® + ®d d (4)

where the force increment in the nearest neighbours is given by,
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where α1 and α2 are called the elastic ratios. The force redistribution is not conservative. This
model is labelled homogeneous, because the same values of α1 and α2 are considered in the
entire modelled fault. When α1 = α2 the model is isotropic. In reference to [21, 22], Olami et al.
mapped the spring block model into a continuous and non-conservative cellular automaton;
the algorithm is described in the same references.

Olami et al. used open frontier conditions and reports robust SOC behaviour for earthquake
sizes probability distribution. They found a power law in qualitative agreement with the GR
law and discovered that the earthquake frequency was related to the magnitude m by means
of,

( )10log ,N M m a bm> = - (7)

where a and b are constants and N(M > m) is the number of earthquakes greater than m in the
time interval. The a and b values depend on each region, although the GR relationship is
universal; a specifies a regional level of seismicity. They reported that the b values were
approximately between 0.75 and 1.54. With the calculated values of b, Olami et al. concluded
that the most approximated values to real seismicity were as being around 0.2 for α-values.
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This seems logical if it is supposed that all the K constants were almost the same (K1 ≈ K2 ≈ KL)
than α ≈ 0.20. Olami et al. also showed that the same behaviour was obtained in the isotropic
and anisotropic cases. It has been reported that the OFC model has other interesting properties
that seem to be related to real seismicity [24- 25, 29-32]. As such, it has been proposed that the
OFC model can be used as a basic model for describing earthquake occurrence in a seismic
fault, because it has many properties that correspond to properties observed in real seismicity.

For studying the results of the OFC model in relation to the results of Telesca et al., the
procedure was as follows: for different values of the conservation level α and the size of the
network that represented the failure of 100 x 100, i.e., 10,000 blocks, synthetic seismicity
catalogue were obtained, each with 1x106 events. In each of the synthetic earthquakes the
number of blocks that were relaxed was counted; this number of blocks can be associated with
magnitude value: when only a few blocks relax, the earthquake will have a small magnitude;
when many blocks relax, there will be a synthetic earthquake of great magnitude. For example,
Figure 14 shows one synthetic earthquake; each of the circles represents one of the relaxed
blocks and the magnitude of the synthetic earthquake is the number of all the blocks that were
relaxed. The epicentre is denoted by a small x; in this case, it is the block in which the earthquake
started. As can be seen, it is very easy to obtain the coordinates of such epicentres.

Figure 14. A synthetic earthquake that occurred in a region of the network representing the seismic fault. In this case,
the network size was 100 x 100 and the level of conservation was α = 0.24. The site where the earthquake began, i.e., the
epicentre, is indicated by X.

The synthetic seismicity catalogue contains the magnitude, the coordinates of the epicentre
and the time of occurrence for each of the synthetic earthquakes. Figure 15 shows a section of
one of these catalogues, where magnitude is represented by the number of blocks that were
relaxed in each event.

The magnitude M was defined as M = log3(N), where N is the number of blocks that are relaxed,
for example, an earthquake of magnitude 4.0 is obtained when 81 blocks are relaxed and an
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earthquake of magnitude 7 is obtained when 2187 blocks are relaxed. In this way, a grid with
10 000 blocks will be able to obtain earthquakes with at the highest an estimated magnitude
of 8.4 and only when almost all 10 000 blocks relaxed.
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Figure 15. A section of one of the synthetic seismicity catalogues. In this case, the synthetic earthquakes were generat‐
ed in a network of size 100 x 100 with a conservation level of α = 0.2. Magnitude in this case was the number of blocks
that were relaxed.

Once a threshold had been selected, the number of earthquakes was reduced; for example, if
a threshold value of 100 was chosen, only earthquakes in which 100 or more blocks were
relaxed remained. The magnitude series can be easily determined, because it is formed by the
magnitude of the earthquakes that remain. Since each earthquake's epicentre coordinates are
known, the distance between the epicentres can be determined and therefore also the corre‐
sponding series of jumps or distances between epicentres. The time between each of the events
can also be determined, i.e., the recurrence times. For example, Figure 16 shows the epicentres
of earthquakes left behind when a threshold of 243 is applied as log3(243) = 5; this means that
these earthquakes have a magnitude greater than or equal to 5.0. As each of the events is
perfectly identified, the distance between epicentres and recurrence times are easy to deter‐
mine. For example, Figure 17 shows a series of recurrence times when the threshold was placed
at 3; as can be seen, from the initial 1000 000 synthetic earthquakes only approximately 300
0000 remain. Figure 18 shows a series of jumps where the threshold is set to 729; the results
show that just over 4000 events has a magnitude greater than or equal to 6.0.

For each level of conservation that was used (0.2, 0.21, 0.23 and 0.22 0.24) one million events
were obtained. Following on, a subseries for each one of the thresholds was obtained for each
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catalogue. The thresholds that were used were 2.0 to 7.0 at intervals of 0.1; then, the procedure
that Telesca et al. applied to the seismicity of the south of California was repeated, i.e., the DFA
method was applied to the series of magnitudes, recurrence times and distances between
epicentres with the goal of calculating the type of existing correlations. Considering that this
model has replicated properties of real seismicity in a qualitative way, it was hypothesized
that the results would be very similar to those obtained in real seismicity.

For the sake of brevity, the results are shown only for a value of the conservation level, as the
results for other conservation levels were virtually the same. Figure 19 shows the correlations
for different thresholds of the three types of series considered. The study of the time series of
synthetic earthquakes obtained from the OFC model allowed for reproducing the results
observed for real seismicity by Telesca et al. with regards to the series of recurrence times. For
low thresholds, there were long-range correlations (1/f) and these correlations decreased for
larger thresholds. For the series of magnitudes and for the series of jumps, the results did not
coincide; for low thresholds, the series showed an absence of correlations and there were
important correlations only for large thresholds. These results are not disappointing, although
they are somewhat contradictory, as it was not expected that a model as simple as the OFC
would be able to reproduce all the properties of the correlations that were found in the case of
real seismicity.

Figure 16. Coordinates of the epicentres remaining when the threshold was 243, i.e., earthquakes that had magnitudes
greater than or equal to 5.0. As the model mimics a flat failure, the distance between epicentres was calculated in the
same way as the distance between two points in geometry. The coordinates were not real and thus, there were no
units.
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Figure 17. The remaining earthquakes when the threshold was set equal to 3.0. This meant that all the eliminated
earthquakes had magnitudes less than 1.0. In this case, recurrence times are shown, that is, the elapsed time between
each of the events. The interevent interval was a number of steps in the program and therefore did not have physical
units.

Figure 18. Series of jumps or distance between epicentres when the threshold was 729, i.e., only earthquakes with mag‐
nitudes greater than or equal to 6.0 remained. As the grid dimension was 100 x 100, the minimum distance was 1.0,
while the maximum distance would have been at about 140.
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Figure 19. DFA exponent for the time series of recurrence times (triangles), magnitude (circles) and jumps or distances
between the epicentres of consecutive events (points), with a level of conservation of 0.24, n = 100.

6. Higuchi’s method

Complex systems such as seismic zones generate time series showing the combination of fractal
and periodic components. Two decades ago, the so-called Higuchi`s method [12, 13] for
calculating the fractal dimension of complex time series has been applied to investigate
correlations and non-linear dynamic properties embedded in non-stationary time series. For
example, this method has been used for analysing electroseismic time series [33]. Recently,
Higuchi’s method has been used to detect periodic components mixed with fractal signals
[34-36].

In this part of the work, the seismicity of Southern California is studied using Higuchi's fractal
dimension method. The idea is to apply the method of windowing to Higuchi’s method to
study whether there is a pattern that can be identified as a possible precursor to events of great
magnitude. Here, the results of the windowing are presented, which suggest that some months
prior to an earthquake, there is little variation in Higuchi’s fractal dimension, while closer to
the main event this pattern changes and the fractal dimension decreases.

A time series can be expressed by x(i) i = 1,..., N, where each datum is taken at equally spaced
time intervals, with a uniform time denoted by δ. Usually δ is set to δ = 1 because in principle,
this parameter does not alter the data analysis. The following describes how to apply Higuchi’s
method [12, 13] to a time series.

a. From the time series x(i) the new series xk
m(i) is obtained as follows:

Detrended Fluctuation Analysis and Higuchi's Windowing Method Applied to an Analysis of Southern California…
http://dx.doi.org/10.5772/59660

127



( ) ( ) ( )

( )

; , , 3 ,...

, , 1,2,3,...,

m
kx x m x m k x n k

N mx m k m k
k

+ +

æ öé ù-
+ =ç ÷ê ú
ë ûè ø

(8)

where k and m are integer numbers, and m and k represents the initial time interval width and
[] denotes the integer part.

b. The length of the series xk
m(i) is defined as:
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The term (N-1)/[(N-m)/k]k represents the normalization factor for the length of the subset.

c. The length of the series L(k) for x(i) is obtained by averaging all the subseries lengths Lm(k)
that have been obtained for a given k value.

d. If L (k )∝k −D, that is, if it behaves as a power law, it was found that exponent D was the
fractal dimension of the series. Applying the last equations, implies a proper choice for
the maximum value of k, for which the relationship L (k )∝k −D is approximately linear
(Figure 20).

log(k)

lo
g
L(
k
)

Figure 20. Evaluation of the fractal dimension of Brownian noise using Higuchi’s method. In this case, the slope is ap‐
proximately 1.5 and β = 5 – 2D = 2, that is, theβ value corresponds to Brownian noise.
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In the case of self-affine curves, this fractal dimension relates to the exponent β (by means of
β = 5 – 2D, where if D is in the range 1<D<2, then 1<β<3. Higuchi showed that this method
provides an accurate estimate of the fractal dimension, even for a small number of data.
Higuchi developed his method as an alternative to spectral analysis, because although there
is a relationship between D and β, the standard deviation of the fractal dimension obtained by
using the fast Fourier transform (FFT) is greater than the standard deviation obtained by
calculating the fractal dimension using the Higuchi’s method. As the FFT method requires
calculating the averages of power spectra to obtain a stable spectrum, this will require many
of these averages to obtain the precise and stable values of those afforded by this technique.
Additionally, Higuchi’s method allows for clearly defining the two or more regions in which
the graph of logLm (k) vs. log k is divided in cases where it has crossovers, i.e., the points that
divide the different scaling regions with different values of the fractal dimension D.

7. Implementation of Higuchi's method

The catalogue containing data compiled by the Southern California Seismic Network (SCSN)
was used for the calculation of the Higuchi’s dimension. The catalogue contains all data since
1981 and up to 2014 (between 32o and 37o north latitude and 114o and 122o west longitude) and
events of a magnitude less than 1.5 were not considered in the analysis; however, there were
still thousands of events left with which to make calculations. When applying Higuchi’s
method, long-range correlations are always found, because the obtained D values oscillate
around 2.0; as a result, the spectral exponent β is around 1.0, which corresponds to 1/f noise,
i.e., long-range correlations. The objective was to analyse the seismicity around the main events
that have taken place in a specific region, the first with a magnitude of 7.3 that occurred in
1992, 9 km to the N of the Yucca Valley, CA, the second of magnitude 7.1, which occurred in
1999, 51 km to the N of Joshua Tree, CA and the third of magnitude 7.2, which occurred in
2010, 54 km to the SSE of Calexico, CA. Windowing using Higuchi’s method was created
around all three events in the way described below.

For each of the three above-mentioned earthquakes, a period of six years was analysed, three
years prior to the earthquake and three years following it. If one of the three earthquakes was
j-th, the windows were moved forward and backward. Each window had 1000 data. For
example, the first window to the right contained data from the j + 1 to the j + 1001 data, the
second from the j + 101 to the j + 1101 data, the third from the j + 201 to the j + 1201 data and
so forth, until it was no longer possible to compete a window. As can be seen, the overlapping
of the windows is equal to 100 data. The backwards windowing was performed in the same
manner; for example, the first back window comprised from the j-1001 data up to the j-1 data.
The slope was calculated for each window as described above and the graphs of the different
values of the slope were plotted for each of the windows. Additionally, the value of the y-
intercept was calculated, as it has been shown that this y-intercept also holds important
information [37].
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8. Results using Higuchi's method

As already noted, Higuchi´s method was not applied directly to the time series. The three
events with the highest magnitude in the catalogue were selected; these were events with
magnitudes greater than 7.0. The first had a magnitude of 7.2 and occurred on 28 June, 1992;
the second had a magnitude of 7.1 and occurred on 16 October, 1999; the third, the epicentre
of which was located on the Mexican side, had a magnitude of 7.2 and occurred on 4 April,
2010. These three events were removed from the catalogue and then, subsets of the catalogue
with a duration of six years were chosen and Higuchi’ method was applied to them. However,
when measuring windows (hence the term 'Higuchi’s windowing'), it was found that the
windows overlapped in order to contain an adequate number of data. Higuchi´s dimension
and the y-intercept were calculated prior to and following the earthquake for each window
and the graphs obtained are shown below. For each earthquake, three figures are shown: the
first indicates the location of the earthquake in the catalogue during periods of six years (except
for the last, which had almost five years), the second shows the variation of the fractal
dimension in the windows before and after the earthquake and the third shows the y-intercept
for each window before and after the earthquake. In general, it was observed that for the three
events, there was a variation of the fractal dimension D before and after the quake; however,
prior to the earthquake, a decrease in the fractal dimension was noted, which was evident in
all three events. In the graphics of the y-intercept, it was observed that prior to the earthquake,
there was an increase in its value, which can be seen in the three graphs. Indeed, Figure 22
shows on the right another peak of important variation in the fractal dimension; this can also
be observed in Figure 23 as another peak in the y-intercept. However, Figure 21 shows that
this peak corresponded to an event of magnitude 6.7.

Figure 21. The earthquake of magnitude 7.3 on 28 June, 1992; the graphic shows six years of events higher or equal to
1.5, three years before and three years after the earthquake.
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Figure 22. Higuchi’s windowing, implemented over a period of six years around the event on 28 June 1992. EQ indi‐
cates when the aforementioned earthquake occurred. Note that there is significant variation in Higuchi’s fractal dimen‐
sion and a decrease therein prior to the earthquake.

Figure 23. The y-intercept for each of the windows in Higuchi’s windowing method implemented over a period of six
years around the event on 28 June, 1992. Note that the calculated maximum values of the y-intercept occurred prior to
the earthquake.

Figure 24. The earthquake of magnitude 7.1 on 16 October, 1999. The graphic shows six years of events higher than or
equal to 1.5, three years before and three years after the earthquake.
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Figure 25. Higuchi’s windowing method, implemented over a period of six years around the event on 16 October,
1999. Qualitatively, similar behaviour was observed to the 1992 event shown in Figure 22.

Figure 26. The y-intercept for each of the windows in Higuchi’s windowing method, implemented over a period of six
years around the event on 16 October, 1999. Note that the structure of maximum values that occurred prior to the
earthquake was also repeated in this case.

Figure 27. The earthquake of magnitude 7.2 on 4 April, 2010. The graphic shows almost five years of events higher
than or equal to 1.5, three years before and after the earthquake.
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Figure 28. Higuchi’s windowing method, implemented over a period of almost five years around the event on 4 April,
2010. Note again the decrease in the fractal dimension prior to the earthquake.

Figure 29. Note how it is once again clear that the earthquake occurred after the rise in the values of the y-intercept.

9. Conclusions

Analysis of seismic series obtained for Southern California during the period of 1981 to 2014
showed that the results by Telesca et al. could be reproduced in this expanded catalogue, i.e.,
for the recurrence times series and for the distance between epicentres series. Behaviour with
long-range correlations for low thresholds was obtained and was maintained for intermediate
thresholds; for high thresholds, behaviour close to white noise was obtained. In contrast, in
the series of magnitude, although there was a decrease in correlations, the behaviour type 1/f
noise was not maintained; the correlations immediately began to decrease, almost linearly
approaching values also obtained for other series and for high thresholds, i.e., closer to white
noise. Verifying these results was attempted using synthetic seismicity catalogues obtained
from the spring-block model of Olami, Feder and Christensen.

Interesting results were found that showed anomalous behaviour in the fractal dimension,
possibly indicating the imminence of an earthquake of great magnitude. These results were
found using Higuchi’s windowing method and by calculating the fractal dimension and the
value y-intercept in each window. A decreasing pattern was observed in the fractal dimension
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prior to three earthquakes with magnitudes greater than 7.0. Additionally, an increase in the
value of the y-intercept prior to the three earthquakes was also observed. It is necessary to
perform more calculations under different conditions, but the two patterns observed for the
three earthquakes suggest the possibility of a possible earthquake precursor by using the
results obtained with the Higuchi’s windowing method.
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