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Chapter 7

A Lie-QED-Algebra and their Fermionic Fock Space in
the Superconducting Phenomena
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1. Introduction 

It’s created a canonical Lie algebra in electrodynamics with all the “nice” algebraic and 

geometrical properties of an universal enveloping algebra with the goal of can to obtain 

generalizations in electrodynamics theory of the TQFT (Topological Quantum Field Theory) 

and the Universe based in lines and twistor bundles to the obtaining of orbital spaces [1] that 

will be useful in the study of superconducting phenomena. The obtained object haves the 

advantages to be an algebraic or geometrical space at the same time. This same space of 

certain L -  modules can explain and model different electromagnetic phenomena as 

superconductor and quantum processes where is necessary an organized transformation of 

the electromagnetic nature of the space-time and obtain nanotechnology of the space-time 

and their elements when this is affected by the superconducting fields created by the 

different electrodynamic Majorana states in the matter and space [2]. Then using the second 

quantizing formalism to the description of the behavior of the particles of the affected space 

for superconducting fields created by the BSC-theory (Bardeen-Cooper-Schrieffer-theory) in 

condensation of the matter where is conformed a fermionic space called set of pairs of Cooper, 

which are comported as bosons will be the domain of the QED (Quantum Electro-Dynamics) 

transformations of the space to different actions as magnetic levitation, electromagnetic 

impulse, etc. Then considering the Hilbert space of their multiple fermionic modes we 

obtain the fermionic Fock space which describes the quantum organized transformation of the 

particles to a Fock space of an arbitrary number of identical fermions explaining the 

superconductivity as a Bose-Einstein condensation in this process. The fluidity obtained in 

the Bose-Einstein condensation obeys to a Bogoliubov transformation which in this case, is 

our organized transformation required to produce the micro-electromagnetic effects from 

the actions of the operators of Lie-QED-algebra whose fermionic Fock space is the given for 

the affecting of the energy space where exist the fermionic modes as a Plasmon resonances. 

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and eproduction in any medium, provided the original work is properly cited.
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From this study are mentioned some applications to photonics using the boson link-wave to 

hyper-telecommunications and superconducting materials. 

2. A Lie-quantum electrodynamical-algebra and their corollaries 

2.1. A Lie Algebra in Electro-dynamics 

We consider the electromagnetic field or Maxwell field defined as the differential 2   form 

of the forms space 42( ) R ; 

 ,a b

ab
F F dx dx   (1) 

which can be described in the endomorphism space of ,M by the matrix (where ,a  and ,b

are equal to 1,2,3 ): 

 

3 1 1

3 1 2

2 1 3

1 2 3

0

0
,

0

0

ab

B B E

B B E
F

B B E

E E E

 
 
 

   
    

 (2) 

where E  (respectively B ) the corresponding forms of electric field (respectively magnetic 

field). 

We want to obtain a useful form to define the actions of the group L , on the space of 

electromagnetic fields ,F which is resulted of generalize to the space 2( )M , as an anti-

symmetric tensor algebra through from induce to the product in the product , shape that will 

be useful to the localizing and description of the irreducible unitary representations of the 

groups (4), (1,3),SO O  and representations of spinor fields in the space-time furthermore of 

their characterizing as principal G   bundle of M . In the context of the gauge theories (that 

is to say, in the context of bundles with connection as the principal G  bundles) we first 

observe that ,F  is an exact form and thus there exists a 1 form bA  (electromagnetic potential) 

that defines a connection in a (1)U   bundle on M , and such that1 

                                                                 
1 The anti-symmetric nature of this form results obvius: 

( ).
ab a b b a ba b a a b

F A A F A A          
 

Likewise, the electromagnetic field is the 2-form given by (6) with the property of the transformation 
' ' ' '' ( )

.
ab a b b a ac bd c d d c

ac bd cd

F A A a a A A

a a F

       


 

In 
3R , said 2-form match with the 3 3 -  matrix to 

ab
B  . Remember that .B  A  
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 ,
ab a b b a
F A A      (3) 

Consider the K  invariant G  structure ( ),
G
S M  of the differentiable manifold 4M R , 

with Lorentzian metric (and thus pseudo-Riemannian) ,g  on 4R , with 

( ) (1,1,1, 1),Diag g    in the system of canonical coordinates 

  U, x, y, z, t  (4) 

and let the spaces , ,E H  two free R  modules (modules belonging to a commutative ring 

with unit R ) such that 

 4{ ( )  }, 
t

   


X RE
b

E E F  (5) 

and 

 4{ ( )  }, 
t

    


X RH
b

B B F  (6) 

where ,b is Euclidean in 3 ,R  and , is Loretzian in 4R . Such R  modules are L –

modules where ( ) (1,3),OL M is the orthogonal group of range 4. The two modules in (5) 

and (6) intrinsically define all electric and magnetic fields E,  and B , in terms of F . Thus 

also their tensor, exterior, and scalar products between elements must be expressed in terms 

of F . To it we consider the tensor product of (5) and (6) as free R  modules elements, to 

know2, 

 
1

,bE F F  b
B  

c
 (7) 

where c , is light speed and F 3, is the dual electromagnetic tensor of F . Then, what must 

be E B ? 

                                                                 

2This is valid since tensor product of free R  modules is a free R  module[5]. Here 

, .b b

b b
b b

E E dx dt B B dx dt      

3The Levi-Civita tensor can be used to construct the dual electromagnetic tensor in which the electric 

and magnetic components exchange roles (conserving the symmetry, characteristic that can be seen in 

the matrices of the electromagnetic tensor F , and their dual F ): 
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Proposition 2. 1 (F. Bulnes) [3]. Said R modules are invariant under Euclidean 

movements of the group (1,3),O and thus are L modules. 

Proof. [3]. ฀  

Now we consider electro-strength field algebra given by the (1)U  gauge field coupled to a 

charged spin 0 scalar field that takes the place of the Dirac fermions in "ordinary" QED. 

Let ( )E , be the tensor algebra generated by the elements 1 2 2 1
F F F F   . Let ,J be the 

two-seated ideal generated by the elements 1 2 2 1 1 2
[ , ].F F F F F F     Let ,e  be the Lie 

algebra whose composition rule is [,] . Its wanted to construct an associative algebra with 

unity element corresponding to ,e such that 

 1 2 1 2 2 1
[ , ]F F F F F F     (8) 

We want describe energy flux in liquid and elastic media in a completely generalized 

diffusion of electromagnetic energy from the source (particles of the space-time “infected” for 

this electromagnetic energy), which must be very seemed as a multi-radiative tensor insights 

space or a electromagnetic insights tensor space. This will permits us to express and model the 

flux of electromagnetic energy through pure tensor product of Maxwell fields F, which will 

be useful in the symplectic structure subjacent in the quantum version of this algebra and 

their actions of group. After and inside of the demonstration of one result where is related 

the structure of this quantum version algebra with the superconducting phenomena , the 

quantum macroscopic effects obtained result of this inheritance of structure, having that for 

the energy conservation and the use of Lagrangians [4, 5]: 

“The rate of energy transfer (per unit volume) from a region of space equals the rate of work done on a 

charge distribution plus the energy flux leaved in that region” 

Of fact these are elements bE  b
B , that are constructed from a power space given in by 

,E B  and that conforms the electromagnetic multi-radiative space which will be the region space 

with the “transmittance” of the fermions effects obtained one time that let be quantized the space

,E H  

to obtain our QED-Lie algebra necessary whose operators will act in the wrapped space (of 

the electromagnetic type) to get the superconducting effects accord to the Bogoliubob 

transformation [6] required to produce the quantum electromagnetic effects (electro-anti-

gravitational effects) from the actions of the operators of Lie-QED-algebra whose fermionic 

                                                                                                                                                                   

1
,

2
F

 F  

where  , is the rank-4 Levi-Civita tensor density in Minkowski space.  
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Fock space is the given for the affecting of the energy space where exist the fermionic modes 

as a Plasmon resonances. 

First we demonstrate the nature of Lie algebra of this space of tensors to electro-physics. 

Proposition (F. Bulnes) 3. 1. The electrodynamical space ,E H  is a closed algebra under 

the composition law  ,      of the (1)U  connections. 

Proof. Let 1 1 1 1
1

,
a b b a

F A A    and 2 2 2 2
2

,
a b b a

F A A    two elements of ,E H A  an (1)U 
connection. Then the composition 1 2

[ , ],F F  takes the form in function of the (1)U 
connections as 

1 1 1 1 2 2 2 2
1 2

2 2 2 2 1 1 1 1

1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 2 2 1 1 2 2 1 1

1 1 2 2 2 2 1 1

1 1 2

[ , ] ( ) ( )

( ) ( )

(

)

(

a b b a a b b a

a b b a a b b a

a b a b b a a b a b b a

b a b a a b a b b a a b

b a a b a b b a

a b a b

F F A A A A

A A A A

A A A A A A

A A A A A A

A A A A

A A

      

    

       

       

    

    2 2 2 1 1 2 2 2 2

2 2 1 1 1 1 2 2 1 1 1 1

1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 2 2 1 1 2 2 1 1

1 1 2 2 2 2 1 1

1 1

) ( )

{ ( ) ( )}

b a b a a b b a

a b a b b a b a a b b a

a b a b a b b a b a a b

b a b a a b a b b a a b

b a a b a b b a

b a

A A A A

A A A A A A

A A A A A A

A A A A A A

A A A A

A

    

        

       

      

   

  2 2 2 2 1 1 ,
a b b a a b
A A A  

 

Since ,
ab ba

F F   in 4R , then 

1 1 2 2 2 2 1 1 1 1

2 2 2 2 1 1 ,

b a a b b a a b a b

a b b a b a

A A A A A

A A A

      

    E H
 

Thus 2
1 2 1 2

[ , ] , , ( ).F F F F M   E H ฀  

Due to that we are using a torsion-free connection (e.g. the Levi Civita connection), then the 

partial derivative ,
a

used to define ,F can be replaced with the covariant derivative 
a

. 

The Lie derivative of a tensor is another tensor of the same type, i.e. even though the 

individual terms in the expression depend on the choice of coordinate system, the 

expression as a whole result in a tensor in 4R . 

Proposition (F. Bulnes) 3. 2. The closed algebra ( , [,]),E H  is a Lie algebra. 
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Proof. Consider 

[ , ] [

] 0,
a b b a b a a b a b

b a b a a b

F F A A A A A

A A A

      
   

 

Then the other properties of Lie algebra are trivially satisfied. Thus E H , haves structure 

of Lie algebra under the operation [,] . ฀  

2.2. Lie-QED-algebra to superconducting phenomena 

If first, we consider the Maxwell tensors given by ,
a b b a

F A A    and thus of the Lie-EM-

algebra given in the before section, these comply the following variation principle given by 

the Maxwell Lagrangian. 

 
MAXWELL

 
1

,
4

ab

ab
F F L   (9) 

Then the due action to this Maxwell Lagrangian is 

 

4 4  

4 2

1 1
( )( )

4 4
1

( )[ ] ( ),
2

ab a b b a

ab a b b a

ab a b

a b

F F A A A A

d kA k k g k k A k

        

   

 



dx dx

 (10) 

where is expected that the inner product ( ), ( ')
a a
A k A k , must be equivalent to an 

expression where the inverse of the differential operator defined by 2[ ]ab a bk g k k  ,4 appears 

                                                                 
4The general formula for the Gaussian integral of the last integral of (10) takes the form: 

11 1
[ ]exp ( ) ( ) exp( ),

2 det
ab

d k J JK K
K

     
   
 

  

However  in our case the operator ,
ab

K k  comes given by 

2 4( ) [ ] ( ),ab a b

ab
K k x y k g k k x y       

Has the property of the projection operator, that is to say, 
4 ( ) ( ) ( ),

ab
d yk x y k y z k x y

      

and has not inverse. This means that the Gaussian integral diverges. The reason that the free-field part 

of the action integral given in (10) is singular is due to the gauge invariance which projects out the 

transverse gauge fields. In the path integral for the free-field part given by 

 0

4 4( )exp [ ] ,a

a a
d A i d x J A  L  
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in the product given in the covariant rules of Feynman diagrams. The field equation that 

must be to solve is 

2 2 2[ ] ( ) [ ] 0,ab a b a a

b
k g k k k k k k k k        

which is particular case of the Bulnes´s equation in the curvature context [4] to (1).G U  Here 

,a ak    ,
a a

k   and k  . 

We consider the model that consists of a complex scalar field ( ),x  5minimally coupled to a 

gauge field given by 1 forms ( (1)U   gauge field) “coupled to a charged spin 0 scalar 

field” and that satisfy: 

  
1 1

( ) * ( * ) ,
2 4

a ab

a ab
D D U F F     L  (11) 

where ,
ab

F  has been defined in the section 2. 1. We define to ( ),
a a a

D ieA      as the 

covariant derivative of the field  , also e , is the electric charge and ( , *)U   , is the 

potential for the complex scalar field. This model is invariant under gauge transformations 

parametrized by ( ),x  that is to say, are had the following transformations to the fields: 

 ( ) ''( ) ( ), ( ) ( ) ( ),ie x

a a a
x e x A x A x x        (12) 

If the potential is such that their minimum occurs at non-zero value of ,  this model 

exhibits the Higgs mechanism. This can be seen studying the fluctuations about the lowest 

energy configuration, one sees that gauge field behaves as a massive field with their mass 

proportional to the e , times the minimum value of  . As shown by Nielsen and Olesen 

[7], this model, in 2 1 , dimensions, admits time-independent finite energy configurations 

corresponding to vortices carrying magnetic flux. The magnetic flux carried by these 

                                                                                                                                                                   
we have summed over all field configurations including “orbits” that are related by gauge 

transformations. This over counting is the root of the divergent integral. Thus we have to remove this 

“volume” of the orbit in this quantization. In the case where the quantizing is realized by the scalar field 

theory to our superconducting phenomena, the “orbits” are considered as part of the interactions spin-

orbit, and the Lie-QED structure to the orbits will be conserved. 
5In a complex scalar field theory, the scalar field takes values in the complex numbers, rather than the real 

numbers. The action considered normally takes the form 

d-1 d-1  
21

[ * ( )],
4

ab

a b
xdt xdt V          Ldx d  

This has a (1),U  or, equivalently (2),SU  symmetry, whose action on the space of fields rotates

,ie    for some real phase angle . 
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vortices is quantized (in units of 
2

e


6) and appears as a topological charge associated with 

the topological current [8]: 

 ,a abc

top bc
J F  (13) 

These vortices are similar to the vortices appearing in type-II superconductors. These in the 

superconducting theory are acquaintance as fluxoids. There exist some thermo-dynamical 

conditions established to the existence the superconductor of type II7. 

Theorem. (F. Bulnes) [1, 9, 10] 2. 2. 1. We consider 21
( ) / 4 ,

2i k ik
F H H H     8and 

2 / 8 ,
S ext

F H n  


 with the Hamiltonian foreseen in the Appendix A given by (A. 12), of the 

                                                                 
6If   S , is away from of the borders and  rounds to the hollow (see the Figure 1) and suppose that is 

have applied a magnetic field to this superconductor  ,S  then 

,2
*

*

*











 ndlA

c

e
J

en

m

s   

 

But 0,J   (inside the superconductor (or ring in the experimental Figure 1) there not are currents) then 




 ,
*e

c
nAdl


 

For the Stokes theorem is had that 

 
 

 ,
S

BdSAdl
 

To it is necessary remember that the superconducting current
s

J , haves an unique value in each point, 

which is equivalent to that the density of superconductor electrons is injective in each point. This bring 

as consequence that in a close circuit  , of length 2 , we have  

(2 ) (0) 2 ,n      

For the circulation around a close circuit  , and considering that  

,aA    

we have that on the close circuit  , 

,2


  ndl
a  

that in our case is  

0
.n    

7Its considered the superconductor of the type I, in the intermediate state (1 ) ,n  
c c

H H H

(ellipsoidal superconductor) and we calculate the transition to type II, with ( ) ( )[9,10].T T   

8Where the term 
21

,
2 ik

H  is the term of the tensor F, corresponding to the free or total energy of the 

magnetic field of the superconductor, which involves the thermodynamic effects foreseen in (9), for 

"compression", to which is subject the surface of the object O (see theAppendix A). 
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Lemma. A. 1., and their proof, where is satisfied the inequality on magnetic energy necessary 

to all magnetic process of superconducting 

 

Figure 1. Ring region where is applied a magnetic field in a superconductor .S  This magnetic field 

could realize iso-rotations and levitation force and impulse. The magnetic flow is intense in this region 

and the lines of intensity of magnetic field behave like it is pointed out. Inside of hollow the current is 

zero. The region of fluxoids will be generated from the inner of the ring where not exists current but yes 

magnetic flows doing it in discrete form. 

 2 2 2

0
8 ( (1 )) 8 ,

v

O O

nH H h H dV H dV      


   (14) 

Then a sensorchip to magnetic flux (pressure on the surface of O ) to super-currents is 

defined by the inequality 

 0
( , ) ( ) ,

s

V S

j x y z dV BdS n           (15) 

where 0
,  is a fluxoid ( 7 2/ * 2.07 10c e gauss cm    ), being * 2 ,e e where ,e  is the 

charge of electron. 

Proof. [9]. ฀  

 

Figure 2. One has a view of profile of the magnetic flow of a plate under magnetic field (this simulation 

was published in the Proceedings of Fluid Flow, Heat Transfer and Thermal Systems of ASME in the 

paper IMECE2010-37107, British Columbia, Canada with all rights reserved ® [9]). 

Developing these topological electromagnetic elements using the tensor abc , we have to 

two Maxwell tensors: 

 1 1 2 2 2 2 1 1
1 2 2 1

( ),
b c b c c b c b

J A A A A F F F F           (16) 

precisely is our tensor algebra given in the proposition 3. 1., with their conserved Lie 

structure. 
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The essential difference between both versions consists in the coupling to a charged 0,spin

scalar field, that in this case is a scalar magnetic field corresponding to a magnetic flow 

associated to the supercurrent 
s

J . 

Considering the supercurrent 
s

J in presence of magnetic field of vector potential, this takes 

the form 

 
2

2* ( *)
( * *) ,

2 * *s

e e
J A

m i m c
        


  (17) 

where ,  is a function very general of complex type that are changing spatially and that in 

an any point this function depends of the order parameter (as coherent length, penetration 

length, etc parameters that are useful to characterize a superconductor [11]) and 
2

,
s

n  is 

the density of the superconducting electrons.  

Considering the action (10) and the proper to the Lagrangian (11), the electromagnetic total 

action to all electromagnetic phenomena (included the given in ordinary electromagnetism) 

using the scalar field theory takes the form: 

 
2

2

1 1
* [ ] [ (1 ) ]

2

(( *) * ) * ,

a ab a b

a a b

a a a

a a

S m A g A

ieA e A A

  


     

        

    

  (18) 

in where and under certain physical conditions of symmetries we can establish the 

following relations between the complex functions ,  and *,  and their covariant 

derivatives  , *,  and the proper to the scalar fields given by , ( *)a  , *,  and a  

obtaining the pure action to superconductors given by the integral: 

 2( * *) * ,a

s a a
S ieA e A A             (19) 

which appears in the superconductor under energy regime given by their corresponding 

Hamiltonian defined in (A. 12) of the appendix A. The representation spaces that appear are the 

Fock states spaces and are corresponded in the superconductivity with the photon states 

spaces where there exist the interaction photon-phonon-photon [12] under frame study of the 

microscopic theory of the superconductivity. In a second affirmation, is necessary consider 

that electrons in superconductivity are moving in a very special enthrone, that is the crystalline 

net formed by ions that constitute the solid which we want that be superconductor under the 

application of field actions as given in (19) on the solid of object O . 

We consider a particles system, all identical, that is to say, undistinguishable, that is to say, 

the interchange of two of them not change the measurable properties of the system. Let 
1
,e  
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and 
2
,e  two electrons and we suppose that the electron 

1
,e  is in a state that comes 

represented by the function ,
n

  (wave function), for other side, the electron 
2
,e  comes 

represented by the wave function ,
m

  and we suppose for last that the direct interaction 

between these two electrons is quasi-vanishing. Then we can describe the system of these 

two electrons by the wave function 
1 2

( ) ( ).
n m

e e   Remember that the two particles are 

identical, thus the interchange of the two let us equal the system. Then also is valid as before 

that 
2 1

( ) ( ).
n m

e e   Then the total wave function with the interchanges realized by the two 

electrons takes the form: 

 1 2 2 1

1
[ ( ) ( ) ( ) ( )],

2
n m n m

e e e e        (20) 

and their conjugated 

 1 2 2 1

1
* [ ( ) ( ) ( ) ( )],

2
n m n m

e e e e       (21) 

But if the two states are the same state, then only 0,   since * 0  . Then the system is 

anti-symmetric in the interchange of two particles, that is to say, the wave function is anti-

symmetric under the interchange of electron coordinates. But by the Pauli Exclusion Principle 

the situation described in the total wave function ,  is incorrect, being the correct by * . 

But the before help us to establish the anti-symmetric structure of the interaction between 

pair of particles in the microscopy superconductivity theory and reflected this anti-

symmetry property also in every spin-orbit interaction of every wave function to the two pair 

electrons that satisfy the total wave function * . 

Considering to an electron field, a representation ,: VE  where ,V , is a Hilbert space 

and whose correspondence rule is 

 ( ),e e   (22) 

and let ,J  9the two-sided ideal in the tensor algebra defined in the section 2. 1, , ( ),E

generated by the elements of the form
1 2 2 1

e e e e   , where 
1 2
,e e E . 

Proposition 2. 2. 1. There is a natural one-to-one correspondence between the set of all 

representations of E , on ,V  and the set of all representations of / J,E E on .V . If ,  is a 

representation of E , on ,V  and , ,*  is a representation of / JE E , on ,V  then 

 ,  , ( ) * ( *)e e   e E  (23) 

                                                                 
9Remember that ,J from a point of view of the superconductors is a topological current associated with 

the topological charge defined related with the magnetic flux carried by the fluxoinds.  
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Proof. Let ,  be a representation of E  , on .V  Then there exists a unique representation ,

of , ( ),E  on V  , satisfying that ,  . ( ) ( )e e   e E  Then mapping , , vanishes on the 

ideal ,J , became 

 1 2 2 1 1 2 1 2 2 1 1 2
( [ , ]) ( ) ( ) ( ) ( ) ([ , ]) 0,e e e e e e e e e e e e              (24) 

Thus we can define a representation ,* of factor algebra / JE E , on V , by the condition

* .    10Then (23) is satisfied and determines ,*  uniquely. Also is unique, indeed 

suppose other representation, for example  , / JE E  of on V . If e E , we put 

( ) ( *)e e  . Then the mapping ( ),e e  is linear and is a representation of E  on V  , since 

1 2 1 2 1 2 2 1

1 2 2 1 1 2 2 1

([ , ]) ([ , ]*) ( ( ))

( ) ( ) ( ) ( ) ( ).

e e e e e e e e

e e e e e e e e

   
       

    

    ฀
 

Considering in particular the representation given for *,  11we have that Lie-QED-algebra 

structure to the spin and orbits is conserved. Indeed the spin and orbit parts can be 

separated in each wave function as for example, from (24) we have that if 
1 1 1

( ) ( ) ( ),e r s  
n

and 2 2 2
( ) ( ) ( ),e r s  

m
 then (24) defines * . Remember that the electron is a fermion and 

the electrons are described for the anti-symmetric wave functions. This property will be 

fundamental in the section relative to the construction of the fermionic Foch space 

corresponding to the Lie-QED-algebra. 

Def. 2. 2. 1. [10]. A -E H field is an element of a bi-sided ideal of the Maxwell fields [1, 6]. 

Explicitly is the formal space 

 
1 2 1 2 2 1 1 2
,  , with  ,         

R
F F O O F F F F F  F

2 2E H  {( ) ( ) ( )    [ ]    },   (25) 

Before of this, we pass to the fundamental lemma to characterize the algebra ,E H  as the 

fundamental algebra of all movements and electromagnetic phenomena (for example, 

magnetic levitation, electromagnetic matter condensation, Eddy currents, etc) produced to 

                                                                 

10 Its realized the following descend map  ,  from : ,    E E E  to *: / .    J E E E  

11It is the Slater determinant (that helps to construct wave functions to start of the expressions  

1 1 2 2
( ) ( ) ( ) ( )

n m
r s r s     where , ( 1,2)

i i
r s i   are the radius of the orbit and spin respectively) , for 

example: 

1 1 2 2
1 1 2 2

1 1 2 2

1 1 2 2

( ) ( ) ( ) ( )1 1
* [ ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )2 2

( ) ( ) ( ) ( )]

n n
n m

m m

m n

r s r s
r s r s

r s r s

r s r s

   
   

   
   

   
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quantum level by their electromagnetic fields satisfying the variation principle in their field 

actions. 

Lemma (F. Bulnes) [10] 2. 2. 1. All electromagnetic actions and their effects (microscopic and 

macroscopic) on the superconductor object O , comes from the -E H fields. 

Proof. [10]. ฀  

One important fact inside the demonstration of the lemma 2. 2. 1, was consider the bi-sided 

ideal given by the space (25) whose actions are extended to all space from the 

superconductor O , until the infinite (ambient of O ) through the gauge transformations 

used by the Lie-QED-algebra . Then by the lemma A. 1 (F. Bulnes), given in the appendix A, 

of this work [9], the quantum effects underlying in superconducting phenomena satisfies 

that 

2

2

1
( , ) ( , ) / 4

2

( ( )) ( ( )) / 8 ,

M M i k ik

O

M

O O

H A H A B F F H dV

L x s d x s H dV

 



 
      

 
 



 
 

where 2 / 8H  , is the free magnetic energy and the integral of the Lagrangian, of the 

expulsion by the action , and that is useful to establish the macroscopic wave functions that 

give place to a microscopic quantum current Js. By the mathematical electrodynamics [3] we 

can define using the structure of ,E H (that is to say, a module of the exterior algebra 

which is deduced by the universal map applied to each term of the element 

1 2 1 1 2
  ,   

2
F F F F F  F  [ ] ) that: 

 * , * ,
O

dS dS    
 

    
O

J J - J  *( , )  (  )  (26) 

where ,J   , and * ( ),conj  , such that 
2

, * ,   which is (19) in the 

supercurrents modality. As the last integral (18) measures effects due to the macroscopic 

actions to level quantum, this proved the affirmation of the lemma 2. 2. 1, in microscopic 

theory of superconductivity and also the macroscopic effects due to the Eddy currents must 

satisfy the magnetic force equation [9] to magnetic levitation. 

2.3. Photon spin algebra from E H  

The same Lie structure is conserved to the electromagnetic spin algebra. The Lie structure of 

the macroscopic level given and demonstrated to the space E H , in the before subsection 
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2.1, and using after through the path integral quantization on Lie bracket 
1 2

[ , ],e e  given in 

the subsection 2. 2 can establish a version of this quantized Lie algebra to quantum spin 

number (parts ( )
i

s ) associated to the photons that interact in the superconducting 

phenomena on the quantum macroscopic effects generated by the superconducting currents 

(for quantized electromagnetic fields). Then the QED- algebra obtained conserves the Lie 

structure to spin electromagnetic operators. 

The photon can be assigned a triplet spin with spin quantum number 1,s  accord to the 

classification of particles and their spin. This is similar to, say, the nuclear spin of the N

isotope, but with the important difference that the state with 0,
s

M   is zero, only the states 

with 1,
s

M    are non-zero. We consider the electro-spin operator as the vector with their 

Pauli matrices associated12: 

 ,( 1,2,3),
2k ijk k

S i k    


  (27) 

Then we can define the analogous of E H  to the quantum spin context as the algebra: 

  [ , ] ,
i j ijk

S S i      
k

Se h   (28) 

which is closed under the bracket [,] ,  operation . Indeed, we consider two elements 

, ,
i j

S S  e h  given by the relations 

 ( ), ( ),
i j k k j j k i i k

S i S i                   (29) 

satisfying the cyclically rule i j k i   . Then their operation under [,],  is 

.

2

2

[ , ] ( )( )

( )( ) ( )

i j j k k j k i i k

k i i k j k k j i j j i k

S S

i i i S

       

           

        

               



    e h
  

For simple inspection it follows that 

 ( ) ( )( ) ,
i j j i

i              (30) 

                                                                 
12In the special case of spin 1 / 2  particles, ,

x
 ,

y
  and ,

z
  are the three Pauli matrices given by: 

0 1 0 1 0
, , .

1 0 0 0 1x y z

i

i
  

     
       

       

Selected Topics in Applications of Quantum Mechanics212



with 1    or 1,  and therefore labels the photon spin, , , ,
z

S   k k  with 1    or 

1.  Then due the vector potential is a transverse field the photon has no forward ( 0  ) 

spin component. 

3. Fermionic Fock spaces of the superconductivity 

By the BSC-theory we have a Cooper pair is a magnitude whose spin is zero. But spin zero 

are bosons, then is easy fall in the temptation of treat a Cooper pairs as bosons. Furthermore, 

we have indicated that few many more Cooper pairs, better energy will be the process of 

superconductivity. However, the Pauli principle remains in force and the state formed, for 

example by ( , ),k k    cannot be occupied for more than a pair of electrons at the same time 

(see figure 3). 

 

Figure 3. BSC fundamental state with three Cooper pairs. 

Also the Hamiltonian in the BSC-theory is constructed by operators (that is to say, their 

formalism with that is calculated the energy of the fundamental superconductor state are anti-

commutative) follows anti-commutative rules as was discussed in the introduction of this 

paper. But involve a boson that is created an interaction between fermions13. The wave 

function such and as is proposed by the BSC-theory to ,  electrons (foreseen in (21) to the case 

of only pairs of electrons) is the product of wave functions of pair conveniently anti-

symmetrized, that is to say: 

 (1,2, , ) (1,2) (2,3) (1 , ),          (31) 

If we not write explicitly the part of spin and only we do with the orbital part we have: 

 1 1 2 2 /2 1 /2

1 /2

1 2 /2

( )
(1,2, , ) ,

i k r k r k r k r

k k
k k k

e      




      
    (32) 

                                                                 
13To difference of the London superconductivity where a charged gas of bosons produces naturally a 

Meissner effect. 
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where each term of this wave function describes a configuration where the ,  electrons is 

grouped in / 2,  pairs that are: 

 1 1 / 2 / 2
( , ) ( , ),k k k k    (33) 

The spin part is immediate, each electron of each pair haves opposite spines. The wave 

function is a complicated function that covers all the related pairs between them. This takes 

the form from excited states are obtained as linear combinations of the ground state excited 

by some creation operators †

1

0 0
k

n

i
k

a


 ,to the wave functions as: 

 ,
k

k

   (34) 

Using the second quantizing formalism to the Fock space in appendix B,, we have that the 

potential energy to said pairs is: 

 †

, '
, '

,
k k k k

k k

V V b b  (35) 

The term of kinetic energy of the corresponding Hamiltonian considering the energy in the 

Fermi level is: 

 † †

, '

2 ,
k k k k

k k

E b b b b    (36) 

where to the states of exited electrons (super-electrons) appear the trenches (to break the 

pairs and get to superconductivity peak state (see the figure 4A) and 4B)). 

The fermionic Fock space is (B. 1) where for second approximation we have 

 
0 1 2

,  F  H H H  (37) 

whose energies of the electron are ,
k
  and ,

k q
   with momentums to two electrons in 

superconducting states ,hk  and ( )h k q  respectively. This interaction is negative since is 

attractive, Then the potential is: 

 

2

2 2
( , ', ) , ,

( ) ( )

q

k k q q

A
V k k q



  


 




 (38) 
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where ,A  is a coupling electron-fonon. Then 

 ,
k q k q
       (39) 

Then after of realize some calculations in the fermionic Fock space is had that 

 2 2 1/ 2( ) ,
k

   
F

 (40) 

where ,  is the minimum energy of excitation, that is to say, the value of energy trenches 

that appears in the superconductor state (see the Figure 11A, in the last section). These trenches 

have a big variation with respect to the absolute temperature of the material. The energy ,
k


is the quasi-particle energy, that is to say, the energy of the holes of the fermions distribution 

when happen the excited states. The trenches energy as the excited states shape the 

orthogonal space of infinite dimension separated by the Fermi momentum. 

 

Figure 4. A) Nano-wire device to break Cooper pairs. The Cooper pairs must be break to obtain the 

maximum superconductor state. The super-electrons are transformed in Fermi liquid which established 

the required transformation of the immediate region of the space-time where must be executive to 

transformation due superconductivity [2, 13, 14, 15]. B). Spectral density of electron-phonon. 

Indeed, consider a system of fermions with an one-body Hamiltonian of the form (accord to 

(32) and (34)): 

 †
0

ˆ ˆ ˆ ,
k k k

k

H a a E   (41) 

When all particle energies ,
k
  are positive, the ground state of the system is the vacuum 

state vac ,  with all 0.
k

n   In terms of the creation and annihilation operators said state 

vac ,  can be identified as the unique state killed by the the annihilation operators, that is to 

say, vacˆ 0, .
k

a k   The excited states of the Hamiltonian (50) are    particle states which 

obtain by applying creation operators to the vacuum, vac
1

† †

1
ˆ ˆ, , ,

k k
k k a a

    the energy 

of such a state is 
10 0

.
k k

E E E 


      

A Lie-QED-Algebra and their Fermionic Fock Space in the Superconducting Phenomena
http://dx.doi.org/10.5772/59078

215



Book�Title

Now suppose for a moment that all the particle energies ,
k
  are negative instead of positive. 

In this case, adding particles decreases the energy, so the ground state of the system is not 

the vacuum but rather the full-to-capacity state 

 
all  

full all vac†ˆ1 ,
k

k

a  k
n  (42) 

with energy 

 
full

full  
0

,
k

k

E   E  (43) 

Never mind whether the sum here is convergent; if it is not, we may add an infinite constant 

to the 
0
,E  cancel the divergence. What’s important to us here are the energy difference 

between this ground and the excited states. 

The excited states of the system are not completely full but have a few holes. If we consider

1
0,

k k
n n


    for some   modes 

1
( , , ),k k  while all the other 1.

l
n   The energy of 

such a state is 

 
full full

1

0
, , 1

,
i

l k

l k k i

E E E 




 

     


E  (44) 

In other words, an un-filled hole in mode ,k  carries a positive energy 
k
 . 

In terms of the operator algebra, the full ,  state is the unique killed by all the creation 

operators, full†ˆ ,
k
a k . The holes can be obtained by acting on the full ,  state with the 

annihilation operators that remove one particle at a time. Thus, 

 hole at  other   1 fullˆ ˆ1 ,  
k k

k n n a  (45) 

and likewise 

 
1

holes at full
12

ˆ ˆ, , ,
k k

N k k a a
  k  (46) 

Altogether, when the ground state is full ,  the creation and annihilation operators 

Exchange their roles. Indeed, the ˆ ,
k
a  make extra holes in the full or almost-full states, while 

the †ˆ ,
k
a  operators annihilate those holes (by filling them up). Also the algebraic definition of 

the full ,  and vac , states are related by the exchange: vac vs full†ˆ ˆ0, , , .
k k
a k a k    
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To make this exchange manifest, let us define a new family of fermionic creation and 

annihilation operators, to know, 

 † †ˆ ˆˆ ˆ, ,
k k k k

b a b a   (47) 

Unlike the bosonic commutation relations, the fermionic anti-commutation are symmetric 

between †ˆ ˆ,a a , so the †ˆ ˆ, ,b b  satisfy exactly the same anti-commutation relations as the ˆ ,
k

a  

and †ˆ ,
k

a  

 
† † †

,
ˆ ˆ ˆ ˆ ˆ ˆ{ , } 0,{ , } 0,{ , } ,

l k l k l k l
b b b b b b   

k
 (48) 

Physically, the †ˆ ,
k

b  operators create holes while the ˆ ,
k

b  operators annihilate holes and the holes 

obey exactly the same Fermi statistics (as given in the Figure 4B) as the original particles. In 

condensed-matter terminology, the holes are quasi-particles, but the only distinction between 

the quasi-particles and true particles is that the later may exist outside the condensed 

matter. When viewed from the inside of condensed matter, this distinction becomes 

irrelevant. 

Anyhow, from the hole point of view, the full ,  state is the hole vacuum which is the unique 

state with no holes at all, algebraically defined by fullˆ 0,
k

b k  . The excitations are  

hole states obtained by acting with hole-creation operators †ˆ
k

b , on the hole-vacuum, 

1
 holes at full

1

† †
2

, ,
k k

k k b b
  k . Then the Hamiltonian operator (32) of the system 

becomes14 

 
full

† †

0
ˆ ˆ ˆ ˆˆ (1 ) ( ) ,

k k k k k k
k k

H E b b E b b         (49) 

in accordance with individual holes having positive energies 0
k
  . 

The ,k  modes are eigenspaces of some conserved quantum numbers such as momentum or 

spin (or rather ˆ
z

S ). When one makes a hole by removing a particle from mode ( , ),sp  the net 

momentum of the system changes by ,p  while the net ,
z

S  changes by ,s  so one can say 

that the hole in that mode has momentum ,p  and 
z

S s  . Consequently the hole 

operators are usually defined as 

 
,  - , - ,  - , -

† †ˆ ˆˆ ˆ, ,b a b a 
s s s sp p p p

 (50) 

                                                                 

14 † † †ˆ ˆ ˆ ˆˆ ˆ (1 ).
k k k k k k

a a b b b b    
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which leads to 

 
Tot full

†

, ,
,

ˆ ˆˆ ,
s s

s

b b   p p
p

P  P p  (51) 

and likewise 

 
Tot full

†

, ,
,

ˆ ˆˆ ,z z

s s
s

S S s b b   p p
p

  (52) 

Finally, consider a system where the energies ,
k
  take both signs: positive for some modes 

,k  but negative for other modes. For example, a free fermion gas with a positive chemical 

potential ,  and free-energy operator 

 
2

†

, ,
,

ˆ ˆ ˆ( ) ,
2 s s

s

H a a
m

  p p
p

p
 (53) 

has positive ,  for ,
f

pp  where ,
f

p  is the Fermi momentum defined by the threshold 

0
2m

 
2

f
p

 (see figure 4). For this system the ground state is the Fermi sea where 

 
, 

for  

for    

1
( ) ,

0

f

f

f

p
n p

p

     


sp

p
p

p
 (54) 

In terms of the creation and annihilation operators, the Fermi sea is the state (directly from 

†

1

0 0
k

n

i
k

a


 ): 

 

 only

 , 

, 

Fermi sea vac†ˆ ,
fp

a



  s

s

p

p

p

 (55) 

which satisfies 

 Fermi sea
,

ˆ 0,
s

a 
p

 (56) 

for ,
f

pp  and 

 
 , 

Fermi sea†ˆ 0,a 
sp

 (57) 
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for .
f

pp  

We may treat this state as a quasi-particle vacuum if we re-define all the operators killing 

the Fermi sea , as annihilation operators. Thus we define new (59) for .
f

pp  only. But 

keep the original operators ,
ˆ

s
a

p
, and 

, 

†â
sp
 acting with momentum outside the Fermi surface. 

Despite the partial exchange the complete set or creation and annihilation operators satisfies 

the fermionic anticommutation relations having: 

 

all

all

all

† † † † † †

† † †

ˆ ˆ ˆˆ ˆ ˆ{ , } { , } { , } 0,

ˆ ˆ ˆˆ ˆ ˆ{ , } { , } { , } 0,

ˆ ˆˆ ˆ{ , } { , } 0,

a a b b a b

a a b b a b

a b b a

  

  

 

 (58) 

and also 

 
 ,  , 

† †

, , ' , , '
ˆ ˆˆ ˆ{ , } , { , } ,

s s s s s s
a a b b    

s sp p p, p' p p p, p'
 (59) 

if we restrict the 
,

ˆ
s

b
p

, and 
, 

†b̂
sp
, to ,

f
pp  only and the ,

ˆ ,
s

a
p

 and 
, 

†â
sp
, to .

f
pp  

 

Figure 5. A). Fermi surface to the gold (Au). All Au-quasi-particles must shape this surface with the 

number of pairs corresponding to the metal to the superconducting state. This surface in the BCS-theory 

shapes the quantum nucleus of the interaction electron-fonon-electron corresponding to the fermionic 

Fock superconducting space [16, 17].. B). Fermionic Fock superconducting space conformed with for 

Cooper pairs: (red particle k  , blue particle k  ). The net is obtained by the adding of quantum 

Hilbert spaces respectively. 

The Fermi sea Fermi sea , is the quasi-particle vacuum state of these fermionic operators. 

The two types of creation operators 
, 

†â
sp
, and 

, 

†b̂
sp
, create two distinct types of quasi-

particles (respectively the extra fermions above the Fermi surface and the holes below the surface). 
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Both types of quasi-particles have positive energies. Then in terms of our new fermionic 

operators, the Hamiltonian takes the form: 

 
2 2

Fermi Surface 

† †

, , , ,
, ,

ˆ ˆˆ ˆ ˆ( 0) ( 0) ,
2 2s s s s

s s

H E a a b b
m m

          p p p p
p p

p p
 (60) 

with the domains to every sum ,
f

pp  only (in the first sum) and ,
f

pp  only (in the 

second sum). 

Clearly (60) describes elements of the fermionic Fock space given in (37). 

4. Fermionic C*-Lie-QED-algebra 

Theorem (F. Bulnes) 5. 1. The electro-anti-gravitational effects produced from 

superconductivity have that to be governed by the actions of the superconducting Lie-QED-

algebra E H . 

To demonstrate the before result is necessary to define the electro-anti-gravity in the 

formalism of the Lie-QED-algebra and their C*-algebras associated to her. The electro-anti-

gravity is obtained through of experiments where a fast rotating superconductor reduces the 

gravitational effect. Of fact the rotation is fundamental and necessary to the complementing 

of the anti-gravity effects searched through the magnetic levitation (see the Figure 6. where 

were realized many experiments with rotating geometrical pin, using the high intense 

magnetic field). 

 

Figure 6. Magnetic levitation by fast rotating magnet. 

The demostration of this theorem has been realized in part, by the lemma 2. 2. 1. However 

we require other additional lemmas that have that to see with other aspects, as the iso-

rotations (condition established and illustrated in the experiments realized in the Figure 6) 

and the condensation effects of the matter required in the transmission process through a 
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“bosonic cloud” of the plasmons in the quantum transmission of the electro-anti-gravity 

effect. The concluyent aspect in this last digression is that the rotation movement to very fast 

velocity and the superconducting phenomena must be togheter and due to the Lie structure 

of our QED-algebra, this rotations will be inside the E H - fields as images of orthogonal 

transformations of the special orthogonal group (2),SO  15and their topological essency let to 

see the inherent geometrical properties to an application of our superconductor electro-

fields as was demostrated in the following lemma [9] and mentioned in [18]: 

Lemma (F. Bulnes) 5. 1. Let / ( ),G C T C
S  be with ( ),C T  a space of orbits (hypersurfaces), 

generated by the electro-fields on ,O  by the realization of movements given for (2),SU

through of the action of their Maxwell fields ,F  given by 21
( ) / 4 ,

2i k ik
F H H H     in  

the superconductor. Then the orbits engendered by the actions ,
M

 on ,M are magnetic 

torus engendered by rotations (2) ( ), ,SO x s x M   generates by fluxoids 
0
, in the vortex 

zone 8. 

Proof. [9]. ฀  

Then an analogous to QED of the fields ,F  will have that consider in the states generated in 

a Fock space ,F  the corresponding transformation of a subgroup of ( ),O n  that is to say, the 

automorphism of the group must act on fermionic states of the space, where the electro-anti-

gravity comes established to change of spin-orbit from 1,
s

M    to 1,
s

M    (or viceversa), 

in a bose-Einstein distribution in the matter condensation phenomena to produce an electro-

anti-garavity wrapping of the object O . 

One important fact is that there exist orthogonal invariance of the CAR-algebra on a Fock 

space, that is to say, the Fermionic Fock space is invariant under rotations, that is tosay, 

,( ) ,O n    F  where explicitely the orthogonal group is: 

 ( , ) ( , ) },T TO n K Q GL n K Q Q QQ I     (61) 

If we consider the subgroup (2),SO  of (2, ),O K  we have that the group (1),U  of the 2-forms 

abF , satisfy: 

 (1) (2) (2),U Spin SO   (62) 

                                                                 

15  2

cos sin
(2) , [0,2 ] .

sin cos
SO A GL A

 
 

 
 

     
 
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having the considered in the section 2. 3. Then all particle represented for their energy (by 

their wave function  ) can change their behavior using a gauge group as (1),U , or (2).SU

This last enclose the all electromagnetic phenomena around of the superconductivity that 

we want cover. Remember that we required to obtain anti-gravity from the E H - fields of 

our superconducting Lie-QED-algebra. 

Then considering two elements of the group (2),SO  , for example 
1 2
, ,e e  E H  the 

representation fulfils (by proposition 2. 2. 1) is 

 
1 2 2 1 1 2 2 1

( ) ( ) ( ) ( ) ( ),e e e e e e e e          (63) 

and the field is transformed as 

 ',   (64) 

where explicitly the image ' ( )J   . From this always is possible construct a second 

representation defined by: 

 1* ( ) (( ) ),TJ J     (65) 

which belongs to the charge-conjugated particle. The anti-particle is obtained of accord to 

the contragradient ,  representation, which is: 

 1( ) ( ),J J     (66) 

There are not charge-conjugated in gravity, since if the gauge group is Lorentz group 

(3,1),SO  then elements 1 ,TJ J 
  , which means that the second representation * , is 

equivalent to  . 

But we need affect the immediate space-time at least locally through of these E H - fields, 

such that we will have the anti-particles given in (75). Also we need a mapping that involves 

and include in their image the spin connection that is involved in this anti-gravity process 

from superconductivity. 

We define the field  , as a vector field whose application is as given in (64) 

 1' , ' ,       (67) 

Selected Topics in Applications of Quantum Mechanics222



under a general diffeomorphism  , that is to say, the mapping belonging to the space 

( , *)Diff TM TM , where ,TM  is the dual to *T M . But we required local transformations at 

least in the immediate enthrone of object O , such that be anti-gravitational and this local 

enthrone acts with the space-time to create levitation in O . 

 

Figure 7. Rotations and anti-gravitational wrapping energy. An example of this idea is the cloud energy 

in the formatting iso-rotations in a galaxy, in condensed matter to sidereal objects with autonomous 

energy. 

Then the principal equivalence requires that the fields on our manifold locally transform be 

as in special relativity, that is to say, if , is an element of the Lorentz group ,16 the fields are 

transformed like Lorentz-vectors. Of fact this property is extended to all electro-physical 

modules E , and ,H  like L modules17. 

However, the generalization to a general diffeomorphism is not unique. We could have 

chosen the field  , as a vector field whose applications ( , *)Diff TM TM are 

 1' ( ) , ' ,T T        (68) 

But as  , is an element of L , that is to say 1 T   , both representations (67) and (68) 

agree. For general diffeomorphism that will not be the case, although introducing a new 

field that have a modified scaling behavior, this can be possible to affected to the space-time 

by E H - fields. Then is considered Isom( , ),TM TM   such that to fields 

, ' ' ' ,        one finds the behavior 

 1 1' ( ) ,T      (69) 

It will be useful to clarify the emerging picture of space-time properties by having a close 

look at a contravariant vector field  , as depicted in the wrapping energy around O , (see 

                                                                 

16

4 4 { ( ) ( , ) }, ( , ), ,g p q p q      L R RGL g p q
 

17Proposition 2.1 (F. Bulnes) [3].E , and ,H like R modules are invariant under Euclidean 

movements of the group (1,3),O and thus are L modules. 
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the figure 7). This field in blue is a cut in the tangent bundle, that is the set of tangent spaces 

, ,
p

T M p M 
 
which describes our space-time. The field is mapped to their covariant field 

 , which is a cut in the cotangent bundle *,
q

T M , by the metric tensor [19] 

 ,g 
     (70) 

Newly introducing the fields 
  (from here anti-graviting) this is transformed under the 

local Lorentz transformations like a Lorentz-vector in special relativity18. Then we can have 

(after of involve the relations of Isom( *, *)TM TM ): 

 1 1 1ˆ( ) ( ) ,T T         (71) 

where 1,   in the space Isom( , )TM TM . Then 
(1,3)

1 ,
SO

gg  g
  , and g

  , thus 

the properties of the vector fields are transformed directly to those of fermionic fields by 

using the fermionic representatives and the transformation of, in this case is the mapping 

 † 0 , 19 instead of the metric, is used to relate a particle to the particle transforming under 

the contravariant or contragradient representation. 

Then using the notation  , to covariant derivative we have: 

 ,
      (72) 

which is a new connection. Then the Maxwell-anti-gravity Lagrangian (that is to say, for anti-

gravitational pendants aA , of gauge fields) is introduced via the field tensors: 

 ,
a a abc b cF A A ef A A
           (73) 

                                                                 
18 The underlined indices on these quantities do not refer to the coordinates of the manifols, but to the 

local basis in the tangential. All of these fields still are functions of the space-time coordinates x . As 

diffeomorphism  , maps the basis of one space into the other. We can expand it as dx 
    , or 

dx 
    , respectively, such that (have inverses): 

, ,     
             

Then for completeness, let us also define the combined mappings through the relations:  

, .g g   
         

19 0 , is the canonical Dirac matrix 
0

.
0

I

I

 
 
 
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Staying an Lagrangian of the type 
2

[ * ( )]ab
a b

V       (see the section 2. 2. 1). Here abcf , 

are the structure constants of the group and e , is the charge electron coupling with the 

Planck scale. Then the corresponding electro-anti-gravitational-Lie-QED-algebra is that with 

supercurrents 

  , ,
a b b a a babJ F F F F F F            (74) 

Then the Lagrangian of fermionic fields can now be composed from the new ingredients as 

[19]: 

 , ELECTRO-ANTI-GRAVITATIONALL L L
FF

 (75) 

where using the fields   ,   ,  , and  , the Lagrangian , ,L L
F F

 take the form (using of 

Feynman symbols): 

 ( ) ( ), ( ) ( ),D D D D            L L
FF

 (76) 

where ( , )g g    L L , and ( , )g g
   L L . This prove the theorem 5. 1. 

Testing the Lagrangian we can see that there not is direct interaction between gravitational 

and anti-gravitational particles. However, both of the particles-species will interact with the 

gravitational field, which mediates an interaction between them. But this coupling is 

suppressed with the Planck scale. Thus the production of anti-gravitational matter (which is 

not observable today) can be is explained as ones condensation matter obtained in the 

scattering process when the anti-gravitational wrapping is created. This usually could see as 

a cloud or other haze type. 

What happen with the energy states Fock space? 

States of the Fermionic particles entering go interact through of the corresponding C*-CAR-

algebra [20, 21]. Likewise, for example if we consider the anti-symmetric Fock space 

a
( ),F H  and let 

a
p , the othogonal projection on to anti-symmetric vectors then C*-CAR-

algebra is represented on 
a
( ),F H  by settings 

 
1 2 1 2

* ( ) ( ) ( ),
a n a n

b p p                 (77) 

This means that the action of orthogonal group (2),O  stay restricted to the Hilbert space 

corresponding to the C*-CAR-algebra becoming the immediated finite region of the space-

time in a fermionic Fock space that is mixture of particles and anti-particles (at least until that 
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is converted all space). We could call to this restrinction of orthogonal group as (2, ),O H

where a new operator is obtained by the composition * ( )
a

T b p   , acting on a module 

Fock space that we can write as ( ),


A H
2

a [22] 20 which represent the new energy space 

whose elements are the second side of (77). Using the CAR-algebra of creation and 

annhilitation operators and 2

†( ) ( ),D b b   


   H
a

. The canonical anti-commutation 

relations are equivalent to the commutator relation: 

 [ , ] 2 ( , ),D D D D D D i             (78) 

with the anti-symmetrical form of the Weyl relations given by ( , )   . If we extend the 

operators before to linear R-operators on Hilbert space 2
H

a
, we obtain the relation 

( , ) ( , ),A A       which defines a fermionic orthogonal group 

 2
2{ (2, ) ( , ) ( , ), , },A O A A       


    L H H

R a
 (79) 

where appear the Bogoliubov transformation21. 

Finally, the orbital spaces created by the superconductivity in the quantum regime satisfy 

the corresponding orbital integrals due F. Bulnes [17] to cuspidal surfaces in the generating 

chirality inversion through a Dirac node(with Hamiltonian
† † †( ) *H i                  [23]): 

 1( ) ( ) ( ( )) ( ) ( ( )) ,

F

t F t t F t t F t t

N

J E a a na m a na m n g k a na dn
 


 

      (80) 

where ,E is the total Fermi energy in all Fermi surface including the proper kinetic energies, 

the term ( )
t t

k a na  ,is the momentum created in the chirality inversion through the node of 

automorphism Fn N , where the space FN is the normal subgroup defined to the action 

created by fermions in the transit electron-phonon-electron, which is normed by the product 

of logarithms of the actions of their automorphisms [24]. 

                                                                 

20 ( ),


A H
2

a

 
is a algebra of operators from H , in the super-algebra 2

a .  

21The Bogoliubov transformation is a canonical transformation of these operators. To find the conditions 

on the constants ,s  and ,t  such that the transformation remains canonical, the commutator is 

expanded: 
† †2 2† †ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] [ , * * ] ( )[ , ].b b sa ta s a t a s t a a     
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Figure 8. A). Fermionic distribution of probability density r2|Ψpair(r)|2 of the neutron Cooper pairs as 

a function of the neutron Fermi momentum kFn and the relative distance r between the pair partners in 

symmetric nuclear matter [22]. This can produces Eddy currents with the property anti-gravitational 

current given in (83). B). The part colored in blue determines the absence of magnetic flow, such like is 

wanted that it happens for the super-currents existence on the surface of a levitating vehicle, making 

that this everything behaves as a diamagnetic, except in the central ring colored in red and yellow 

where exists an intense magnetic field (this simulation was published in the Proceedings of Fluid Flow, Heat 

Transfer and Thermal Systems of ASME in the paper IMECE2010-37107, British Columbia, Canada with all 

rights reserved ® [9]). 

One example of this automorphisms 
t t

a na , in action are the quantum operators given by 

the product † † ,
k q k q k k

a a a a        , which acts on pairs and not change the electrons in ,k and 

,k  and transits to ,k q  and ,k q   letting equals spins. The energy ,E  is given by 

†
k

, '

2 ,
k k

k k

E e e  where † † †

k
( ) , ( ) , ,

k kk k k
e f a a e g a a f g        H.  

Relating the meaning of these operators with the Debye energy to photons given by ,
D

 , 

we can to obtain a complete criteria to the energies given by (40) considering the 

Coulumbian repulsion, obtaining a precise wide measure of trenches where to some real 

superconductor we consider the term (0) 0.3N V  , is the magnetic momentum developed 

by the free electrons in the formatting of the Fermi liquid [25, 26, 27]. The integral ( )
t

J E , is 

bounded [1, 25]. 

5. Applications 

Proposition (F. Bulnes) 6. 1. Using organized transformations as given in 

( ) ( )  ,    T TM M
n

 we can to establish that the state of all particles in set, is their 

corresponding Fock image [15, 28]. 

Inside of the Fock space begins a realization of the potential of the superconductivity, since 

the Fock pure state involves all the states of particles of the space, object of the 

transformation [15], that in this case is superconducting state. We want organize the particles 

in two the phases that define our Fock space then the proposition is the shape to do it! 
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Theorem V. 1 (F. Bulnes, R. Goborov). The organized transformation given by [15] 

 ( ) ( )  ,    T TM M
n

 (81) 

to electro-anti-gravitational effect produced from superconductivity must have a fermionic 

Fock space [10]22 

 
1 2

† † † †
,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ{ { , } 0,{ , } 0,{ , } },
k k k l k l k l k l

e e e e e e e e     H H  (82) 

with rule of transformation in an inherent context of the space-time with Hamiltonian 

(transforming each particle around of the source that produces this transformation): 

 
2 2

Fermi Surface 

† †

, , , ,
, ,

ˆ ˆ ˆ ˆ ˆ( 0) ( 0) ,
* *
F F

s s s s
s s

k k
H E e e e e

m m
           

p p p p
p p

 (83) 

where 
F

k , is the Fermi sphere radios (their super-electron momentum) given by 

 Fermi Surface

2

1/ 2
2

,
F

mE
k

 
  
 

 (84) 

Their demonstration of the theorem needs more studies and experimental results. This 

theorem is by way of conjecture. But we think that fermionic Fock space of electromagnetic 

nature can be who can express the phase change in all particles beginning from the structure 

of metal and transmitting to the immediate ambient space of the metal object (see figure 

9B)). 

 

Figure 9. A) The quasi-particle region: holes. The fermionic Fock superconducting space for one 

particle: observe the two phases of fermion spaces, upper surface corresponds to the holes zone. Of fact 

this zone is like volcano, since in their interior are holes. The below surface is the free fermions whose 

behavior is seemed to the Bose-Einstein distribution. B). Structure of the ship transmitting the change 

phase of the particles that come from of the ship reactor [29, 30]. C) Electro-twistor generated by the 

magnetic field-superconducting interaction [9]. D) Appearing of the creation operators that shape the 

wrapping space over structure of the ship. This is defined by a fermionic Fock space, for example under 

the ship as the impeller twistor [23]. 

                                                                 
22A electromagnetic case is given bythe  algebra:  ( ) * ( , *) * * [ , ] .          E H   
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Figure 10. Electro-anti-gravitational Fields ,
t
E  to levitation (see also figure 11 B)) [18]. Disk (thermal 

cloud forming the saucer) experiments to magnetic levitation showing the fermionic Fock space in 

nano-seconds [31] from the orbit-spin interaction. 

6. Conclusions 

The sections 4 and 5, establishes the general conditions to construct the fermionic Fock 

superconducting space which born from organized transformation of fermions and bosons 

from the actions of the Lie-QED-algebra E H , [3, 18, 32] of this way in the next section we 

establish this and also their transformation to obtain the two phases signed in the 

Hamiltonian (83) (see figure 9 A)). 

Important is do note, that the energy of a quasi-particle depends of the distribution of all the 

other quasi-particles that haves in the system. Simplified, is can to say, that a free electron, 

or “naked electron”, that is to say, (outside of interactions); have as difference with a quasi-

particle, or electron with interactions the different masses. The principal effect of the 

interaction between electrons in normal state consists in change the effective mass of the 

electron; for example, the specific heat of a Fermi liquid have formally the same expression 

that the of a ideal Fermi gas changing so only the effective mass, *,m  for the mass of the free 

electron .m  

The fermionic Fock space is a useful topological space picture to describe the interaction 

obtained for electrons and their link-wave as fonon (boson to describe the quasi-particles) 

inside the Fermi fluid. In the next work we need to demonstrate this interaction and related 

with the proposed Hamiltonian in (83). The following region (figure 9 A)), must be the free 

fermions that realize the transformation in the particles of immediate space moving their 

spins. Of fact, this change of phase happens inside the superconductor material where the 

superconductor phenomena happen. 
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One careful analysis establish certain relations between orbit-spin, saying orbit to the two 

surfaces that begin in certain step of superconducting process as Rasbha Effect (see figure 4 

a)), from the Majorana field produced for this coupling in intermediate state of semi-

conductor-superconductor. This can help to design an inter-phase with the reactor of a 

vehicle of magnetic levitation [23]. 

Appendices 

A. Variation principles to EM in superconductors 

Lemma. A. 1. (Bulnes, F) [24, 33]. The energy of action given by ,
M

E  of the ,O  all like a 

diamagnetic given by ,
M

  satisfies to all vector magnetic potential ,A  ( 1 form of the 

corresponding Maxwell equations to the levitation:  4 (1 / ), rot  cB j  and , 0B  33), the 

following Hamiltonian 

  2( , ) / 8 ,
M M

O

H A L H dV     (85) 

Proof. [33, 34]. 

B. Fermionic Fock space 

Now suppose there is an infinite but discrete set of fermionic modes ,  corresponding to 

some 1particle quantum states ,  with wave functions ( )  . In the vector ,  we 

include the spin and other non-spatial quantum numbers into ( , , , , ).x y z spin etc    In this 

case, the fermionic Hilbert space is 

 
mode 

 spanning  and ( 0 1 ),
a

    F H n n  (86) 

which has infinite dimension and we may interpret this as a Fock space or arbitrary number 

of identical fermions. This is our space of study to organized transformations that we 

require [15, 35, 36] ]. 
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