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1. Introduction

Land use change in forest ecosystems is a worldwide problem. In many cases, however, the

change is only temporary, and after a period of economic activity, the original forest must be

reclaimed back to its original (or as close as possible) estate. A typical case is in open-pit mining.

In many juridictions there is a legal requirement for the company to engage in restorative

activities designed to bring back biodiversity and function to those areas espoiled by mining.

To reclaim a fully functional forest ecosystem, soil, topographic and hydrological properties

must foster the biogeochemical and ecological processes required to support a vigorous

vegetative community. While significant advances have been made in this regard, each

reclaimed forest ecosystem is unique, and there remains considerable uncertainty as to how

these interdependent processes will be manifest in any particular instance. One of the most

important interdepencies is between water availability and plant uptake. Our understanding

of biodiversity and linkage with surface water availability and distribution is limited because

this relationship has not been examined within and across scales. The availability and distri‐
bution of water can influence ecosystem structure and function at a range of scales and levels

of organization through its influences on various processes and feedbacks that can affect both

animals and plants. For example, at a landscape level, the distribution of herbivore home

ranges and vegetation communities may be influenced by the mosaic created by water sources.

At the ecosystem and community levels, ecosystem processes such as nutrient cycling,

predator-prey interactions, and interspecific competition may be influenced by the availablil‐
ity and location of water sources. At a population level, surface and soil water availability and
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distribution may influence herbivore and vegetation survivorship through processes such as

droughts, pests and diseases.

Water scarcity can be produced by seasonal or annual droughts, but also by difficulties in

uptake due to salinity or other contaminants. Naturally saline systems within the boreal forest

are infrequent but are widespread across western North America [1]. Typical saline sites can

be found in partially-closed catchment areas with inflows of groundwater [2]. Levels of salinity

in shallow soils generally increase as the elevation declines toward a basin, reflecting the

movement of the salts along the topographic gradient.

Reclaimed landscapes must hold enough water for plant growth but have enough downward

movement of water to flush any contaminants from the rooting zone. Excessive percolation is

also a concern, however, since drainage from toe slopes can carry dissolved contaminates out

of a landform [3]. In northern climates, evapotranspiration is the largest annual loss of water

[4], and a primary factor in the movement of salts to the surface. Interactions between vege‐
tation productivity, nutrient budgets and evapotranspiration must therefore be assessed

simultaneously [5]. There has been little research, however, on how changes in vegetation and

climate affect the energy balance and water movement in northern ecosystems [3].

A broad array of decision support tools is available for projecting forest stand development in

reclaimed ecosystems. These include forest ecosystem classification and ecosite manuals, stand

establishment keys/guides, competition index methodologies, volume tables, site index

curves, soil-site equations, stand density management tools, and growth and yield equations/

tables/decision systems [6]. Many of these tools are empirically based. This means they have

significant limitations in their ability to accurately project productivity because in a strict sense,

their application should be restricted to the stand conditions from which their underlying

relationships were derived [7]. This can be problematic in mine reclamation for two reasons.

First, the soil prescriptions that form the basis for reclamation often lack the historical legacy

(propagule bank, organic matter, soil structural and biochemical properties, etc.) common to

natural sites [8-11]. Secondly, forests are growing under climatic conditions that differ from

the historical climate regime, particularly in more northerly regions. Global circulation model

projections indicate continued increases in atmospheric and surface temperatures at least

through this century, along with associated changes in the precipitation regime. Historical

properties are now no longer tenable as the sole basis for deriving empirical growth relation‐
ships.

With the widespread increase in computing power, model sophistication and complexity have

seen a rapid increase though this has not necessarily resulted in better and more reliable

outcomes [12]. One issue with greater complexity is the increased cost and difficulty of

obtaining calibration data sets for specific local ecosystems. From the perspective of reclama‐
tion, another issue is that most forest stand decision support tools have little or no represen‐
tation of hydrological processes. In essence, the implicit assumption underlying these models

is that the hydrological regime is in an equilibrium condition such that short-term temporal

or spatial fluctuations in available moisture are of little consequence to long-term trends in

productivity.
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One way of resolving these limitations is to build a fully integrated vegetation-hydrology tool

that combines a detailed representation of all critical processes within a single computing

environment. The resulting ‘mega-model’ would possess the benefits of a fully integrated and

interactive system with appropriate feedbacks and system controls. In such models, linkage

between the different components of the model would be in real time, with vegetation growth

and development in each time step related to the hydrological processes driving available

moisture [13].

Seldom it is feasible or desirable, however, to build a model that includes all processes and

scales of interest [14]. There are no a single model can be used in every situation that could

arise during planning or management. If such a model is constructed, it will probably have

one or more issues of being too generalist, having issues to represent processes at different

scales, and continuous tuning and modifications to handle new data and issues [15]. Further‐
more, ensuring these models are reliable requires substantial investments of time and energy,

and their applicability tends to become overly specialized thereby reducing flexibility and

portability (applying the model in different locations or circumstances). Other disadvantages

include an increased calibration load associated with the myriad feedback and system controls,

validation (establishing the veracity of model structure and architecture) and verification

(assessing output accuracy). In this respect, more complex models are not ‘better’ due simply

to the fact they incorporate a greater representation of reality because complexity does not

necessarily equate to improved accuracy and precision. This leads to the modelling mantra

that models should be only as complex as absolutely necessary.

A compromise (and popular) approach is to construct a ‘meta-model’ wherein the most

suitable forest productivity and hydrological models would be coupled as input-output (I/O)

systems. This I/O linkage refers to the idea that output from a given model serves as input to

another. Fall [14] provided a list of the benefits and costs of the meta-modeling approach. The

most important benefits of the meta-modelling approach are that it can use previous knowl‐
edge and expertise generated when developed well document models, but at the same time

allow for flexibility to match the meta-model to the local conditions, data availability and other

user needs. In addition, different teams can work in different processes and sub-models at the

same time, improving the use of time and resources. Such advantage is particularly important

when individuals are separated geographically. Another advantage is that by linking different

models or sub-models, each of them can be analyzed and validated separately. Such advantage

is important to increase understanding of complex interactions between different ecosystem

components, and to allow comparisons of different model components. Data flow in the meta-

modelling approach is also more flexible, and output from one model can be used as input for

several other model components. This allows partial verification as intermediate data can be

analyzed and stored, something important in adaptive management and monitoring. Finally,

in a meta-modelling framework model sensitivity and scenario analyses are facilitated as they

can be performed for different model components.

Not all forest models are applicable to a meta-modelling approach. Hence, the objective of the

research presented here was to identify and compare the available forest models already being

used in research, and to evaluate their suitability for use as decision-support tools in designing
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successful restoration plans to bring forest biodiversity and function back to sites disturbed

by industrial activities (mining in particular).

2. Review methodology

2.1. Literature review on forest growth models

The review covered papers available at the beginning of 2013 in scientific journals, scientific

books, proceedings of scientific workshops and conferences, and technical reports. The

literature search was conducted using the term “forest growth model” in combination with

each of the following 8 keywords: “climate change, gap model, hydrology, mixedwood,

productivity, regeneration, simulation, and succession”. ‘Hits’ were then screened and those

pertaining to ecosystems other than temperate and boreal forests were eliminated (tropical

and subtropical ecosystems, Mediterranean ecosystems, grasslands, etc.). The data bases

consulted were:

• Canadian Forest Service Bookstore (list of publication by Canadian authors compiled by the

Canadian Forest Service compiled by the Canadian Forest Service)

Available at http://bookstore.cfs.nrcan.gc.ca

• ISI Web of knowledge (academic search engine by Thomson Reuters).

Available at http://www.isiwebofknowledge.com

• Google Scholar (academic search engine by Google Inc.).

Available at http://scholar.google.ca

• C.E.M.A. Research library (collection of reports and publication for the Alberta Oil Sands area

compiled by the Cumulative Environmental Management Association)

Available at http://www.cemaonline.ca

• U.B.C. library (academic library at the University of British Columbia)

• On-line catalogue available at http://www.library.ubc.ca

• Register Of Ecological Models (self-registration tool to compile ecological models by the Kasel

University).

Available at http://ecobas.org/www-server/index.html

2.2. Ranking of forest models

Development of a system for ranking models is a challenging and inexact exercise. The criterion

used to build the ranking system, for example, as well as the relative weighting attached to

each ranking variable are important decisions. First and foremost, we are of the opinion that

the scientific peer review process provides the best assurance that model structure and
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application are sound and have been subjected to expert scrutiny, particularly for those models

with multiple entries in the scientific literature. Hence, only models cited in three or more peer-

reviewed publications were considered in creating a ranking of model suitability. Models with

lesser publications were therefore omitted from further analysis because their low publication

rates indicate that they have not yet received a proper assessment of their suitability. The

objective of the ranking exercise was to identify the best 3 to 5 models according to five criteria.

The ranking was created in two steps:

2.2.1. Initial partial score (0 to 8 points)

Each model was scored initially using four criteria that varied in maximum value between 1.5

to 2.5 points. A proportional approach was used to derive a relative ranking for each model

within a given criterion: The model with the best mark received the maximum criterion score,

and the remainder were scored in direct proportion to how they compared with the top model.

The four criteria used to create the rankings were:

• Number of publications in the database (for models with ≥ 3 publications; maximum 2.5 points):

An index of model application.

• Time between first and most recent publications in the database (in years; maximum 1.5 points):

An index of model durability.

• Time to last publication (in years; maximum 1.5 points): an index of current activity around

the model.

• Number of citations in Web of Science® (maximum 2.0 points): an index of the utility and

relevance of the work done with the model, as perceived by the scientific community.

A final partial score for a given model was calculated by adding up the score for each criterion.

2.2.2. Full score (0 to 10 points) and shortlisting

An additional criterion was defined as the number of countries, ecosystem types and forest

types in which each model had been applied. This criterion was considered a measure of model

versatility, and was assigned a potential maximum of 2 points. Given the time-consuming

nature of gathering data to calculate the values of this criterion, only models with an accumu‐
lated score of 5 or above (out of a maximum score of 8) for the previous four criteria were given

scores for model versatility. Following the ranking exercise, a total score (out of a maximum

of 10 points) was calculated and those models with 6.5 points or more made the shortlist.

All models can be broadly classified into three categories, depending on their structure and

how they are parameterized:

• Empirical models: use a bioassay method to estimate tree growth. These models are con‐
structed from historical growth patterns of, for example volume-age curves, height-age

cures, yield tables, etc.

• Process-based models: simulate the physical processes underlying ecological dynamics.
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• Hybrid models: combine elements of the above two categories. In this approach, empirical

data are used to parameterize one or more of the ecophysiological processes driving in tree

growth and ecosystem production.

3. Results and discussion

3.1. Literature review

A total of 466 documents were identified through the literature search. Most of the documents

were detected using the general modeling-related keywords: “gap model” (83 documents),

“productivity” (89 documents), “regeneration” (86 documents), and “simulation” (33 docu‐
ments). These 291 documents account for 62.3% of the total. Following the pioneering work of

Botkin et al. [16] with development of the JABOWA gap model, the number of models

addressing forest productivity has increased steadily over the previous four decades (Figure

1). Several factors have likely contributed to this trend. Most models developed prior to the

1990s were designed to simulate timber production. Since then, forest management has moved

from an almost exclusive focus on timber towards an emphasis on the sustainable production

of multiple ecosystem goods and services [7]. Subsequent model developments have reflected

this change.

Figure 1. Number of documents published in a given year as derived from the keyword searches.

Climate and climate change have also emerged as a dominant issue in forest management, as

government and industry strive to understand its impact on the present and future flow of

goods and services. Keywords related to moisture (“climate change”, “hydrology”) accounted

for 96 documents, 20.8% of the total. Of the 96 documents, 33 were related to the “climate

change’ keyword and 63 under “hydrology”. A proportion of the documents under the
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keyword “hydrology” were also related to how climate change might alter the hydrological

cycle. To avoid duplication, those documents were not accounted under the results for “climate

change”. Hence, under the “climate change” keyword only documents that deal with climate

change and anything other than hydrological process are accounted for (mostly temperature-

related research).

Tian et al. [17] argue that current forest growth models are seldom “well balanced” in terms

of equivalence in the detail with which water, C, and N cycles are represented (see also [18,

19]). For instance, G’DAY [20], PnET-CN [21], and Biome-BGC [22] simulate forest growth and/

or biogeochemical processes in detail but are much less rigorous in their approach to repre‐
senting forest hydrology. Unbalanced model design is likely to limit the ability of a given

model to accurately predict the hydrology and biogeochemistry of forest ecosystems in

response to changes in climate, land use, and/or management practices [19, 23].

In recent years, there have been several attempts to better link forest growth with hydrology.

Chen and Driscoll [24] demonstrated that incorporating a more detailed hydrologic cycle into

the Biome-BGC model improved predictions of seasonal effluent nitrate concentrations. Seely

et al. [25] developed a stand-alone hydrology model for forest management applications

(ForWaDy), with the explicit objective of minimizing data requirements. This model has been

incorporated into the forest ecosystem simulation model, FORECAST [7]. Evidence suggests

it provides a robust representation of moisture availability on tree growth, based on the balance

between inputs from precipitation and seepage, and outputs by canopy interception, evapo‐
transpiration, plant uptake, percolation and runoff [26].

Figure 2. Number of document per model, for models with four or more documents in the database.

Despite the large number of models identified from the initial search, only 22 had 3 or more

references (Figure 2). This suggests that many models are developed as one-time tools to
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explore issues of scientific importance, rather than as decision-support tool in support of

management. This can limit the ease with which a model can be applied to situations different

from that for which it was originally designed (i.e., the model´s portability). It might also

constrain the flexibility in model architecture, making it difficult to add management capa‐
bilities at a later date [7].

3.2. Model shortlisting

Only five models had more than 10 references: ECOSYS (18), FORECAST (17), 3-PG (15), BGC

(13), and SORTIE (11; including both of its versions, SORTIE-ND, SORTIE-BC). It should be

noted that the count for BGC is inflated by the fact it has three different variants (TREE-BGC,

FOREST-BGC, and BIOME-BGC) which were grouped together for purposes of analysis.

Arguably, it may be more appropriate to consider each separately since they are applicable to

widely different scales (tree, stand, and biome, respectively). In that case, the ranking for each

separate model would be much lower. The models LINKAGES, BIOMASS and CENTURY had

relatively few publications but they ranked fairly well in the remaining criteria (Table 1). In

the case of ECOSYS, 14 of the 18 references listed the developer (Grant) as the primary author.

This is an unusually high number despite the fact the model was first published 14 years ago

(Table 1). Publications of the remaining top models in the review encompassed a broad range

of authors. This could be an indication that ECOSYS has not received broad acceptance, which

could at least partly explain its low citation rate (see below). The common features of the top

seven models (in green and yellow colours in Table 1) are that they are subject to ongoing

development (≥ 14 years), have been broadly applied in temperate and boreal ecosystems, and

been cited within the last 2 years. The one exception is BIOMASS, which has not been cited in

the previous 4 years. The top models were also heavily cited, with more 80 citations; ECOSYS

was the clear exception, with only 25 citations (Table 1).

On its own, a high citation rate alone does not necessarily mean that a model is indeed being

used extensively or is pertinent to the needs of Total. For example, a model that has been cited

extensively is CENTURY. This model was originally developed for grasslands and so refer‐
ences to CENTURY were relatively frequent in the agricultural literature. In its current version,

the model possesses a crude ability to represent forest growth. Its focus, however, is still mainly

on soil processes even though this may be within the context of forest management. To an

extent our ranking system was designed to take these factors into account by assigning the

publication rate a higher weighting than the citation rate (a maximum score of 2.5 versus 2,

respectively).

An important aspect of model suitability to oil sands reclamation is its portability. Portability

refers to the ease with which a model can be calibrated, and its algorithms applied to, an

ecosystem different from that in which it was originally developed. This is because no tool has

been developed specifically for the conditions that characterize oil sands materials. Hence, the

higher the number of countries and ecosystems where the model has been successfully applied,

the higher its portability. The portability criterion was the final key factor that discriminated

among the “shortlisted” models (BGC, FORECAST, 3-PG, and ECOSYS) and the remainder

(Figure 2). These four models had more than 10 documents in the database, meaning they have
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been used in more than 10 different countries and/or ecosystem types, indicating a high

portability potential.

3.2.1. ECOSYS

ECOSYS is a process-based, ecosystem-level model. It was originally developed as a soil model

for agricultural ecosystems, but since then it has evolved into a complex simulator of the plant-

atmosphere-soil system [27]. ECOSYS has a time step of one hour. It has representation of

multi-layered canopies and soils. In this model, flows and transformation of growth resources

(radiation, water, C, N, and P) are simulated for populations of plants and microorganisms.

The model is constructed in order to link at different spatial and biological scales ecological

processes that determine the ecophysiology of linked plant and microbial populations.

The model can represent ecosystems scales from homogeneous stands to heterogeneous

landscapes, including natural and human-made disturbances. The model estimates ecosystem

productivity through an energy balance approach.

Energy flows are simulated between the atmosphere and ground surfaces (snow, soil, litter).

For plants, energy flows are simulated between the atmosphere and leaf or stem surfaces [29].

To calculate total exchange energy, energy exchanges between all plant and ground surfaces

are added up. Hydrological processes (surface runoff, infiltration macro- and micro-pore flow)

are then coupled with surface energy exchange and soil heat transfer [28].

ECOSYS calculates energy exchange in the canopy at an hourly basis, using a two-stage

convergence solution to estimate heat and water transfers for the soil-root-canopy system for

several plant populations and layers of soil and canopy. In the first stage, a canopy temperature

value is calculated for each plant population by closing the canopy energy balance (sensible

heat, latent heat flux, net radiation, and change in stored heat).These fluxes are controlled by

aerodynamic and canopy stomatal resistances [29].

The simulation of water status effects on energy exchange is based on coupling the uptake of

water from the soil through the root to the canopy, with the evaporation of water from the

canopy to the atmosphere. This coupling determines the water status of the canopy and hence

its conductance to water vapor [27].

Leaf C fixation is determined by carboxylation, which is controlled by irradiance, temperature,

and leaf CO2 concentration, and by diffusion, which is controlled by the atmosphere-leaf

CO2 concentration gradient and leaf conductance. The coupling of carboxylation and diffusion

in ECOSYS allows the calculation of a leaf C fixation rate, which is then aggregated to the

canopy level. Net C exchange between plants and the atmosphere is the difference between

the two. Losses of leaf C are accelerated by reducing C fixation compared to maintenance

respiration by reduced availability of growth resources (N, heat, or water). Net CO2 fixation

is calculated for each branch as the difference between gross fixation and the sum of respiration

through maintenance, growth, and reproduction [27].
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Model Model References Time elapsed Time since

last reference

Citations in

Web of

Science

PARTIAL Forest types applied FINAL

Type # score years score years score # Score SCORE # C # E Total score SCORE

BGC process [13] 1.81 23 1.33 2 1.89 178 1.67 6.70 6 14 20 1.48 8.18

FORECAST hybrid [17] 2.36 17 0.98 1 2.00 81 0.76 6.10 6 21 27 2.00 8.10

3-PG process [15] 2.08 14 0.81 2 1.89 118 1.11 5.89 7 10 17 1.26 7.15

ECOSYS process [18] 2.50 14 0.81 1 2.00 25 0.23 5.54 2 11 13 0.96 6.51

LINKAGES process [7] 0.97 26 1.50 2 1.89 110 1.03 5.40 3 7 10 0.74 6.14

BIOMASS process [7] 0.97 20 1.15 4 1.68 149 1.40 5.21 4 7 11 0.81 6.02

CENTURY process [3] 0.42 18 1.04 2 1.89 213 2.00 5.35 4 3 7 0.52 5.87

LANDIS process [7] 0.97 12 0.69 1 2.00 132 1.24 4.90 N / A 4.90

ZELIG process [9] 1.25 24 1.38 1 2.00 27 0.25 4.89 N / A 4.89

SORTIE process [11] 1.53 18 1.04 2 1.89 44 0.41 4.87 N / A 4.87

MGM hybrid [8] 1.11 17 0.98 1 2.00 37 0.35 4.44 N / A 4.44

SILVA process [6] 0.83 24 1.38 5 1.58 45 0.42 4.22 N / A 4.22

FORCLIM process [8] 1.11 18 1.04 4 1.68 35 0.33 4.16 N / A 4.16

SWAT process [6] 0.83 6 0.35 2 1.89 105 0.99 4.06 N / A 4.06

PnET process [5] 0.69 17 0.98 4 1.68 29 0.27 3.63 N / A 3.63

G´DAY process [4] 0.56 17 0.98 3 1.79 28 0.26 3.59 N / A 3.59

LPJ process [4] 0.56 11 0.63 1 2.00 18 0.17 3.36 N / A 3.36

EFIMOD hybrid [4] 0.56 12 0.69 2 1.89 10 0.09 3.24 N / A 3.24

FORWADY hybrid [3] 0.42 14 0.81 2 1.89 4 0.04 3.16 N / A 3.16

PICUS process [3] 0.42 12 0.69 3 1.79 20 0.19 3.09 N / A 3.09

ORCHIDEE process [4] 0.56 4 0.23 3 1.79 39 0.37 2.94 N / A 2.94

TRIPLEX hybrid [3] 0.42 8 0.46 3 1.79 11 0.10 2.77 N / A 2.77

GYPSY empirical [4] 0.56 5 0.29 4 1.68 9 0.08 2.61 N / A 2.61

PROGNOSIS hybrid [3] 0.42 8 0.46 8 1.26 31 0.29 2.43 N / A 2.43

JABOWA process [4] 0.56 22 1.27 19 0.11 25 0.23 2.16 N / A 2.16

CLASS process [3] 0.42 4 0.23 9 1.16 9 0.08 1.89 N / A 1.89

FORMIX process [4] 0.56 9 0.52 13 0.74 3 0.03 1.84 N / A 1.84

FORET process [3] 0.42 17 0.98 19 0.11 32 0.30 1.80 N / A 1.80

FORGRO process [3] 0.42 5 0.29 12 0.84 11 0.10 1.65 N / A 1.65

FORECE process [3] 0.42 7 0.40 17 0.32 5 0.05 1.18 N / A 1.18

# C: Number of different countries where the model has been applied.

# E: Number of different ecosystems where the model has been applied.

N / A: Non applicable, for models that did not pass the cut-off score of 5.0, the number of countries and ecosystems was not

assessed.

Table 1. Ranking and scores of the models included in the comparative study (with 3 or more documents in the

database).
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The simulation of nutrient status effects on energy exchange is based on coupling nutrient (N

and P) uptake from the soil through the root to the canopy, with nutrient assimilation in the

root and canopy. This coupling determines nutrient concentrations in the leaf, which in turn

determines leaf carboxylation rates and hence leaf conductance.

Growth respiration is linked to expansive growth of vegetative and reproductive organs at

different nodes of each shoot branch, using data on biochemistry of growth and yield to

estimate coefficients to partition mobilized C, N and P. Such coefficients also depend on

phenological stages. Estimated growth is then allocated to different stem internodes, leaves,

and sheaths, changing their lengths, areas and volumes [30, 31]. Then, leaf and stem surfaces

(heights and areas) are estimated and used to calculate irradiance interception and aerody‐
namic conductance. Root and mycrorrizhal axes (both primary and secondary) extensions are

driven by growth respiration, mobilizing stored C, N and P [32].

Microbial activity in ECOSYS is represented as a parallel set of substrate-microbe complexes,

which includes the rhizosphere, plant residues and animal manure, and native organic matter

[32-34]. To simulate microbial growth (facultative and obligated aerobic and anaerobic

heterotrophs) at an hourly step, the temperature and water contents of the litter and soil layers

are used [34-36]. Temperature and moisture are derived from the energy balance calculations

described above.

ECOSYS is a highly complex model with substantial calibration requirements. The strength of

its approach is its flexibility, provided by a detailed representation of ecophysiological

processes that allow the exploration of the ecological consequences of modifying many

different environmental factors. The main weakness of this approach is that validating the

accuracy of its simulation algorithms and verifying output are significant challenges, due to

the difficulty of finding independent values of many ecophysiological values. In addition, its

management capabilities appear limited suggesting that the model is best catagorized as a

research tool.

3.2.2. 3-PG

3-PG (the acronym represents Physiological Principles in Predicting Growth) was originally

developed to simulate homogeneous, fast-growing plantations such as Eucalyptus [37], but

has since been calibrated for other forest types [38]. 3-PG is a monthly time-step model working

at stand and population levels. It is a model that includes general ecological processes and

therefore needs to be calibrated for each individual species. It is designed for homogeneous

forests, particularly even-aged or planted stands.

The model is built around the basic principles that drive ecosystem production. These same

principles underlie earlier models such as FOREST-BGC [39] and BIOMASS [40]. The structure

of 3-PG is based on two linked sets of calculations [41]: one set estimates biomass and growth

values, whereas the other set estimates biomass allocation among different tree components.

3-PG is a conservation-of-mass model.

The model, like most process-based approaches, calculates rates of photosynthesis, transpira‐
tion, growth allocation and litter production. 3-PG derives estimates of radiation interception,

Maintaining Ecosystem Function by Restoring Forest Biodiversity – Reviewing Decision-Support Tools that link… 11

http://dx.doi.org/10.5772/59390

153



gross primary production (GPP), net primary production (NPP) and allocation of the resultant

carbohydrate pool to component parts of the trees. NPP is calculated as a fixed fraction of gross

photosynthesis [42]. GPP is derived by applying a canopy quantum efficiency value to the

amount of photosynthetically active radiation absorbed by a stand.

Quantum efficiency (the potential rate of photosynthesis) is a constant fraction of absorbed

photosynthetically active radiation, and is constrained by atmospheric vapour pressure deficit.

The latter is a function of stomatal conductance, which is influenced by air temperature, frost,

water balance and nutrition. Canopy conductance is estimated as a function of leaf area index.

The ratio of actual/potential photosynthesis is assumed to decrease in response to a suite of

limiting environmental factors. It decreases with reduced availability of water and nutrients,

which triggers a higher proportion of photosynthate allocated belowground.

Soil nutritional status (the availability of nutrients such as N and P) is represented by an index,

the fertility rating, which can assume a value between 0 and 1 [38]. The fraction of production

not allocated to roots is partitioned among foliage, stem and branches based on species-specific

allometric equations.

3-PG can be used as a stand-level tool, or ground-based forest inventory data can be incorpo‐
rated into a Geographical Information System (GIS) to simulate forest growth over large areas.

3-PG has a wide range of predicted stand properties that are directly compatible with con‐
ventional inventory measurements, including stem density, DBH, basal area, total volume,

current and mean annual increment. In addition, the model outputs information pertaining to

the underlying biophysical relationships. This means that growth patterns can be linked to

specific controls, such as resource deficiencies and climate.

From the perspective of reclamation, a strength of 3-PG is that it appears suitable for predicting

tree growth in areas currently devoid of tree cover and has relatively low calibration require‐
ments [38]. Whether it could be reliably calibrated for oil sands materials, however, is un‐
known. 3-PG can be used to evaluate different management effects of stand density, thinning

and fertilization (within the limitations of the fertility rating approach used for simulating

nutrient availability).Arguably, the main weakness of 3-PG is its relative simplicity. It does not

accommodate stands with complex structure (either in space or in terms of multiple aged trees),

multiple species, and it has no understory representation. In addition, representation of soil

nutritional status is overly simplified and is considered a static site property (it cannot vary

through time). This significantly limits its application to oil sands materials and how soil

properties might be expected to change over time.

3.2.3. BGC

BGC is a family of models, designed to accommodate different biological scales (TREE-BGC,

FOREST-BGC, and BIOME-BGC). The original model was FOREST-BGC [39], an individual-

entity, distance-independent model [42]. The term “entity” is used because STAND-BGC (a

derivative of FOREST-BGC; [43]) grows shrubs and grass in addition to trees. Shrubs and

grasses are described as per unit area entities, while trees have unique dimensions. All the

models have the same core architecture and work on a daily time step, with results typically
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summarized annually. BIOME-BGC is a biome/ecosystem model, with spatial scales from

stand to region.

BGC simulates fluxes and storage of water, carbon, and nitrogen [44-46]. BGC simulates fluxes

and storage of water, carbon, and nitrogen [44-46]. The model has been designed to study the

interactions between management, disturbances, climate and vegetation ecophysiological

features, and their influences in water, nitrogen and carbon flows.

Net primary productivity is calculated as the difference between gross primary productivity

(GPP) and autotrophic respiration, where GPP is a function of air temperature, water vapour

pressure deficit, soil moisture, CO2 concentration, LAI, and solar radiation at the top of the

canopy. N concentrations in root and leaf, combined with temperature, are used to estimate

respiration [47]. Canopy is simulated as one layer with sunlit and shaded foliage. The Farquhar

equation is used to calculate photosynthesis [48]. Atmospheric CO2 and humidity, leaf water

and N contents, radiation and air temperature are used to calculate leaf conductance. Then,

based on LAI values at leaf level, canopy C and water fluxes are calculated.

BGC is fundamentally driven by daily weather data. Therefore, ecophysiological descriptors

of site vegetation, daily weather records and site physical properties are used by the model to

simulate plant, soil, and litter variables, as well as water, carbon and nitrogen fluxes between

the soil, the vegetation and the atmosphere. Unlike earlier models in the BGC model family

(e.g. Forest-BGC, [39]), in Biome-BGC LAI is predicted as a function of the amount of leaf

carbon, one of multiple vegetation state variables that are updated daily within the model [22].

Vegetation type is a user-defined, constant set of ecophysiological parameters. However, the

model simulates changes in vegetation structure as consequence of disturbance, climate and

ecophysiological characteristics of each vegetation type simulated.

The main strength of the model is its application in a broad range of ecosystem types. BGC´s

structure makes the model a suitable research tool to predict the impact of climate change.

Forest-BGC, for example, has been widely used to predict climate change effects on natural

disturbance and carbon dynamics [49]. In addition, BIOME-BGC offers a link between input

data and GIS databases, which is useful for application of data collected from regional studies.

A shortcoming of BGC is that the canopy is homogeneous. Therefore, although leaf area index

is proportional to canopy depth, this may not be sufficient to capture water and carbon budgets

accurately [39]. Its main drawback is the lack of a management interface, which makes it difficult

to consider BGC as a decision-support tool for forest management and land reclamation.

3.2.4. FORECAST

FORECAST is a management-oriented, stand-level forest growth and ecosystem dynamics

simulator [50]. The model was originally designed to accommodate a wide variety of harvest‐
ing and silvicultural systems in order to compare and contrast their effect on forest produc‐
tivity, stand dynamics and a series of biophysical indicators of non-timber values. FORECAST-

Climate version (see below) calculates climate modifiers on forest productivity on a daily basis.

The modifiers are then accumulated across the year to estimate annual biomass production.

FORECAST performs many calculations at the stand level but it also disaggregates stand-level

Maintaining Ecosystem Function by Restoring Forest Biodiversity – Reviewing Decision-Support Tools that link… 13

http://dx.doi.org/10.5772/59390

155



productivity across individual stems in relation to age-specific stem size distributions. Top

height and DBH are calculated for each stem and used in a taper function to calculate total and

individual gross and merchantable volumes, and biomass.

Stand growth and ecosystem dynamics are based on a representation of the rates of key

ecological processes regulating the availability of, and competition for, light and nutrient

resources. FORECAST calculates biomass productivity (NPP) based on estimates of inherent

productivity derived from historical bioassay data (see below) constrained by site-specific

nutrient and water availability determined from within the model. The rates of the key

ecological processes driving tree and plant growth are calculated from the bioassay data and

inputted values for ecosystem variables (decomposition rates, photosynthetic saturation

curves, for example) and their relation to nutrient uptake, the capture of light energy, and net

primary production. Using this ‘internal calibration’ (hybrid simulation) approach, the model

generates a suite of growth properties for each tree and plant species [50]. These growth

properties are retained within the model and used to model subsequent growth as a function

of resource availability and competition.

FORECAST’s reliance on historical bioassay data serves to reduce calibration requirements

while ensuring its projections of productivity are reasonable. Calibration data are assembled

that describe the accumulation of biomass (above and below-ground components) in trees and

minor vegetation for three chronosequences of stands, representing three different nutritional

qualities. Tree biomass and stand self-thinning data can be derived from height, diameter at

breast height, and stand density output generated by traditional growth and yield models in

conjunction with species-specific biomass allometric equations [51]. To calibrate the nutritional

aspects of the model, data describing the concentration of nutrients in the various biomass

components are required. FORECAST also requires data on the degree of shading produced

by different quantities of foliage and the photosynthetic response of foliage to different light

levels. A comparable but simpler set of data for minor vegetation must be provided if the user

wishes to represent this ecosystem component (see, for example, [52]). Lastly, data describing

the rates of decomposition of various litter types and soil organic matter are required for the

model to simulate nutrient cycling. The second aspect of calibration requires running the

model in “spin-up” mode to establish initial site conditions. This component is a key feature

in the ability of the model to simulate the site conditions characteristic of oil sands reclamation.

For a broader discussion on this topic, see [7, 53, 54]).

Stand hydrology and water limitation for tree growth (see [25]) are simulated within the

FORECAST-Climate model [55], which on a daily time step provides a mechanistic represen‐
tation of above and belowground hydrological interactions in forest stands with multiple soil

and canopy layers. This facilitates a representation of competition between trees in different

canopy layers and minor vegetation for available soil water. In addition, the hydrological

model also estimates the influence of drought on litter decomposition rates, and therefore on

nutrient mineralization and its availability for vegetation [56]. Hence, as noted above the model

tracks the balance between inputs from precipitation and seepage, and outputs by canopy

interception, evapotranspiration, plant uptake, percolation and runoff.
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FORECAST has been calibrated for the Ft. McMurray region. It has been applied to oil sands

reclamation for over almost 15 years, in large part to compare current and alternative recla‐
mation practices and their relationship to indicators of ecosystem function and the achieve‐
ment of end land-use objectives. In this regard, FORECAST output was used to derive

multipliers and nutrient regime classes for the Landscape Capability Classification System

[57]; to explore issues associated with peat decomposition rates; the depth and type of the

capping material; nitrogen deposition; subsoil organic matter content; species mixes, planting

densities, understory dynamics, and dead organic matter dynamics (specifically snags), all

within the context of growth and yield [58 – 60]. Recently, FORECAST-Climate was used in a

risk analysis of the potential development of water stress in young reclamation plantations

consisting of white spruce, trembling aspen, and jack pine established on different ecosites, as

a function of soil texture and slope position [61]. In the second phase of this work, the principal

objective was an evaluation of the impact of climate and climate change on reclamation success,

as compared to the base case analysis (no climate-related impacts) [62]. The potential effect of

different climate change scenarios on growth and mortality in reclamation areas was therefore

projected using the FORECAST Climate model and associated modelling tools to evaluate their

combined impacts on overall ecosystem development in a risk assessment context. A final

component of this work consisted of: (1) Model projections of tree regeneration under climate

change on actual oil sands reclamation materials, and (2) A comprehensive model analysis of

the risks to ecosystem productivity from climate change as a consequence of the impact of

moisture stress on tree mortality [55]. Recently, funding was approved for a project to:

a. Improve the applicability of two established models that have been used to support

adaptation decision-making within the context of oil sands reclamation, a state-and-

transition simulation model (STSM; [63], and the process based forest ecosystem model,

FORECAST-Climate [55, 62].

b. Develop a decision support tool (DST) by linking the STSM and FORECAST-Climate.

c. Use the DST to evaluate reclamation best management practices in the oil sands sector in

terms of climate-related risk exposure and then inform adaptation and management

planning within the context of climate change at both the stand and landscape scale.

Produce a guidance document on how to implement the tools, interpret output, and assess the

implications for reclamation principles and practices as reflective of an adaptive decision

framework.

4. Conclusions

Over the last four decades, a large number of ecological models that can simulate tree growth

and forest hydrology have been developed for temperate and boreal ecosystems. The models

best suited for simulating forest growth and hydrology in reclamation are likely to be at the

scale of the stand level and in the daily to yearly time scale, as these scales provide sufficient

detail to account for the key processes involved in tree growth but can also use operational
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data from forest management for calibration. In addition, a variety of tools have been devel‐
oped to assist biodiversity planning in forest management. Among these are statistical models

that utilize correlations between forest attributes and the presence of a particular wildlife or

plant species or guild to determine habitat suitability [64]. These models have gained popu‐
larity because habitat descriptors can be derived from variables commonly available in forestry

databases tor through modeling (for example, timber volume, forest age, dominant tree height,

and species composition) [65-68]. When properly applied, they can also be used to predict the

response of selected species to forest reclamation and to evaluate the efficacy of alternative

practices [6, 69, 70].

Few models achieve recognition and use much beyond their development team, and even less

have used within an operational setting [7]. Even among the four shortlisted models (ECOSYS,

BGC, 3PG, and FORECAST) there is considerable variation in their ultility as decision support

tools, particularly within the context of reclamation.

ECOSYS [28] is a complex model, with a strong representation of plant ecophysiological

processes. It is a research tool to explore energy and matter fluxes in forest ecosystems. Its

calibration requirements are substantial. BGC, particularly its most recent variant BIOME-

BGC, is designed to represent the state and fluxes of carbon (C), nitrogen (N), and water (H2O).

The model has been applied to several forest and non-forest ecosystems around the world.

The latest versions of the model include options for alternative forest management activities

(see Table 4). BGC, however, is mainly a research tool designed to start from equilibrium

conditions in a well-established ecosystem [71]. Hence, it is questionable whether the model

is suitable for representing the biophysical characteristics of a reclaimed site. BGC also has

fairly extensive and elaborate calibration requirements, though not as data-intensive as

ECOSYS.

3-PG is a relatively popular forest growth model. It has been used as a research tool in a variety

of forest ecosystems around the world. The model has been applied mostly in plantations,

especially fast-growing species such as Eucalyptus and subtropical pines. 3-PG has been

streamlined in recent years to facilitate its calibration with remote sensing data, therefore

making it easy to apply to new sites and over large spatial scales [72]. One conceptual limitation

of the model in terms of its application to reclamation is that site quality is represented as a

fixed property [49]. This is problematic for two reasons. First, site quality must be known

beforehand. This is generally not an issue in established natural forests (though it can be) but

it has much greater uncertainty in a peat-based reclaimed system. Secondly, a reclaimed site

is expected to transition from nutrient cycling based on the peat/mineral mix to that derived

from the dead organic matter deposited by the developing plant community. It is unclear

whether this transition will accompany a change in site quality. 3-PG also has no understory

representation. Shrubs and herbs can be a key determinant of ecosystem development and

productivity [52, 73].

FORECAST is model with a long history of development, but with a strong focus on manage‐
ment applications [50]. With the inclusion of a hydrology submodel (ForWaDy; see [25]),

FORECAST now has the capability to simulate climate and climate impacts, and its impact on

moisture availability, and C and N fluxes. The calibration requirements of FORECAST are
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moderate (but they are not trivial) though many parameters can be calibrated with standard

inventory data and/or growth and yield tables. Some parameter values are universal and

exhibit little variation; for others, the model is relatively insensitive to their variability (see [74],

for a sensitivity analysis). Although FORECAST is a stand-alone model, it has been used for

landscape-level analysis by linking it to GIS systems that classify the area under study into

different ecosystem types [75, 76]. One advantage with FORECAST is that it has already been

used extensively in oil sands reclamation (12, and references therein), and so datasets have

already been constructed for the dominant tree and understory species. In this respect,

FORECAST can be used to simulate complex mixtures of tree and understory species [77].

“A model should be as simple as possible, but no simpler”. This is the principle put forward

by Albert Einstein (in reference to scientific theories) and is applicable to model construction.

Complex models are often required in ecology when the interactions between different

ecological factors, both biotic and abiotic, need to be explicitly represented and understood

[12]. This is especially important for ecosystems in which there are often no natural analogues,

such as reclaimed landscapes [78]. The four shortlisted models provide a good representation

of the range of complexity and approaches used to estimate biomass production, nutrient and

water cycling. These differences are also reflected in the calibration requirements and calibra‐
tion load associated with a given model. For example, ECOSYS is fundamentally a ‘bottom-

up’ model in that it integrates ecophysiological processes starting at leaf scale to generate

values of biomass production and water consumption at the stand level. BGC, in contrast, is

more of a top-down model. FORECAST and 3-PG are somewhere ‘in-between’, estimating

stand productivity with some simplification of the ecophysiological processes that occur at the

cellular or leaf levels. The range in modeling approaches is also a reflection of the different

origins of each model; FORECAST and 3-PG are forest management models, ECOSYS began

as a crop research model, and BGC a forest ecology research model.

Determining the appropriateness of a given model to support biodiversity restoration within

the context of reclamation depends on the balance between the accuracy required from the

model output, the calibration effort and data available for calibration, model complexity,

model flexibility, model robustness, and the capability to assess model performance [51].

Highly  complex  models  such  as  ECOSYS  simulate  a  large  array  of  ecophysiological

processes  at  fine  temporal  and spatial  scales.  Consequently,  they require  a  considerable

effort to assemble the data required for calibration. Often, it is necessary to make educat‐
ed guesses for parameter values that are difficult to measure or which may not exist for

the  particular  circumstances  to  which  the  model  is  to  be  applied.  For  obvious  reasons,

uncertainty in the input data reduces confidence in model output, an issue that becomes

more problematic as the calibration requirements increase. Relatively simple models such

as 3-PG have low calibration needs which allows for easier portability of the model to new

ecosystem types. An overly simplified structure, however, also reduces model applicabili‐
ty  (and  flexibility)  to  complex  systems  and  to  account  for  interactions  among  all  the

ecosystem  compartments.  Conversely,  robustness  refers  to  a  model’s  capability  to  pro‐
duce acceptable estimates of the target variables in the required application. Robustness is

not an inherent property of model complexity, and both complex and simple models can
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be  robust,  provided  that  calibration  parameters  are  estimated  with  low  uncertainty,

especially for those key parameters for which the model is more sensitive [7].

Recovery of biodiversity in reclaimed sites depends on the timing of reclamation events, the

type of forest system reclaimed, and how progressive reclamation impacts the vegetation

(understory and stem distribution) relative to what would have been present had the landscape

not been mined. Reclamation practices could be targeted toward the habitat requirements of

particular wildlife or vegetation species by preferentially reclaiming more favourable ecolog‐
ical sites. Conversely, a broad range of ecological sites is necessary to promote suitable habitats

for a diverse range of species on the reclaimed landscape. Such planning needs decision

support tools that incorporate the best scientific knowledge available.
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