
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter 5

Modelling and Implementation of a Series DC Motor
Drive System

Angelo José Junqueira Rezek, Carlos Alberto Murari Pinheiro,
Tony Youssif Teixeira Darido, Valberto Ferreira da Silva,
Otávio Henrique Salvi Vicentini, Wanderson de Oliveira Assis and
Rafael Di Lorenzo Corrêa

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/59814

1. Introduction

For the purpose, of controlling a DC motor in a mono quadrant, a totally controlled Graetz
converter bridge (a static converter) was used. For the implemented system, a microcomputer,
a data acquisition board, an electronic firing circuit, as well as a current and speed sensors
were used.

In this computer study, C++ language was used for the implementation of a controlled DC
drive using a DC series motor.

Through the computer, the system control was performed directly via software and a data
acquisition board containing A/D and D/A converters.

The board used was a PCL-711B PC-Multilab card from Advantech Co. (www.advan‐
tech.com), with A/D and D/A conversion, as well as digital inputs and outputs. The A/D
conversion had 12 bits resolution, with eight input channels programmable for input ranges
of ±5 [V] and a conversion time of 25 [μs]. The D/A conversion had the same resolution (12
bits) but with a single output channel that had an accommodation time of 30 [μs] and output
ranges from 0 to +5 [V].

Two input channels were used for A/D conversion, corresponding to the speed and current
feedback signals; one output channel D/A was used for the control signal (VCC).

The control software was responsible for the acquisition of input data, for the A/D and D/A
conversions, implementation of the control algorithm for the speed and current grids, and for

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

generation of the control signal for the firing circuit. The program also included an on-line
parameters setting. An output DC signal of the card (0-10 [V]) was used as the input of the
firing circuit in order to control the series DC motor and for this purpose, two regulators,
connected in a cascading fashion in terms of speed and current loops, was projected. The load
torque was imposed using a three phase synchronous generator, connected to the same shaft
of the series DC motor and supplying a three-phase resistor bank.

2. Motor block diagram

2.1. Mechanical part equating

Figure 1 shows the series DC motor armature circuit. The diagram of the drive system's
mechanical part is also presented.

U: Counter electromotive force [V]
E: Applied voltage [V]
Ra, La: Total resistance and inductance of the armature circuit
Ф: Motor flux
Ia: Armature current
M: Motor torque
Tc: Load torque
J: Moment of inertia (motor + load)
n: Speed [rpm]
ω: Rotation [rad / s]

Figure 1. Motor armature circuit and diagram for the drive system mechanical part, being:

Also:

1 aM K I= F

Being Ia the armature current average value and also, K1Φ = KIa, therefore:

Fuzzy Logic - Tool for Getting Accurate Solutions102

2
aM KI= (1)

For the accelerating torque:

cM T B- = (2)

dwB J
dt

= (3)

0
0

2
60

nn
n

=
pw (4)

Being:

n0: No load speed [rpm]

Mn : Rated torque.

n
n

BB M
M

= (5)

(4) e (5) into (3) results:

0

0

2
60 =J d

 2=J

1 .

60

60

2

o
o

n
n

o
n

n

n

n

o

nn
nBM

M dt
nB dnM

M n
nn B dt

nM J

d

M

t

= ò

p

p

p

(6)

By defining the acceleration time constant TH, as:

02
60H

n

JnT
M

=
p

(7)

Modelling and Implementation of a Series DC Motor Drive System
http://dx.doi.org/10.5772/59814

103

This time constant may be interpreted as the time required for the motor to reach no load speed
from a resting state, when it is accelerated by a resultant torque equal to the rated motor torque.

0 1 .
n H

nn B dt
M T

= ò (8)

Figure 2 illustrates the block diagram related to the mechanical motor part.

Figure 2. Block diagram of the drive mechanical part.

Setting the magnitude values in pu, current, load torque, accelerating torque, speed and motor
torque results in:

 (pu)

 (pu)

 (pu)

 (pu)

 (pu)

a
a

N

c
c

n

n

u
o

n

I i
I
T t
M
B b

M
n n
n
M m
M

=

=

=

=

=

The block diagram in Figure 2 can be represented in pu as shown in Figure 3.

2.2. Armature circuit equating

a
a a a

dIE R I L U
dt

= + +

Fuzzy Logic - Tool for Getting Accurate Solutions104

Applying the Laplace transform results in:

() () () ()
() () ()

a a a a

a a a

E S R I S SL I S U S
E S U S I S R SL

= + +

é ù- = +ë û

()
() ()

a S
a a

E S U S
I

R SL
-

=
+

(9)

Defining:

a
a

a

LT
R

= (10)

() () () 1
1a

a a

E S U S
I S

ST R
-

= ´
+

(11)

Regrouping:

E-U 1
1

E-U 1
1

E-U 1
1

a N
N

N a N a

a N

N N a N a

a N

N N a N a

I EI
I R E ST
I E
I E R I ST
I E
I E R I ST

´ = ´
+

= ´
+

= ´
+

The armature current Ia appears to be normalized by the nominal current IN. Voltages E and
U are also normalized by the nominal voltage EN, setting the normalized values as:

Figure 3. Representation of the motor mechanical part in pu.

Modelling and Implementation of a Series DC Motor Drive System
http://dx.doi.org/10.5772/59814

105

a
a

N

Ii
I

= (12)

N

Ee
E

= (13)

N

Uu
E

= (14)

N
i

a N

EV
R I

= (15)

The block diagram of the armature circuit l is shown in Figure 4.

Figure 4. Block diagram of the DC motor armature circuit.

The factor
V i

1 + STa
 can be considered a delay element of 1 ª order. Time constant Ta can be

determined in two ways:

a. Measuring La and Ra;

b. Applying a reduced voltage step in the armature circuit when the rotor of the motor is
blocked.

Figure 5 shows the armature circuit.

Fuzzy Logic - Tool for Getting Accurate Solutions106

La Ra

RSH

STORAGE

OSCILLOSCOPE
Ia

E

Figure 5. Reduced voltage step applied to the armature circuit.

The current Ia is captured through an oscillograph or storage oscilloscope (voltage drop in the
shunt resistor RSH). Figure 6 illustrates the expected time transient response. A current clamp
can also be used, instead of the resistor RSH.

Figure 6. Current response for a voltage step applied to the armature circuit.

Marking up to 63% of the regime value and checking the corresponding time on the horizontal
axis, yields the time constant τa, as shown in Figure 4.

1a i
a

e ui V
ST
-

=
+ +

(16)

Considering an interpretation of the constant Vi (equation 15) results in a motor with the rotor
locked and with a rated voltage applied to the armature.

N
AK

a

EI
R

= (17)

NAK

N a N

EI
I R I

= (18)

Modelling and Implementation of a Series DC Motor Drive System
http://dx.doi.org/10.5772/59814

107

Comparing (18) e (15), results in :

AK i NI V I= (19)

The Vi factor can be interpreted as the multiplying factor of the rated current for gaining a
current with the rotor locked when nominal voltage is applied to the armature circuit (starting
current in pu).

Figure 7 shows a schematic diagram of the series DC motor with rated flow and considering
the normalized magnitudes (pu).

Figure 7. Schematic block diagram of the series DC motor.

3. Complete block diagram including regulators, filters and transducers

Figure 8 shows the controlled drive complete block diagram.

Figure 8. Controlled drive complete block diagram.

Where:

Fuzzy Logic - Tool for Getting Accurate Solutions108

τgs1: Filter time constant of the reference channel of the speed loop

τgs2: Filter time constant of the reference channel of the current loop

VRN: Gain of the speed regulator

VRi: Gain of the current regulator

τn: Time constant of the speed regulator

τi: Time constant of the current regulator

τgn: Filter time constant of the speed transducer

τgi: Filter time constant of the current transducer

τss: Time constant of the firing circuit

Vs: Gain of the static converter

The regulators in Figure 8 were considered as PI (proportional integral) type and its parameters
will be determined by the design procedure.

4. Design of the current regulator and filters of the current control loop

Figure 9 illustrates the current regulation loop.

Series DC motor data:

• - Power: 1.7 [KW]

• - Current: 7.72 [A]

• - Speed: 1500 [rpm] (Rated)

• - No load speed: 1770 [rpm]

• - Voltage: 220 [V]

• - ΣRa = 7.0 [Ω] (Total resistance of the armature circuit)

• - ΣLa = 490 [mH] (Total inductance of the armature circuit, including the smoothing reactor)

• - τH =1.2 s - (Accelerating time constant)

The current transducer is a diode bridge that supplies resistors connected to the AC (alternat‐
ing current) side and feeds through the secondary current transformers (CTs), 30/5 [A]. Figure
10 shows the current transducer.

A current hall sensor can also be used as current transducer in DC side.

Where: Ld: Smoothing reactor inductance

Modelling and Implementation of a Series DC Motor Drive System
http://dx.doi.org/10.5772/59814

109

Ls: Series field inductance

The Vi signal (current transducer) has, as is known, a (1/6) cycle ripple wave. It should have:

1
2gi o

Period
N ofpulses

£t

Figure 9. Current regulation loop.

Figure 10. Current transducer.

Fuzzy Logic - Tool for Getting Accurate Solutions110

For 60 [Hz], a period of 16.7 [ms] and six pulse bridges, the following is adopted:

giτ = 1.5 msé ùë û

The firing circuit cannot instantly respond to the change in the firing angle α. This time constant
can vary by a range of zero to one sixth of a cycle. The value τss = 2.5 [ms] will be used. The
time constant τa was obtained measuring La and Ra.

70 []a
a

a

L ms
R

= =t

This constant has been calculated taking into account the total inductance La in the series with
the armature circuit, which corresponds to the inductances of machine (armature, interpoles
and series field) added to the inductance of the external smoothing reactor.

The Vi constant is equal to:

4.07n
i

a a

EV
R I

= =

The Vs gain of the converter is obtained, as follows:

21.35E U sin= a

Being U2, the AC supply voltage of converter bridge is:

21.35dE U sin
d

= - a
a

Multiplying member by member by π
EN

, results:

()
21.35

/
N

N

Ed
E U sin

Ed

æ ö
ç ÷ç ÷
è ø = - p a
a p

The value of U2 is determined for the DC side-rated voltage as being equal to (220V), consid‐
ering the value of the firing angle at 30°. This procedure results in U2 = 188 [V].

Modelling and Implementation of a Series DC Motor Drive System
http://dx.doi.org/10.5772/59814

111

Also:

2

1881.35
220

1.15
u

de sin
d

de sin
d

= - ´ ´

= -

p a
a

p a
a

(20)

Being As the value in (pu) of the firing angle α, is equal to αu = α
π

Results:

2

1.15deVs sin
d

= = p a
a

When α = 90 ° the maximum gain is:

90

1
2

/ 1.15op

deVs
d

=
=

=

a
p

a

For α = 30°, gain is given by:

30

2
2

/ 1.15 0.5op

deVs
d

=
= ´ ´

=

a
p

a

The average gain, Vs, can be determined as:

2.71Vs = (21)

The current regulation system gain is then obtained as:

2.71 4.07 11.03Vsia Vs Vi= ´ = ´ = (22)

The sum of the small time constants is:

4 []ss gi ms= + =s t t

Fuzzy Logic - Tool for Getting Accurate Solutions112

The relationship
τa

4σ =4.37>1

According to Table 6.3 (pp 339) in Introduction to Electronic Control (Spanish) [4] by Friedrich
Fröhr and Fritz Orttenburguer, the regulator type PI should be used (designed by type cake
recipe).

According to Table 6.4 (pp 341) of the same text, the gain and the time constant of the regulator
can be obtained thus:

0.8
2

a
Ri

sia

V
V

= =
t
s

(23)

4 13.66
3

a
i

a

msé ù= = ë û+
t

t s
t s

(24)

The time constant value of the reference channel filter in [ms] is:

4 1
2 4 1 15.84

a

gs e ms
æ ö

-ç ÷ç ÷-è ø
æ ö
ç ÷ é ù= - = ë ûç ÷
è ø

t
st s (25)

Thus, in summary:

CURRENT REGULATOR

• - Type: PI

• - Gain: VRi = 0.8

• - Time constant τi = 13.66 [ms]

• - Time constant value of the reference channel filter, τgs2 = 15.84 [ms]

• - Time constant value of the feedback channel filter, τgi = 1.5 [ms]

5. Design of the regulator and filters of the speed control loop

5.1. Design of the speed regulator

The current loop will be replaced by a corresponding retarder block of the first order, whose
time constant, according to [4] is obtained thus:

2
12 15
2e gs msé ù= + = ë ût s t (26)

Modelling and Implementation of a Series DC Motor Drive System
http://dx.doi.org/10.5772/59814

113

This results in a block diagram for the speed control loop as shown in Figure 11.

-
+

-
+

1
1+ ST gS1

1+ STn
STn

VR N tC

ia

1
STH

1
1+ STe

1
1+ STgn

FILTER

FILTER
SPEED

REGULATOR

CURRENT
LOOP

MOTOR
MECHANICAL

BLOCK

nREF
X m b

nu

Figure 11. Speed loop regulation

1.215100
τ τ σ1154.56 1

																																																																 2 ′5.2																																																																 274 460 																																																									 28

																																																																		 100 																																																															 29

Figure 11. Speed loop regulation.

A speed transducer filter will be needed, for which the following time constant is adopted:

100 []gn ms=t

In the

The speed regulation loop contains the following time constants:

1.2
15
100

H

e

gn

s
ms
ms

é ù= ë û
é ù= ë û
é ù= ë û

t

t

t

The small time constants τe e τgn, will be grouped by an equivalent time constant σ’:

' 115e gn msé ù= + = ë ûs t t

The relationship,
τH

4σ ' =4.56>1 and in accordance with Table 6.3 [4], a PI type regulator should
be used (designed by type cake recipe).

According to Table 6.4 [4] the gain and the time constant of the regulator are:

5.2
2 '

H
RNV = =

t
s

(27)

Fuzzy Logic - Tool for Getting Accurate Solutions114

The speed regulator time constant, is:

'4 460n msé ù= = ë ût s (28)

5.2. Design of the speed reference and transducer feedback channels filters

The speed transducer is a DC tachogenerator coupled to the shaft of the DC motor. A filter is
used due to the ripple wave of the tachogenerator output voltage. The adopted time constant
is:

100gn msé ù= ë ût (29)

The speed reference channel filter has the following time constant value [4]:

'
1 4 460gs msé ù= = ë ût s

Thus, in summary, one has:

SPEED REGULATOR

• - Type: PI

• - Gain: VRN = 5.2

• - τn = 460 [ms]

• - Time constant value of the reference channel filter, τgs1 = 460 [ms]

• - Time constant value of the feedback channel filter, τgn = 100 [ms]

6. Ramp type firing circuit

The firing system used is a ramp type, implemented with the TCA 780 integrated circuit and
manufactured by Siemens, as shown in Figure 12.

The intersection of the DC level with a ramp, which is internally generated in the TCA 780
integrated circuit, produces the pulses. Voltage VCC is the output of the current regulator, as
shown in Figure 8. Three TCA 780 integrated circuits were used to produce six firing pulses
for the thyristorized GRAETZ converter bridge, which are P1 and P2 for thyristors 1 and 4, P3
and P6, for thyristors 3 and 6 and P5 and P2 for thyristors 5 and 2, respectively. This process
explains the firing circuit pulse generation stage. The other pulses include: enlargement of
pulses, galvanic isolation of pulses and pulse amplification, the circuit description and
explanation for which were not the objective of this work.

Modelling and Implementation of a Series DC Motor Drive System
http://dx.doi.org/10.5772/59814

115

7. Control using fuzzy logic

This procedure is based on research provided in [10].

7.1. Fuzzy regulator

With the objective of understanding how this type of regulator works, it is helpful to under‐
stand the basics of fuzzy logic. Based on the theory of the fuzzy sets proposed by ZADEH in
1965 [9], this type of logic has proven to be one of the most interesting technologies for
application in sophisticated control systems, providing a simple approach to decreasing costs
and increasing the efficiency of such systems.

This chapter provides an introduction to this technology in the controlled drive of a DC
machine with series excitation aimed at speed control and current limitation. According to [8],
this type of system (a non-linear process) is better controlled with fuzzy controllers as opposed
to conventional compensators.

7.2. Fuzzy control

The theory for control using fuzzy logic characterizes the variables of interest through
linguistic expressions such as “very large”, “large”, “small”, “hot”, “cold”, etc. These linguistic
expressions are numerically represented by fuzzy sets, each set being characterized by a
pertinence function varying from 0 to 1. The fuzzy control algorithm performs control actions
written in terms of these imprecise ideas. The input variables of the fuzzy controller considered
of interest (current regulator) are obtained by:

() () ()real refIE k I k I k= - (30)

() ()PE k GEi IE k= ´ (31)

4 460

τ
τ

nufactured by Siemens. Figure 12 shows:

 type firing circuit

Figure 12. Ramp type firing circuit.

Fuzzy Logic - Tool for Getting Accurate Solutions116

() ()1IIE k IIE k GVi IE T= - + ´ ´ (32)

Where IE(k) = Error of current; IIE(k) = Current error integral

PE(k) = Proportional error

GEi = Proportional gain; GVi = Integral gain (inverse of the regulator time constant)

Ireal(k) = Feedback current

Iref(k) = Reference current

u(k) (see program listing) = Vcc = Output control;

k = Sampling interval

T = Sample time

The pertinence functions are shown in Figure 13; variables are expressed in “pu”,. The universe
is adopted according to operational conditions.

Each control and action variable is decomposed into a set of fuzzy sets called labels. Generally,
each label or fuzzy subset has an asymmetric form, with a trend toward a larger concentration
close to the origin of cartesian axis. This allows for greater precision in the control close to the
steady operation point.

The number of labels associated with one given variable must be an odd number between 5
and 9. Additionally, the end of each label must overlap those of neighbouring labels. This
overlapping provides the fuzzy controller with continuous and steady action. The overlapping
must be between 10 and 50% of the neighbouring area and the sum of the vertical points of
the overlapping must preferably be less than 1.

The control does not require an accuracy modelling. The model can be unknown or badly
defined.

The components of a conventional and of a fuzzy control system are more or less similar. The
differences reside in the fact that in the fuzzy system, there is an element that converts the
inputs into their fuzzy representations, i.e., the fuzzifier and another that converts the fuzzy
outputs inferred into a solution, a numerical and precise value, i.e., the defuzzifier. In a fuzzy
system, the value of an input is converted by the fuzzifier. Afterwards, control rules that are
met are performed. This process produces a new fuzzy set representing each output or variable
solution. The defuzzifier creates a value for the variable output of this new fuzzy set. The
output value actuates the physical system. The change is picked up by a sensor and the control
is restarted.

The fuzzy variables are defined at a numerical interval commonly called the “universe of
discourse”. The fuzzy rules are typically of the conditional form IF-THEN, as follows:

Modelling and Implementation of a Series DC Motor Drive System
http://dx.doi.org/10.5772/59814

117

() ()"x" is A and "y" is B THEN "z" is CIF (33)

Where “x” and “y” are fuzzy variables and A, B and C are fuzzy subsets in the universe of
discourse X, Y and Z, respectively. If the condition expressed in the rule is met, then the action
specified is performed. To design a fuzzy controller, a series of rules must be built.

In this case, the error (IE), the error integral (IIE) and the control signal (VCC) are considered
fuzzy variables, with possible values given by pertinence functions (μ) to fuzzy sets such as
small positive, small negative, zero and so on.

The pertinence functions for the error variable can be represented according to Figure 13.

																																								 "x"	is	A	and	"y"	is	B 	THEN	 "z"	is	C 																																											 33 	

LN SN SP LP

Lage
Negative

Small
Negative

Zero
Small

Positive
Lage

Positive

 Universe

Figure 13. Representation of the typical pertinence functions for a fuzzy variable.

7.3. Design of the fuzzy controller — Current regulator

Figure 14 shows a representation of the pertinence functions.

The elaboration of rules can be based on the intuition and experience of the designer. The
number of rules is related to the number of control variables. For the case under study, there
were two control variables, each divided into five fuzzy subsets, producing 25 possible input
combinations. Thus, 25 rules may be necessary. Here, some care must be taken regarding the
number of rules. As each rule represents a part of the knowledge presented, eliminating rules
implies omitting information. The fuzzy controller is designed with the help of a control
algorithm that considers fuzzification and defuzzification, as well as and all the rules all other
rules pertaining to ****. Table 1 shows the base rules adopted for the current fuzzy control in
a matrix format.

Fuzzy Logic - Tool for Getting Accurate Solutions118

(IE)

(Vcc) LN SN ZE SP LP

LN LN LN LN SN ZE

(IEE) SN LN LN SN ZE SP

ZE LN SN ZE SP LP

SP SN ZE SP LP LP

LP ZE SP LP LP LP

Where: LN = Large Negative; SN = Small Negative; ZE = Zero; SP = Small Positive; LP = Large Positive.

Table 1. Base rules for the current fuzzy control.

As illustrated in Figures 13 and 14, an input numerical value can be a member of more than
one fuzzy set. For this, it is sufficient for the value to be situated in an overlapping region. So
it means that, for a specific pair of values IE and IIE, more than one rule can be activated.
Therefore, the existence of a means for combining the control actions activated by each rule is
required so that a simple but significant action can be performed by combining all of these
rules. This is the function of the defuzzifier. There are several methods for transformation of
the output fuzzy set into a precise value, the latter representing the solution. The centroid
method is well-indicated for control systems. Using this method, we can calculate the gravity

																																								 "x"	is	A	and	"y"	is	B 	THEN	 "z"	is	C 																																											 33 	

LN SN SP LPZ

-1.5 -1.0 0 1.0 1.5

LN SN SP LPZ

-1.5 -1.0 0 1.0 1.5

LN SN SP LPZ

-1.5 -1.0 0 1.0 1.5

Current Error (IE)

Integral of the Current Error (IIE)

Control Signal (V
CC

)

Figure 14. Representation of the pertinence functions.

Modelling and Implementation of a Series DC Motor Drive System
http://dx.doi.org/10.5772/59814

119

centre of the activated fuzzy rules, producing a result that is sensitive to all rules and which
tends to dislocate itself smoothly through the control surface. The defuzzification by the
centroid method selects the output as a value corresponding to the gravity centre of the output
pertinence function as is given by (34) as:

() ()
() ()

() ()
() ()

1 2 1
0

1 2 1

..

. .

n
i i ii

n
i ii

x IE IIEx x x dx
X

x x dx IE IIE
=

=

= =åò
ò å

m mm m

m m m m
(34)

Where:

Vcc = X0 = Gravity centre of the output pertinence function

xi = Gravity centre of the output pertinence function activated by each rule

μ (xi) = Pertinence function activated by each rule

7.4. Design of the fuzzy controller — Speed regulator

Similar to the current regulator, a diffuse speed regulator can be selected. The variables are
the speed error, its integral and the regulator output information, which provides the input of
the current regulator. The error of this grid will be the difference between the speed reference
(nref) and the real speed (nreal). Corresponding pertinence functions are defined for the speed
grid variables. The rules table can be similar to the current grid (Table 1), as it is a standard for
several types of fuzzy controller applications. The scale factors (or gains) of a diffuse controller
for the speed grid can be termed as GEn and GVn, respectively.

8. Experimental results

The data input parameters for digital control fuzzy regulators were as follows.

Speed regulator

Gen = 5.2 (proportional gain The practice adjusted value was 4.0. GVn = 2.17 (integral gain-
inverse of the integral time constant τn); digital filter of the reference value – time constant =
Tgs1 = 460 [ms] (used only for digital control using conventional PI regulators).

Filter of the speed feedback transducer (analogical) – time constant = Tgn = 100 [ms] (imple‐
mented with RC components for both controls as digital fuzzy regulators and conventional
ones).

Current regulator

GEi = 0.8 (proportional gain). The practice adjusted value was 0.1. GVi = 73.2 (integral gain-
inverse of the integral time constant τi); digital filter of the reference value – time constant =
Tgs2 = 15.84 [ms] (used only for digital control using conventional PI regulators).

Fuzzy Logic - Tool for Getting Accurate Solutions120

Filter of the current feedback transducer (analogical) – time constant = Tgi = 1.5 [ms] (imple‐
mented with RC components, for both controls, as digital fuzzy regulators and conventional
ones).

The dynamic behaviour of the controlled drive was verified. The current limiting was adjusted
to 1.20 [pu]. The graphs of illustrations were provided with scales and locations: current (top)-
1 division = 5.5 [A]; speed (bottom)- 1 division = 1000[rpm]; time/div.= 2.5[s].

The machine data were: 1.7[kW], 220[V], 7.72 [A], 1500[rpm].

Figure 15 shows the machine speed and current response during start-up and for a load
disturbance torque of 0.33 pu, negative and positive, respectively, using conventional digital
PI regulators. The perfect current limiting and speed regulation could then be observed.

Figure 16 shows the machine current and speed response when the negative and positive steps
of 0.33 pu in the speed reference set point occurred, respectively, using conventional digital
PI regulators.

Figure 17 shows the response of the machine speed and current during start-up and for a load
disturbance torque of 0.33 pu, negative and positive, respectively, using digital PI fuzzy
regulators. The perfect current limiting and speed regulation could then be observed.

Figure 18 shows the machine current and speed response when negative and positive steps of
0.33 pu in the speed reference set point occurred, respectively, using digital PI fuzzy regulators.

Figure 15. Machine current and speed during start-up and for a load disturbance torque of 0.33 pu, negative and posi‐
tive, respectively, using conventional digital PI regulators.

Modelling and Implementation of a Series DC Motor Drive System
http://dx.doi.org/10.5772/59814

121

Figure 16. Machine current and speed when a negative and positive step of 0.33 pu in the speed reference set point
occurred, respectively, using conventional digital PI regulators.

Figure 17. Machine current and speed during start-up and for a load disturbance torque of 0.33 pu, negative and posi‐
tive, respectively, using digital PI fuzzy regulators.

Fuzzy Logic - Tool for Getting Accurate Solutions122

Figure 18. Machine current and speed when a negative and positive step of 0.33 pu in the speed reference set point
occurred, respectively, using digital PI fuzzy regulators.

9. Conclusion

The experimental results obtained in the laboratory for the present study were satisfactory.
The control with fuzzy regulators for the driving of a DC machine with series excitation was
shown to be stable and efficient.

The most significant contribution of this work is the experimental implementation of fuzzy
regulators in the control application of a non-linear DC series-motor drive. The system is
simple to implement, for both DC motors and AC machines, replacing the traditional analogue
controllers and allowing for an inexpensive and simple design. A comparison of dynamic drive
performance showed that when conventional digital PI and fuzzy regulators were used, a
response to steps in load torque (load disturbance torque) and in the speed reference set point
was less oscillatory that when digital PI fuzzy regulators were employed, and comparatively
so when digital conventional PI regulators were used. In fact, fuzzy logic control was extremely
efficient for controlling non-linear systems [7].

Due to the wide flexibility offered by this type of control, the developed technique and the
used equipment outlined in this paper can also be used to control other types of general
systems.

Modelling and Implementation of a Series DC Motor Drive System
http://dx.doi.org/10.5772/59814

123

Appendix

CONTROLED DC MOTOR DRIVE PROGRAM USING FUZZY LOGICS (PI-FUZZY) REGULATORS:

/*

* Program : PI Fuzzy Controller *

* Description : Digital control actuator for a series DC motor using a *

* PCL-711B card *

* Version : 2 *

* Date : 25/07/2014 *

*/

include <stdio.h>

#include <conio.h> /* Accept directives, including codes*/

#include <stdlib.h> /* of sources, of others */

#include <dos.h> /* programs and directories. */

#include <timer.h> /* program timer */

#include <math.h> /* math functions */

/* Global Variables Declaration */

extern "C" pcl711(int, unsigned int *); /* Includes Function "pcl711"

integer defined, unsigned in a separate module using "C" language*/

unsigned int param[60]; /* Definition of an array of data that make up the

table and unsigned integer parameters */

unsigned int datain[200], dataout[200]; /* 10 integer data Buffer +

 for conversion*/

unsigned int far * datin, * datout;

/* Above data buffer address

 - pointer – type integer and long:

 2 words with range of 1Mbyte */

int tecla,i, cont1, cont2=0; /* Keyboard reading variables

and number of channels */

/* Variables and control floating points */

float nRef= 1.00, nReal=0.0, ne=nRef, iRef, iR,ie, iReal=0.0 , ilim=1.2;

float a1, a2, b1, b2, b3, b4;

float DataBuf[3];

float Vc1, e, v , Vi1=0.0, j, dd1 ,u1 , Gv1 = 5.2, Ge1=2.17, dt=0.003;

float

ceNL=-1.2, ceNS=-1.0, ceZE= 0.0, cePS= 1.0, cePL= 1.2,

beNL= 1.0, beNS= 1.0, beZE= 1.0, bePS= 1.0, bePL= 1.0,

cvNL=-1.2, cvNS=-1.0, cvZE= 0.0, cvPS= 1.0, cvPL= 1.2,

bvNL= 1.0, bvNS= 1.0, bvZE= 1.0, bvPS= 1.0, bvPL= 1.0,

caNL=-1.2, caNS=-1.0, caZE= 0.0, caPS= 1.0, caPL= 1.2,

ueNL, ueNS, ueZE, uePS, uePL,

uvNL, uvNS, uvZE, uvPS, uvPL;

float r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16,

r17, r18, r19, r20, r21, r22, r23, r24, r25;

float Vc2,e2,v2, Vi2=0.0, dd2, Gv2 = 0.8 , Ge2 = 73.2 , u2 ;

float

ceNL2=-1.5, ceNS2=-1.0, ceZE2= 0.0, cePS2= 1.0, cePL2= 1.5,

beNL2= 1.0, beNS2= 1.0, beZE2= 1.0, bePS2= 1.0, bePL2= 1.0,

Fuzzy Logic - Tool for Getting Accurate Solutions124

cvNL2=-1.5, cvNS2=-1.0, cvZE2= 0.0, cvPS2= 1.0, cvPL2= 1.5,

bvNL2= 1.0, bvNS2= 1.0, bvZE2= 1.0, bvPS2= 1.0, bvPL2= 1.0,

caNL2=-1.5, caNS2=-1.0, caZE2= 0.0, caPS2= 1.0, caPL2= 1.5,

ueNL2, ueNS2, ueZE2, uePS2, uePL2,

uvNL2, uvNS2, uvZE2, uvPS2, uvPL2;

float r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39,

r40, r41,

r42, r43, r44, r45, r46, r47, r48, r49, r50;

/* Variable Declaration void – means it does not return a value */

void conv_ad(void);

void conv_da(void);

void control1(void);

void control2(void);

void teclado(void);

/* Analog, Digital Conversion Subroutine */

void conv_ad()

{

unsigned int i;

/* Pointer – Memory space – Variable that contains an address, */

/* usually another variable’s address." */

datin = datain; /* Assigns the equivalent value to the datin pointer... data-

in variable */

param[0] = 0; /* Card number */

param[1] = 0x220; /* I/O Base Address */

/* sampling frequency = card base frequency /(C1 * C2) */

/* 2M / (10 * 10) = 20 kHz */

param[5] = 10; /* Constant divisor C1 */

param[6] = 10; /* Constant divisor C2 */

param[7] = 0; /* Mode Trigger, 0 : pacer trigger

Allows D/I functions */

/* Buffer Offset, memory address (Buffer) where data will be stored, Segment,

data Buffer length

*/

param[10] = FP_OFF(datin); /* A/D Buffer A Offset */

param[11] = FP_SEG(datin); /* A/D Buffer A Segment */

param[12] = 0; /* Buffer B Addresss (unused)*/

param[13] = 0; /* Segment- Unused, set to 0 */

/* The A/D conversion covers two input channels, channel 1 – current, and chan-

nel 0 – speed, with values in pu adjusted in +/- 5 V */

param[14] = 2; /* Number of A/D conversions */

param[15] = 0; /* Channel of the A/D conversion initiation*/

param[16] = 1; /* Stop A/D conversion channel*/

param[17] = 0; /* Channel gains, 0 : +/- 5V */

/* conversion A/D fault indication*/

pcl711(3, param); /* Function 3 : Hardware initialization */

if (param[45] != 0) { /* If parameter 45 is different from 0, do: */

 clrscr(); /* Clear screen */

 printf("\n DRIVER INITIALIZATION FAILED!"); /* Print */

 getch(); /* Shows exit screen */

 exit(1); /* Closes loop and exit with status 1 - Error */

 }

pcl711(4, param); /* Function 4 : Conversor A/D initialization*/

Modelling and Implementation of a Series DC Motor Drive System
http://dx.doi.org/10.5772/59814

125

if (param[45] != 0) {

 clrscr();

 printf("\n A/D INITIALIZATION FAILURE!");

 getch();

 exit(1);

 }

pcl711(5, param); /* Function 5 : verification of the number of A/D conver-

sions */

if (param[45] != 0) {

 clrscr();

 printf("\n A/D DATA TRANSFER SOFTWARE FAILURE!");

 getch();

 exit(1);

 }

/* A/D Conversions */

for (i = 0; i < param[14]; i++) /* Sampled data – channels 0 e 1 */

 {

 DataBuf[i] = datain[i] & 0xFFF;

 /* Data collect for the buffer on the address 0xFFF

 (the first three hexadecimal digits can be reset because the

remaining, are sufficient to support 4096 binary digits) */

 DataBuf[i] =((5.0 - (-5)) * DataBuf[i] / 4096) + (-5);

 /* conversion so that the voltage signal is available for the recursive

control equations

 (5 - (-5)) : Input range A/D (-5V to 5V)

 4096 : Scale range of the A/D - 12 bit

 DataBuf : Input data of the A/D

 (-5) : Beginning of the scale of the A/D "-5" V

 */

 }

/* Feedback voltage reading for the speed and current loops, under nominal

load and speed.*/

/* speed signal conversion – correction to pu*/

 nReal=(DataBuf[0]/1.500);

/* current signal conversion - correction to pu */

iReal=(DataBuf[1]/1.493);

}

void control1()

{

ne = nRef - nReal ; /* Erro */

Vi1 = Vi1 + Gv1*ne*dt; /* Error integral */

if (Vi1 <cvNL) Vi1 = cvNL ; /* Limits */

if (Vi1 >cvPL) Vi1 = cvPL ;

e = Ge1 * ne ;

v = Vi1 ;

teclado(); /* Performs the subroutine that inspects the keystroke */

/* Fuzzification : Triangular Functions */

/* Analyzing with respect to "e" */

if (((ceNL - beNL) <= e) && (e <= (ceNL + beNL)))

ueNL = 1.0 - (fabs(ceNL - e)) / beNL ;

elseueNL = 0.0 ;

if (e <ceNL)

Fuzzy Logic - Tool for Getting Accurate Solutions126

ueNL = 1.0 ;

if (((ceNS - beNS) <= e) && (e <= (ceNS + beNS)))

ueNS = 1.0 - (fabs(ceNS - e)) / beNS ;

elseueNS = 0.0 ;

if (((ceZE - beZE) <= e) && (e <= (ceZE + beZE)))

ueZE = 1.0 - (fabs(ceZE - e)) / beZE ;

elseueZE = 0.0 ;

if (((cePS - bePS) <= e) && (e <= (cePS + bePS)))

uePS = 1.0 - (fabs(cePS - e)) / bePS ;

elseuePS = 0.0 ;

if (((cePL - bePL) <= e) && (e <= (cePL + bePL)))

uePL = 1.0 - (fabs(cePL - e)) / bePL ;

elseuePL = 0.0 ;

if (e >cePL)

uePL = 1.0 ;

/* Analyzing with respect to "v" */

if (((cvNL - bvNL) <= v) && (v <= (cvNL + bvNL)))

uvNL = 1.0 - (fabs(cvNL - v)) / bvNL ;

elseuvNL = 0.0 ;

if (v <cvNL)

uvNL = 1.0 ;

if (((cvNS - bvNS) <= v) && (v <= (cvNS + bvNS)))

uvNS = 1.0 - (fabs(cvNS - v)) / bvNS ;

elseuvNS = 0.0 ;

if (((cvZE - bvZE) <= v) && (v <= (cvZE + bvZE)))

uvZE = 1.0 - (fabs(cvZE - v)) / bvZE ;

elseuvZE = 0.0 ;

if (((cvPS - bvPS) <= v) && (v <= (cvPS + bvPS)))

uvPS = 1.0 - (fabs(cvPS - v)) / bvPS ;

elseuvPS = 0.0 ;

if (((cvPL - bvPL) <= v) && (v <= (cvPL + bvPL)))

uvPL = 1.0 - (fabs(cvPL - v)) / bvPL ;

elseuvPL = 0.0 ;

if (v >cvPL)

uvPL = 1.0 ;

/* Logical Implications – Product Operator*/

r1 = ueNL * uvNL ;

r2 = ueNL * uvNS ;

r3 = ueNL * uvZE ;

r4 = ueNL * uvPS ;

r5 = ueNL * uvPL ;

r6 = ueNS * uvNL ;

r7 = ueNS * uvNS ;

r8 = ueNS * uvZE ;

r9 = ueNS * uvPS ;

r10 = ueNS * uvPL ;

r11 = ueZE * uvNL ;

r12 = ueZE * uvNS ;

r13 = ueZE * uvZE ;

r14 = ueZE * uvPS ;

r15 = ueZE * uvPL ;

r16 = uePS * uvNL ;

Modelling and Implementation of a Series DC Motor Drive System
http://dx.doi.org/10.5772/59814

127

r17 = uePS * uvNS ;

r18 = uePS * uvZE ;

r19 = uePS * uvPS ;

r20 = uePS * uvPL ;

r21 = uePL * uvNL ;

r22 = uePL * uvNS ;

r23 = uePL * uvZE ;

r24 = uePL * uvPS ;

r25 = uePL * uvPL ;

/* Defuzzification */

dd1 =

caNL*r1+caNL*r2+caNL*r3+caNS*r4+caZE*r5+caNL*r6+caNL*r7+caNS*r8+

caZE*r9+caPS*r10+caNL*r11+caNS*r12+caZE*r13+caPS*r14+caPL*r15+

caNS*r16+caZE*r17+caPS*r18+caPL*r19+caPL*r20+caZE*r21+caPS*r22+

caPL*r23+caPL*r24+caPL*r25;

u1 = dd1 /

(r1+r2+r3+r4+r5+r6+r7+r8+r9+r10+r11+r12+r13+r14+r15+r16+r17+r18+r19+

r20+r21+r22+r23+r24+r25);

//u = u/10.0 ;

if (u1 < -1.0) u1 = -ilim;

if (u1 > 1.0) u1 = ilim;

}

void control2()

{

/* Current Loop */

if(iRef>ilim) iRef = ilim ;

if(iRef<-ilim) iRef =-ilim ;

ie = iReal - iRef ; /* Error */

Vi2 = Vi2 + Gv2*ie*dt; /* Integral Error */

if (Vi2 < cvNL2) Vi2 = cvNL2 ; /* Limits */

if (Vi2 > cvPL2) Vi2 = cvPL2 ;

e2 = Ge2 * ie ;

v2 = Vi2 ;

/*: Triangular Functions Fuzzification */

/* Analysis in Relation to "e2" */

if (((ceNL2 - beNL2) <= e2) && (e2 <= (ceNL2 + beNL2)))

ueNL2 = 1.0 - (fabs(ceNL2 - e2)) / beNL2 ;

else ueNL2 = 0.0 ;

if (e2 < ceNL2)

ueNL2 = 1.0 ;

if (((ceNS2 - beNS2) <= e2) && (e2 <= (ceNS2 + beNS2)))

ueNS2 = 1.0 - (fabs(ceNS2 - e2)) / beNS2 ;

else ueNS2 = 0.0 ;

if (((ceZE2 - beZE2) <= e2) && (e2 <= (ceZE2 + beZE2)))

ueZE2 = 1.0 - (fabs(ceZE2 - e2)) / beZE2 ;

else ueZE2 = 0.0 ;

if (((cePS2 - bePS2) <= e2) && (e2 <= (cePS2 + bePS2)))

uePS2 = 1.0 - (fabs(cePS2 - e2)) / bePS2 ;

else uePS2 = 0.0 ;

if (((cePL2 - bePL2) <= e2) && (e2 <= (cePL2 + bePL2)))

uePL2 = 1.0 - (fabs(cePL2 - e2)) / bePL2 ;

else uePL2 = 0.0 ;

Fuzzy Logic - Tool for Getting Accurate Solutions128

if (e2 > cePL2)

uePL2 = 1.0 ;

/* Analysis in Relation to "v2" */

if (((cvNL2 - bvNL2) <= v2) && (v2 <= (cvNL2 + bvNL2)))

uvNL2 = 1.0 - (fabs(cvNL2 - v2)) / bvNL2 ;

else uvNL2 = 0.0 ;

if (v2 < cvNL2)

uvNL2 = 1.0 ;

if (((cvNS2 - bvNS2) <= v2) && (v2 <= (cvNS2 + bvNS2)))

uvNS2 = 1.0 - (fabs(cvNS2 - v2)) / bvNS2 ;

else uvNS2 = 0.0 ;

if (((cvZE2 - bvZE2) <= v2) && (v2 <= (cvZE2 + bvZE2)))

uvZE2 = 1.0 - (fabs(cvZE2 - v2)) / bvZE2 ;

else uvZE2 = 0.0 ;

if (((cvPS2 - bvPS2) <= v2) && (v2 <= (cvPS2 + bvPS2)))

uvPS2 = 1.0 - (fabs(cvPS2 - v2)) / bvPS2 ;

else uvPS2 = 0.0 ;

if (((cvPL2 - bvPL2) <= v2) && (v2 <= (cvPL2 + bvPL2)))

uvPL2 = 1.0 - (fabs(cvPL2 - v2)) / bvPL2 ;

else uvPL2 = 0.0 ;

if (v2 > cvPL2)

uvPL2 = 1.0 ;

/* Logical Implications – Product Operator */

r26 = ueNL2 * uvNL2 ;

r27 = ueNL2 * uvNS2 ;

r28 = ueNL2 * uvZE2 ;

r29 = ueNL2 * uvPS2 ;

r30 = ueNL2 * uvPL2 ;

r31 = ueNS2 * uvNL2 ;

r32 = ueNS2 * uvNS2 ;

r33 = ueNS2 * uvZE2 ;

r34 = ueNS2 * uvPS2 ;

r35 = ueNS2 * uvPL2 ;

r36 = ueZE2 * uvNL2 ;

r37 = ueZE2 * uvNS2 ;

r38 = ueZE2 * uvZE2 ;

r39 = ueZE2 * uvPS2 ;

r40 = ueZE2 * uvPL2 ;

r41 = uePS2 * uvNL2 ;

r42 = uePS2 * uvNS2 ;

r43 = uePS2 * uvZE2 ;

r44 = uePS2 * uvPS2 ;

r45 = uePS2 * uvPL2 ;

r46 = uePL2 * uvNL2 ;

r47 = uePL2 * uvNS2 ;

r48 = uePL2 * uvZE2 ;

r49 = uePL2 * uvPS2 ;

r50 = uePL2 * uvPL2 ;

/* Defuzzification */

dd2 =

caNL2*r26+caNL2*r27+caNL2*r28+caNS2*r29+caZE2*r30+caNL2*r31+caNL2*r32+caNS2*r33

+

Modelling and Implementation of a Series DC Motor Drive System
http://dx.doi.org/10.5772/59814

129

caZE2*r34+caPS2*r35+caNL2*r36+caNS2*r37+caZE2*r38+caPS2*r39+caPL2*r40+

caNS2*r41+caZE2*r42+caPS2*r43+caPL2*r44+caPL2*r45+caZE2*r46+caPS2*r47+

caPL2*r48+caPL2*r49+caPL2*r50;

u2 = dd2 /

(r26+r27+r28+r29+r30+r31+r32+r33+r34+r35+r36+r37+r38+r39+r40+r41+r42+r43+r44+

r45+r46+r47+r48+r49+r50);

if (u2 < 0.0) u2 = 0.0;

if (u2 > 1.0) u2 = 1.0;

}

voidteclado()

{

/* The activation of these subroutine keys, allows online adjustment

system parameters, where settings are displayed on the output */

/* Keys "k" and "l" operating in the value of the reference speed */

if (tecla==108 &&nRef<1.0) nRef=nRef+0.01; /* Limited adjustment to */

if (tecla==107 &&nRef>-1.0) nRef=nRef-0.01; /* range -1.0<nRef<1.0 */

/* Keys "o" and "p" operating in the value of the reference speed */

if (tecla==112 &&nRef<1.0) nRef=nRef+0.05; /* Limited adjustment to */

if (tecla==111 &&nRef>-1.0) nRef=nRef-0.05; /* range -1.0<nRef<1.0 */

/* Keys "q" e "w" operating on the gain Gv1 */

if (tecla==119 && Gv1<99.95) Gv1 = Gv1+0.05 ;

if (tecla==113 && Gv1>0.05) Gv1 = Gv1-0.05 ;

/* Keys "s" e "d" operating on the gain Ge1 */

if (tecla==100 && Ge1< 99.95) Ge1=Ge1+0.05;

if (tecla==115 && Ge1> 0.05) Ge1=Ge1-0.05;

/* Keys "g" e "h" operating on the gain Gv2 */

if (tecla==103 && Gv2< 9.95) Gv2=Gv2+0.05;

if (tecla==104 && Gv2< 0.05) Gv2=Gv2-0.05;

/* Keys "m" e "n" operating on the gain Ge2 */

if (tecla==109 && Ge2< 9.95) Ge2=Ge2+0.05;

if (tecla==110 && Ge2> 0.05) Ge2=Ge2-0.05;

}

/* Digital-Analogic Conversion Subroutine */

voidconv_da()

{

datout=dataout; /* Assigns the equivalent value to the datout pointer

... dataout variable */

param[0]=0; /* Card number */

param[1]=0x220; /* I/O base address */

/* Buffer Offset ‚ the memory address (Buffer) where data

will be stored. Segment ‚ the length of the data buffer */

param[20] = FP_OFF(datout); /* Buffer A Offset D/A output data */

param[21] = FP_SEG(datout); /* Buffer A segment D/A output data */

param[22] = 0; /* Buffer B output address(unused) */

param[23] = 0; /* Output segment- Unused, set 0 */

param[24] = 1; /* Number of D/A conversions*/

param[25] = 0; /* D/A conversion initialization channel */

param[26] = 0; /* D/A conversion stop channel */

/* D/A conversion fault indicator */

pcl711(3, param); /* Function 3 : Hardware initialization */

if (param[45] != 0) { /* If parameter 45 different from 0, do: */

 clrscr(); /* Clear screen */

Fuzzy Logic - Tool for Getting Accurate Solutions130

 printf("\n DRIVER INITIALIZATION FAILURE!"); /* Print */

 getch(); /* Output screen display */

 exit(1); /* Close loop and exit with status 1 - Error */

 }

pcl711(12, param); /* Function 12: D/A conversor initialization */

if (param[45] != 0) {

 clrscr();

 printf("\n D/A INITIALIZATION FAILURE !");

 getch();

 exit(1);

 }

pcl711(13, param); /* Function 13: number of D/A conversions verification*/

if (param[45] != 0) {

 clrscr();

 printf("\n D/A DATA TRANSFER SOFTWARE FAILURE!");

 getch();

 exit(1);

 }

/* conversion for the output voltage signal of the recursive control equations

in pu to occupy an address space of the output data buffer. */

dataout[0]=(4095*u2); /* Base pu = 4095 */

}

/* Main program */

void main(void)

{

Timer t; /* Timer"t" */

clrscr(); /* Clear screen */

delay(500);

textbackground(4); /* Defines Red Background (4) */

gotoxy(5,2);

cprintf("FUZZY CONTROLLER FOR A DC MOTOR SPEED CONTROL:);

gotoxy(5,4);

delay(500);

cprintf(" Student : Otavio Henrique Salvi Vicentini n 9025 ");

gotoxy(5,5);

cprintf(" Advisor : prof. Angelo J. J. Rezek Date : 25/09/2014 ");

delay(500);

textbackground(1); /* Defines a Blue Background (1) */

gotoxy(1,15); cprintf(" [O] - Decreases the Speed [0.05] ");

gotoxy(40,15); cprintf(" [P] - Increases the Speed [0.05] ");

gotoxy(1,16); cprintf(" [K] - Decreases the Speed [0.01] ");

gotoxy(40,16); cprintf(" [L] - Increases the Speed [0.01] ");

gotoxy(1,17); cprintf(" [Q] - Decreases the Gain Gv1 [0.05] ");

gotoxy(40,17); cprintf(" [W] - Increases the Gain Gv2 [0.05] ");

gotoxy(1,18); cprintf(" [S] - Decreases the Gain Ge1 [0.05] ");

gotoxy(40,18); cprintf(" [D] - Increases the Gain Ge1 [0.05] ");

gotoxy(1,19); cprintf(" [G] - Decreases the Gain Gv2 [0.05] ");

gotoxy(40,19); cprintf(" [H] - Increases the Gain Gv2 [0.05] ");

gotoxy(1,20); cprintf(" [M] - Decreases the Gain Ge2 [0.05] ");

gotoxy(40,20); cprintf(" [N] - Increases the Gain Ge2 [0.05] ");

textbackground(4); /* Defines Red Background (4) */

gotoxy(13,24); cprintf(" PRESS ESC TO END PROGRAM ");

Modelling and Implementation of a Series DC Motor Drive System
http://dx.doi.org/10.5772/59814

131

do

{

tecla=0;

if (kbhit()) tecla=getch(); /* Control by keyboard */

j++; /* Increases the number of interactions by 1 */

t.reset(); /* Resets the timer "t" */

t.start(); /* Starts the timer */

asm cli;

conv_ad(); /* Performs A/D subroutine conversion */

asmsti;

ne = nRef-nReal;

control1();

if(iRef<ilim&&iRef>-ilim) control1();

if(iRef==ilim&& ne<0.0) control1();

if(iRef==-ilim&& ne>0.0) control1();

iRef = u1;

ie=iReal-iRef;

if(u2<0.9 && u2>.10) control2();

if(u2>=0.9 &&ie<0.0) control2();

if(u2<=.10 &&ie>0.0) control2();

asm cli;

conv_da(); /* Performs A/D subroutine conversion */

asmsti;

if (j>=100) /* Displays instant results each 100 interactions in the screen */

{

j=0;

gotoxy(7,8);

textbackground(1);

cprintf(" Time spent : %1.6f (s)", dt);

gotoxy(7,9);

cprintf(" Channel [0] - Speed : % 1.3f (pu) Gv1 %1.3f Ge1 %1.3f " ,

nReal,Gv1,Ge1);

gotoxy(7,10);

cprintf(" Channel [1] - Current : % 1.3f (pu) Gv2 %1.3f Ge2 %1.3f " , iRe-

al,Gv2,Ge2);

gotoxy(7,11);

cprintf(" Reference Speed : %1.2f (pu) iRef : %1.2f (pu) " , nRef,iRef);

gotoxy(7,12);

cprintf(" ne : %1.2f ie : %1.2f Vcontr : %1.2f (pu) ", ne, ie, u2);

}

t.stop(); /* Stops timer */

dt = t.time(); /* Sampling time */

} while (tecla!=27); /* Program ends when the Esc key and is pressed.*/

}

CONTROLED DC MOTOR DRIVE PROGRAM USING PI (PROPORTIONAL-INTEGRAL) REGULATORS,

USING RECURSIVE EQUATIONS DERIVED FROM Z TRANSFORM:

/*

* Program : MCC Control *

* Description : Digital control for a series DC motor using convention-

al digital

Fuzzy Logic - Tool for Getting Accurate Solutions132

* PI regulators *

* PCL-711B board *

* Version : 2 *

* Date : 29/09/2014 *

*/

/* Inclusão de Diretivas */

#include <stdio.h>

#include <conio.h> /* Accept directives, including codes */

#include <stdlib.h> /* from other sources */

#include <dos.h> /* programs and folders */

#include <timer.h>

/* Declaração de Variáveis Globais */

extern "C" pcl711(int, unsigned int *); /*Includes function "pcl711" inte-

ger defined, unsigned in module separated using language "C"*/

unsigned int param[60]; /* Defining an data array -

– which makes up an unsigned integer parameter table */

unsigned int datain[200], dataout[200]; /* 10 integer data buffer +

 for conversion*/

unsigned int far * datin, * datout; /* Buffer address of data above

 - pointer – long and integer type:

 2 words with 1Mbyte range */

int tecla,i; /* Keyboard reading variables

 and number of channels*/

/* Control floating point variables */

float nRef=0.72, nReal=0.0, ne=nRef;

float ne_1=0.1, nReal_1=0.0;

float iRef=1.20, iR=1.20, ie=-1.20, iReal=0.0, Ilim=1.20, iRefer=1.20;

float iRef_1=1.20, iR_1=1.20, ie_1=-1.20, iReal_1=0.0, iRefer_1=1.20;

float Tn=0.460, Tgs2=0.01584, Ti=0.01366;

float VRn=5.20, VRi=0.8, Vcc=0.1, Vcc_1=0.1, Vcontr=0.1;

float a1, a2, b1, b2, b3, b4, T=0.003;

float DataBuf[3];

/* Variable declaration void – means it does not return a value */

void conv_ad(void);

void conv_da(void);

void control(void);

void control1(void);

void control2(void);

void teclado(void);

/* AD conversion – Parameters table */

void conv_ad()

{

unsigned int i;

 /* Pointer – Memory space – Variable that contains an address,

usually another variable’s address */

datin = datain; /* Assigns to the datin pointer the

 equivalent value of datain variable */

param[0] = 0; /* Board number */

param[1] = 0x220; /* I/O base address */

/* Sampling frequency = Board base frequency/(C1 * C2) */

Modelling and Implementation of a Series DC Motor Drive System
http://dx.doi.org/10.5772/59814

133

 /* 2M / (10 * 10) = 20 KHz */

param[5] = 10; /* Constant divisor pacer C1 */

param[6] = 10; /* Constant divisor pacer C2 */

param[7] = 0; /* Trigger Mode, 0 : pacer trigger

 Allows D/I functions */

/* Buffer offset ‚ the memory address (buffer) where the data

will be stored. Segment‚ the length of the data buffer */

param[10] = FP_OFF(datin); /* A/D Buffer A offset */

param[11] = FP_SEG(datin); /* A/D Buffer A segment */

param[12] = 0; /* Buffer B address (unused)*/

param[13] = 0; /* Segment - unused, set to 0 */

/* The A/D conversion covers two input channels, channel 1 – current, and chan-

nel 0 – speed, with values in pu adjusted in +/- 5 V */

param[14] = 2; /* Number of A/D conversions */

param[15] = 0; /* Channel of the A/D conversion initiation*/

param[16] = 1; /* Stop A/D conversion channel*/

param[17] = 0; /* Channel gains, 0 : +/- 5V */

/* Conversion A/D fault indication*/

pcl711(3, param); /* Function 3 : Hardware initialization */

if (param[45] != 0) { /* If parameter 45 is different from 0, do: */

 clrscr(); /* Clear screen */

 printf("\n DRIVER INITIALIZATION FAILED!"); /* Print */

 getch(); /* Shows exit screen */

 exit(1); /* Closes loop e exit with status 1 - Error */

 }

pcl711(4, param); /* Function 4 : Converter A/D initialization*/

if (param[45] != 0) {

 clrscr();

 printf("\n A/D INITIALIZATION FAILED!");

 getch();

 exit(1);

 }

pcl711(5, param); /* Function 5 : Number of conversions A/D verification*/

if (param[45] != 0) {

 clrscr();

 printf("\n A/D DATA TRANSFER SOFTWARE FAILURE!");

 getch();

 exit(1);

 }

/* A/D conversions */

for (i = 0; i < param[14]; i++) /* Sampled data – channels 0 e 1 */

 {

 DataBuf[i] = datain[i] & 0xFFF;

 /* Data collect for the buffer on the address 0xFFF

 (the first three hexadecimal digits can be reset because the

remaining, sufficient to support 4096 binary digits) */

 DataBuf[i] =((5.0 - (-5)) * DataBuf[i] / 4096) + (-5);

 /* conversion so that the voltage signal is available for the recursive

equations control

 (5 - (-5)) : Input range A/D (-5V to 5V)

 4096 : Scale range of the A/D - 12 bit

 DataBuf : Input data of the A/D

Fuzzy Logic - Tool for Getting Accurate Solutions134

 (-5) : Beginning of the scale of the A/D "-5" V

 */

 }

/* Feedback voltage reading for the speed and current loop mesh, under nominal

load and speed.*/

/* speed signal conversion – correction to pu*/

 nReal=(DataBuf[0]/1.500);

/* Current signal conversion - correction to pu */

 iReal=(DataBuf[1]/1.493);

}

/* Control */

/* Recursive Equations to perform functions of control */

void control()

{ /* Sampling time considered T */

a1=T/((2*Tgs2)+T);

 /*Tgs2= Filter time constant */

a2=((2*Tgs2)-T)/(T+(2*Tgs2));

b1=VRn+((VRn*T)/(2*Tn)); /* VRn= Speed regulator gain */

 /* Tn= Speed regulator time constant */

b2=((VRn*T)/(2*Tn))-VRn;

b3=VRi+((VRi*T)/(2*Ti)); /* VRi= Current regulator gain */

 /* Ti= Current regulator time constant */

b4=((VRi*T)/(2*Ti))-VRi;

}

/* Speed Regulator */

void control1()

 {

 iRef=(b1*ne)+(b2*ne_1)+iRef_1; /* nreal= Speed feedback */

 iRef_1=iRef; /* nRef= Post filter reference speed */

 ne_1=ne; /* ne= Speed error */

 /* iRef= Current reference - Output

 speed regulator */

/* Reference Current Filter */

iRefer=iRef;

 iR=a1*(iRefer+iRefer_1)+a2*iR_1; /* Which: */

 iR_1=iR; /* iR= Post filter current reference/

 iRefer_1=iRefer; /* iRef= Reference current */

 if(iR>=Ilim) iR=Ilim;

 if(iR<=-Ilim) iR=-Ilim; /* Current reference limit */

}

/* Current Regulator */

void control2()

 { /* Which: */

 Vcc=(b3*ie)+(b4*ie_1)+Vcc_1; /* ireal= feedback current */

 Vcc_1=Vcc; /* iR= Post filter reference current */

 ie_1=ie; /* ie= Current Error- In. regulator */

 if(Vcc>0.95) Vcontr=0.95;

 if(Vcc<.05) Vcontr=.05; /* Control voltage limit */

 if(Vcc<=0.95 && Vcc>=.05) Vcontr=Vcc;

}

/* System parameters alteration */

void teclado()

Modelling and Implementation of a Series DC Motor Drive System
http://dx.doi.org/10.5772/59814

135

{

/* The activation of these subroutine keys, allows online adjustment of system

parameters, with the settings being shown in the output screen */

 /* Keys "s" and "d" operating in the value of the reference speed */

 if (tecla==115 && nRef<1.0) nRef=nRef+1.44; /* Adjustment limited to */

 if (tecla==100 && nRef>-1.0) nRef=nRef-1.44; /* range -1.0<nRef<1.0 */

 /* Keys "k" and "l" operating in value of the reference speed */

 if (tecla==107 && nRef<1.0) nRef=nRef+0.01; /* Adjustment limited to */

 if (tecla==108 && nRef>-1.0) nRef=nRef-0.01; /* range -1.0<nRef<1.0 */

 /* Keys "o" and "p" operating in value of the reference speed */

 if (tecla==111 && nRef<1.0) nRef=nRef+0.05; /* Adjustment limited to */

 if (tecla==112 && nRef>-1.0) nRef=nRef-0.05; /* range -1.0<nRef<1.0 */

 /* Keys "f” and “v" operating in VRn gain */

 if (tecla==102 && VRn<40.0) VRn=VRn+0.05;

 if (tecla==118 && VRn>0.02) VRn=VRn-0.05;

 /* Keys "g” and “b" operating on time constant Tn */

 if (tecla==103 && Tn<5.00) Tn=Tn+0.05;

 if (tecla==98 && Tn>0.06) Tn=Tn-0.05;

/* Keys "h” and “n" operating in VRi gain */

 if (tecla==104 && VRi<10.0) VRi=VRi+0.05;

 if (tecla==110 && VRi>0.01) VRi=VRi-0.05;

 /* Keys "j” and “m" operating on time constant Ti */

 if (tecla==106 && Ti<1.000) Ti=Ti+0.005;

 if (tecla==109 && Ti>0.006) Ti=Ti-0.005;

}

/* D/A conversion – Parameter table */

void conv_da()

{

datout=dataout; /* Assigns the equivalent value to the datout pointer */

param[0]=0; /* Card number */

param[1]=0x220; /* I/O base address */

 /* Buffer Offset ‚ the memory address (Buffer) where data

will be stored. Segment ‚ the length of the data buffer */

param[20] = FP_OFF(datout); /* Buffer A Offset D/A output data */

param[21] = FP_SEG(datout); /* Buffer A segment D/A output data */

param[22] = 0; /* Buffer B output address(unused) */

param[23] = 0; /* Output segment- Unused, set 0 */

param[24] = 1; /* Number of D/A conversions*/

param[25] = 0; /* D/A conversion initialization channel */

param[26] = 0; /* D/A conversion stop channel */

/* D/A conversion fault indicator */

pcl711(3, param); /* Function 3 : Hardware initialization */

if (param[45] != 0) { /* If parameter 45 different from 0, do: */

 clrscr(); /* Clear screen */

 printf("\n DRIVER INITIALIZATION FAILURE!"); /* Print */

 getch(); /* Output screen display */

 exit(1); /* Close loop and exit with status 1 - Error */

 }

pcl711(12, param); /* Function 12: D/A converter initialization */

if (param[45] != 0) {

 clrscr();

 printf("\n D/A INITIALIZATION FAILURE !");

Fuzzy Logic - Tool for Getting Accurate Solutions136

 getch();

 exit(1);

 }

pcl711(13, param); /* Function 13: number of D/A conversions verification*/

if (param[45] != 0) {

 clrscr();

 printf("\n D/A DATA TRANSFER SOFTWARE FAILURE!");

 getch();

 exit(1);

 }

 /* Conversion for the output voltage signal of the recursive control equa-

tions in pu to . occupy an address space of the output data buffer. */

dataout[0]=(4095*Vcontr);

}

/* Main program */

void main(void) /* Ensures that global variables do not return values */

{ /* Variable declarations */

int xx=0; /* Initializes the number of interactions in 0*/

Timer t; /* Time counter “t" */

clrscr(); /* Clear screen */

gotoxy(1,10); cprintf("[S] - Invert vel. [+]");

gotoxy(40,10); cprintf("[D] - Invert vel. [-]");

gotoxy(1,11); cprintf("[O] - Increments vel. [0.05]");

gotoxy(40,11); cprintf("[P] - Decrements vel. [0.05]");

gotoxy(1,12); cprintf("[K] - Increments vel. [0.01]");

gotoxy(40,12); cprintf("[L] - Decrements vel. [0.01]");

do{

tecla=0;

if (kbhit()) tecla=getch();

xx++; /* Increments 1 to the number of interactions */

t.reset(); /* Resets timer "t" */

t.start(); /* Starts timing */

asm cli;

conv_ad(); /* Performs the A/ D conversion subroutine */

asm sti;

control();

teclado(); /* Performs the inspecting keystroke subroutine */

ne=nRef-nReal;

if(iR<Ilim && iR>-Ilim) control1();

if(iR==Ilim && ne<0.0) control1();

if(iR==-Ilim && ne>0.0) control1();

ie=iReal-iR;

if(Vcc<0.95 && Vcc>.05)control2();

if(Vcc>=0.95 && ie<0.0) control2();

if(Vcc<=.05 && ie>0.0) control2();

asm cli;

conv_da(); /* Performs the D/A conversion subroutine */

asm sti;

if (xx>=10) {/* Prints instant results on screen every 100 interactions */

xx=0;

gotoxy(1,1);

cprintf("VRn= %1.3f Tn= %1.4f VRi= %1.3f Ti= %1.4f ", VRn, Tn, VRi, Ti);

Modelling and Implementation of a Series DC Motor Drive System
http://dx.doi.org/10.5772/59814

137

gotoxy(1,2);

cprintf("Time spent: %fs ", T);

gotoxy(1,3);

cprintf("canal[%3d] = % 1.3f (pu) canal[%3d] = % 1.3f (pu) ", 0, nReal, 1, iRe-

al);

gotoxy(1,4);

cprintf("nRef= %1.2f Vcontr= %1.2f iR= %1.4f ie= %1.2f ", nRef, Vcontr, iR,

ie);

gotoxy(1,5);

cprintf("Said.R.Veloc= %1.3f Said.R.Corr= %1.3f ", iRef, Vcc);

/* %1.4f V, means, real, in 1 field, with 4 decimal digits, in "V".

%3d means, integer, in 3 fields. */

}

t.stop(); /* Ends timing */

T=t.time(); /* We consider the sampling time with initial value

T=0.003 s. If the running time of "t" greater than "T" program, must attempt

to reduce it. If "t" is smaller we do T=t.*/

}

while (tecla!=27);

}

Acknowledgements

The authors would like to thank UNIFEI electrical engineering undergraduate students
Ricardo Nogueira Brasil and Thiago Augusto de Mello Araújo, as well as designer José Vander
da Silva and English teacher João Castilhos at Speaking, Itajubá/ MG, Brazil, for assistance in
the preparation of this work concerning the translation of the paper from Portuguese into
English.

The authors also wish to thank everyone who directly or indirectly contributed to the success
of this research study.

Author details

Angelo José Junqueira Rezek1*, Carlos Alberto Murari Pinheiro1,
Tony Youssif Teixeira Darido1, Valberto Ferreira da Silva1, Otávio Henrique Salvi Vicentini1,
Wanderson de Oliveira Assis2 and Rafael Di Lorenzo Corrêa2

*Address all correspondence to: rezek@unifei.edu.br

1 UNIFEI – Federal University of Itajubá, Itajubá–MG, Brazil

2 Mauá School of Engineering, Mauá Institute of Technology, Brazil

Fuzzy Logic - Tool for Getting Accurate Solutions138

References

[1] Knospe, C., “PID Control”, IEEE Control Systems, v. 26, n.1, p. 30-41, 2006.

[2] Ming-fu, Z., Yan, C., Zhi-yuan, Z., Chun, D., Yu, D., “Research of Complex Fuzzy
Control on-off Magnetism Team Motor Speed-Adjusting System”, 5th Conference in
Power Electronics and Motion Control Conference, 2006, IPEMC/CES/IEEE '06.

[3] Buxbaum, A., Schierau, K., Straughen, A. “Design of control systems for DC drives”,
Spring-Verlag Berlin Heidelberg, p.162-177, 1990.

[4] Fröhr, F., Orttenburger, F., “Introduction to the Electronic Control” (Spanish), Sie‐
mens, Marcombo S.A., Barcelona, España, 1986.

[5] Pinheiro, C. A. M., Gomide, F. A. C., “Frequency response design of fuzzy control‐
lers”, VII IFSA World Congress, v. 3, p. 434-439, 1997.

[6] Pinheiro, C. A. M., Gomide, F. A. C., “On the equivalence between basic fuzzy and
classical controllers”, VIII IFSA World Congress, v. 2, p. 594-597, 1999.

[7] Pinheiro, C. A. M., Gomide, F. A. C., “Fuzzy control of nonlinear systems by learning
method and frequency response”, FUZZ-IEEE Conference, v. 1, p. 444-448, 1999.

[8] Pinheiro, C.A.M., “Analysis and Project of Fuzzy Control Systems: An Approach at
the Frequency Domain”, Campinas, Unicamp, (PhD Thesis, Portuguese), 2000.

[9] Zadeh, L. A., “Fuzzy Sets”, Information and Control, v. 8, p. 338-353, 1965.

[10] Rezek, A. J. J., Pinheiro, Carlos Alberto Murari, Darido, T. Y. T.,Silva, Valberto Ferre‐
ira da, Vicentini, O. H. S., Assis, W. O., “Comparative performance analysis for digi‐
tal regulators in series DC motor controlled drive’’, International Journal of Power
and Energy Systems, v. 30, p. 15-22, 2010.

[11] Thadiappan Krishnan,T., Bellamkonda Ramaswani,B., “A Fast-Response DC Motor
Speed Control System”, IEEE Transactions on Industry Applications, v. IA-10 Nº 5
pp. 643-651, September/October, 1974. Control System”, IEEE Transactions on Indus‐
try Applications, v. IA-10 Nº 5 pp.643-651, September/October, 1974.

[12] Rezek, A. J. J.; Rodrigues, M. S.; Miranda,V. A. M., Oliveira, V. A.; Cassula, A. M.,
Costa Jr., R. A.,Torres, A. Z., “Design and simulation of a controlled DC drive sys‐
tem” (In Portuguese) - II SIMEAR, II International Seminar of Electrical Motors and
Drives, EPUSP, São Paulo - SP – Brazil, proceedings II SIMEAR, p. 141-160, 1991.

[13] Gustavo G. Moraes; Daniel C. G. Ferreira; Geraldo S. F. Júnior, “Speed control of a
DC machine” (Portuguese), undergraduate course final end of course work (electri‐
cal engineering) - Federal University of Itajubá, supervisor : prof. Dr. Angelo José
Junqueira Rezek, 2013.

[14] Tony Youssif Teixeira Darido,T.Y.T., “Digital regulators performance comparative
analysis in series excited DC motor” (In Portuguese), Electrical engineering MSc dis‐

Modelling and Implementation of a Series DC Motor Drive System
http://dx.doi.org/10.5772/59814

139

sertation – Federal University of Itajubá (UNIFEI), supervisor: Angelo José Junqueira
Rezek, 2004.

[15] Silva,D.S; Gonçalves F., “Digital implementation of fuzzy controllers” (In Portu‐
guese), undergraduate course, end of course work (electrical engineering) - Federal
University of Itajubá, supervisor: prof. Dr. Carlos Alberto Murari Pinheiro, Decem‐
ber 1999.

Fuzzy Logic - Tool for Getting Accurate Solutions140

