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1. Introduction

Genetic and environmental factors contribute to the pathogenesis of asthma [44]. A clear
familial incidence and genetic susceptibility was recognized in early XXth century and
subsequent studies established high levels heritability [14, 42, 49, 67]. Analysis of genetic
association to asthma susceptibility and disease traits has long been used to try and identify
pathways involved in asthma pathogenesis and potential therapeutic targets.

In this chapter we review the recent advances in the understanding of the genetic factors
contributing to asthma development. We also discuss some of our recent results on the
association between allergic asthma and human leukocyte antigen (HLA) and cytokine loci.
We present gene and protein expression analysis for some of these relevant disease markers
in the context of allergen challenging of asthmatic patients.

1.1. Genetic studies

Asthma is a complex disease with heterogeneous presentations in different populations [44].
These variable presentations have been grouped into “endotypes” [41]. The high phenotypic
diversity led others to propose that asthma is not a single disease but instead that the term
“asthma” has been used to define a spectrum of related, overlapping syndromes [41].

At present, no single gene was found to be determinant for asthma susceptibility or, indeed,
disease endotypes. Multiple molecular mechanisms seem to be involved in the pathogenesis
of each disease feature and many genetic variations have been associated with risk and/or
phenotypes. While some genes seem to contribute to asthma susceptibility, others might
specifically influence disease features such as age of onset, atopy, progression (severity) or
response to treatment. On the other hand, asthma is a multifactorial disease. In addition to
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genetic predisposition, there are well-established environmental or developmental factors that
interact and influence gene expression [16, 52].

The knowledge in asthma genetics has evolved with the advances in biotechnology. Three
major technical approaches have been used to search for associations between genes and
disease (or phenotypes): genome-wide linkage studies, hypothesis-driven candidate gene
association studies and genome-wide association studies (GWAS).

Genome-wide linkage studies using microsatellite markers performed in families identify
chromosome segments associated with disease. Cloning of the “linked” alleles might then lead
to the identification of genes and, potentially, to novel disease pathways, as it allows unbiased
analysis of the genome. A downside of these linkage followed by positional candidate studies
is the difficult study design and their poor resolution, as they often identify broad chromosome
regions that might include hundreds of genes.

The sequencing of the whole human genome enabled the study of associations between
disease/traits and single nucleotide polymorphisms (SNPs) in particular genes of interest. The
candidate genes might be selected for their presumptive functional involvement in disease
pathology or for their chromosomal position in a linkage region, or near a previous association
signal (positional candidate). Association studies present some advantages over family linkage
studies: use of independent case-controls and non-related populations, detect genes with
modest effects, have a simpler study design and their results are easier to interpret. On the
other hand, the candidate gene approaches require previous knowledge or assumptions about
disease pathogenesis and, therefore, do not search for novel genes and pathways.

Linkage and candidate studies have contributed for pivotal discoveries in many monogenic
diseases. However, genetic association studies provide limited information as only a small
number of genes can be studied at a time. Furthermore, in complex diseases, such as asthma,
the contribution of many genes is hard to encompass. Recently, the publication of the Human
Genome Project in 2003 (www.genome.gov/) and the International HapMap Project (http:hap‐
map.ncbi.nlm.nih.gov) in 2005 (The International HapMap Consortium 2003) allowed the
development of genome-wide association studies (GWAS), [26, 43]. GWAS analyse hundreds
of thousands of genetic variants (such as SNPs) across the whole human genome and search
for their association to a disease characteristic by comparing the frequency of a genetic variant
among the afflicted population versus a control population. Powerful computational statistics
are then required to analyse the data and find significant differences in frequency that support
association and suggest involvement in disease pathogenesis. Case-control studies are useful
to determine disease susceptibility. For particular disease characteristics, however, the
associations might be better explored using case-only studies, comparing phenotypes, severity
or response to treatment among subgroups of the diseased population.

GWAS brought significant improvement to previous genetic studies of disease because genetic
variants are researched across the whole genome and a great number of patients and controls
can be included. Importantly, the search is unbiased and does not require previous knowledge
of the disease or the biological pathways involved, allowing the finding of unsuspected genes.
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This advantage has, sometimes, proved thorny, as some identified genes have little biological
plausibility. One important limitation in GWAS is the low detection of uncommon risk
variants, as genotyping platforms mostly include common gene variants.

GWAS have now been used in many diseases with important results [26, 78]. The National
Center for Biotechnology Information (part of the National Library of Medicine, USA) compiles
data from GWAS performed in many diseases and conditions. Data can be accessed at the
Database of Genotype and Phenotype at http://www.ncbi.nlm.nih.gov/gap and at the National
Human Genome Research Institute, National Institutes of Health, USA: http://
www.genome.gov/gwastudies/.

1.2. Linkage and candidate studies on the susceptibility and phenotypes of asthma

The first genome-wide linkage screening for asthma susceptibility loci was published in 1989
[9] and, in 2002, ADAM33, located in chromosome 20, was the first gene associated with asthma
by positional cloning [75]. This association has then been replicated numerous times in
different populations [27]. Ironically, the function of the encoded metallopeptidase in asthma
pathogenesis is still unclear [72]. Only 9 genes were identified by positional candidate studies
in linked regions [4, 12, 52]: ADAM33, DPP10, PHF11, NPSR1, HLA-G, CYFIP2, IRAK3, COL6A5
and OPN3 ⁄ CHML.

Taking also into consideration the vast literature on candidate gene associations, more than
200 genes have been proposed as asthma related genes through human and murine studies
[77]. In 2006, previous to the introduction of GWAS in asthma research, Ober and Hoff‐
jan extensively reviewed the literature and identified a “top10” of genes more frequently
associated to asthma [51]: ADAM33, IL4, IL4RA, IL13, CD14, ADRB2, TNF, HLA-DRB1, HLA-
DQB1  and  FCER1B.  Several  of  these  genes  are  positioned  on  region  5q31-33,  an  early
recognized and replicated association in linkage studies. This region includes genes for Th2
mediators [22, 51] thought to be involved in asthma development (e.g. IL4 or IL13), and
also  other  genes  that  might  contribute  for  asthma  pathogenesis,  such  as  environment
interaction genes (e.g. CD14) and drug-response genes (e.g. ADRB2). ADRB2 encodes the
β2 adrenergic receptor expressed on bronchial smooth muscle cells and influences both the
bronchial  tonus  and  the  response  to  adrenergic  medications  (e.g.  albuterol).  Further  to
asthma susceptibility, it has been associated also with several phenotypes, such as severi‐
ty [8] or disease persistence into adulthood [24]. HLA genomic region (6p21) also has been
repeatedly  associated with  asthma susceptibility,  and in  particular  the  HLADRB1,  HLA-
DQB1 and TNF genes [45, 58, 60].

1.3. Genome-wide association studies in asthma

In 2007 the first GWAS on asthma susceptibility was published [46]. This study strongly
associated gene ORMDL3 in 17q21 with susceptibility to childhood asthma. This region
includes also the gene GSDBM. Initially identified in populations of European ancestry [46,
61], many studies have now replicated the association of genes located in 17q21 with child‐
hood-onset asthma and several asthma phenotypes [3, 4] also in Latin American [19, 69],
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African American or African Caribbean [69, 19] European American [69], and Chinese [35]
populations. ORMDL3 gene encodes a transmembrane protein localized in the endoplasmic
reticulum and may be involved in the endoplasmic reticulum response to stress and inflam‐
mation, increasing the unfolded-protein response [6]. The functional connections of ORMDL3
and GSDBM to asthma development are not fully understood. Another GWAS on asthmatic
children confirmed the relevance of 17q21 and found a novel association with the gene
DENND1B (1q31) in children of European and African ancestry [62]. DENND1B is expressed
by natural killer cells and dendritic cells and predicted to interact with TNF-alpha receptor [62].

So far, 43 GWAS were published on childhood and adult asthma using different populations
– search at www.genome.gov, as of August 2014 – and a great deal of information is available
about novel genes associations as well as confirmations of relevant genes previously described.
This includes studies on asthma susceptibility as well as GWAS on several of asthma pheno‐
types, e.g., IgE [30], forced vital capacity [40], or response to glucocorticoid treatment [63]. Two
important meta-analyses reviewed the published data.

In 2010, the GABRIEL consortium published a large-scale GWAS meta-analysis including
European ancestry-matched 10365 asthmatic patients and 16110 controls [47]. Asthma was
associated with IL1RL1/IL18R1, HLA-DQB1, IL33, SMAD3, IL2R, GSDMB and GSDMA genes,
and using with a lower threshold to SLC22A5, IL13 and RORA. A stronger association was
found between these genes and childhood-onset asthma than adult onset asthma, except for
HLA-DQ which associates more with adult-onset. ORMDL3 and GSDMB were associated only
to childhood-onset asthma. No significant association was found for severe or occupational
asthma. Notably, genes previously associated to asthma in other studies, such as PDE4D,
CHI3L1, DPP10, GPR154 [NPSR1], ADAM33, PHF11, OPN3, IRAK3, PCDH1, HLA-G, and
DENND1B, were not found to be significantly associated with asthma in this study. High IgE
serum levels were associated with previously described FCER1A, IL13, STAT6 and IL4R/
IL21R genes and to a new locus within MHC II – HLA-DRB1. Only IL13 showed some associ‐
ation with asthma, whereas the others genes associated with serum high IgE levels were not
associated with asthma. This is somewhat unexpected and suggests that asthma development
is not related to the levels of IgE. Only HLA-DR was found to associate with high serum IgE
levels [47].

The EVE Consortium meta-analysis searched for susceptibility genes across ethnic groups in
North America: European American, African American or African Caribbean, and Latino
ancestries [69]. Notably, four associations with asthma risk were found in all three ethnic
groups: 17q21 region, IL1RL1, TSLP and IL33. Remarkably, some of these were associated in
the two large published meta-analyses, GABRIEL and EVE [47, 69]. A novel asthma suscept‐
ibility locus was described by the EVE consortium at PYHIN1 specifically in individuals of
African ancestry [69].

It seems now clear that some genes are replicated across different populations whereas others
seem to be ancestry specific. In another study, 6q14.1 was found to be related to asthma
susceptibility in European and African patients [70].
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1.4. Biological significance of genetic studies

It is reassuring that many of the genes identified were related to immunological physiopa‐
thology, e.g. several cytokines and antigen presentation genes. Particularly, genes coding
for cytokines and pathways associated with Th2 cells (e.g. IL13, IL2R) and regulatory cells
(e.g. SMAD, TGF-beta) were among them. This agrees with the vast literature showing roles
for these cells in asthma, atopy and immune regulation. The role of epithelial cells in asthma
pathogenesis is underlined by the associations with TSLP, IL33  and IL1RL1 (that encodes
for the receptor of IL33, expressed on mast cells, Th2 cells, T-regulatory cells, and macro‐
phages) [47, 69].

Some genes, however, do not immediately relate to immunological pathways. This was the
case for RAD50 [38]. In this study, Li and colleagues found that SNPs on HLA-DQB1, HLA-
DQA2 and RAD50 region were associated with severe or difficult-to-treat asthma. RAD 50 is
a DNA repair gene and a connection with asthma pathogenesis is not obvious. Furthermore,
the associated SNPs were found in an intron. Notably, previous research on Th2 cytokine
expression in mice showed the presence of a locus control region (LCR) in this location that is
an important regulator of the genes encoding the Th2 cytokines interleukins 4, 5 and 13 [33,
34]. Genetic ablation of this LCR did not affect the expression of a linked RAD50 gene, but
reduced long-range intrachromosomal interactions with the promoters of the Th2 cytokine
genes. This example shows that some associations require further understanding of genetic or
functional interactions of the genes. Nevertheless, some of the associated genes remain with
no known immunological or genetic connection to asthma and more information is needed to
understand their role in pathogenesis.

1.5. Limitations of GWAS results in asthma

The results obtained so far demonstrate the polygenic and multifactorial nature of asthma.
Low levels of replication have been found between GWAS and individual study heritability
estimates for the associated genes were found to be low [52] and, therefore, with little prog‐
nostic utility. These setbacks might be, at least in part, due to methodological or sampling
differences between GWAS. A fundamental question is that some variants might increase risk
only in specific individuals and not in others, for instance in the case of some genotype-
environmental exposure interactions. Moreover, GWAS underestimate the role of rare genetic
variants [65, 70] that might have an overall larger effect than common variants on the propor‐
tion of genetic risk for common diseases [15]. Epigenetic mechanisms [13] and epistatic effects
might further difficult gene expression analysis [81].

The challenges with GWAS are discussed in further detail elsewhere [77]. Several methods
have been proposed to improve the power of GWAS (De 2014). Utilizing a combination of
approaches, in which GWAS-type studies are performed using selected SNPs of candidate
genes, a strategy was devised and named “prioritized subset analysis” [37]. This strategy
combines the strength of GWAS computational statistics with previous knowledge from the
literature, allowing for power improvement [37]. Novel mathematical models have been
proposed for data analysis in asthma [74].
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In the future, the study of complex diseases might incorporate data from whole-genome
sequencing [71] or exome sequencing to identify both common and rarer genetic variants in
complex diseases [64]. These techniques and analysis are becoming more affordable and
feasible on large numbers of individuals and therefore sufficient power will be possible for
detecting associations with asthma. A recent study, for example, analysed the role of copy
number variants asthma using whole genome sequencing [5].

Genetic approaches require replication and gene expression analysis. Ultimately, in vitro/ex
vivo/in vivo studies are required to confirm the biological significance and to understand the
precise functions of the associated genes in asthma pathogenesis. In this chapter, we analyse
the expression of some candidate genes in the context of the allergen-specific response in
allergy respiratory patients.

2. Experimental study

2.1. Cytokine single nucleotide polymorphism and HLA expression

2.1.1. Material and methods

2.1.1.1. Subjects

85 voluntary adult patients with respiratory allergy to Dermatophagoides pteronyssinus (Dp)
under observation in outpatient Immunoallergy were enrolled for study (Group A). This group
included patients of both sexes (female= 55; male=30; average age: 30.09±9.22 years), wherein
36 of them had the diagnosis of allergic rhinitis and the others 49 patients had simultaneously
allergic asthma and rhinitis diagnosis, according criteria from ARIA and GINA guidelines [2,
20]. At the moment of the study all the patients were under clinical stability, and never were
submitted to specific immunotherapy in the past.

Pregnancy, systemic inflammatory illness or other chronic disease, any exacerbation of allergic
disease or a respiratory tract infection in the previous month to the study, as well as nasal
polyposis or previous nasal surgery in the past were considered exclusion criteria.

2.1.1.2. Methods

DNA was extracted from polymorphonuclear blood cells (PMBC) using MagAttract DNA
Blood Mini M48 Kit on the BioRobot M48. After extraction, the quality and quantification of
DNA was evaluated and PCR -RSSO Cytokine SNP Typing kit from LIFECODES was used to
investigate single cytokine polymorphism (SNP’s) from 14 cytokines using bead array
xMAPTM technology from LuminexTM .

The HLA genomic typing to class I (locus A and B) and class II (locus DR) were obtained from
peripheral blood samples. The study of cytokine single nucleotide polymorphisms (SNP’s)
were also performed in the promoter region of IL-1 (α,β,R,RA), IL-2, IL-4, IL-6, IL-10, IL-12,
IFN-γ, TGF-β and TNF-α.
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2.1.1.3. Statistical analysis

Statistical analysis was performed using SPSS® Statistics 17.0 software. Were analyzed the
frequency distribution for the different qualitative variables. For quantitative variables
Average and Standard Deviation (SD) were calculated, according the two patients groups (A
and C).

Differences between the two groups were analysed by means of χ 2 tests and Mann–Whitney
test (two independent samples) for qualitative and quantitative variables respectively. A
statistical significant difference was assumed with p < 0.05.

2.1.1.4. Results

In allergic group (A), it was observed a higher genotype frequency of A*01 and A*68 alleles,
while A*02 presented a lower frequency (Figure 1), compared to non-allergic healthy group
(C). Concerning locus B (Figure 2), the most frequent allele was B*51, while B*35 was less
frequent in the allergic population. With respect to HLA class II (Figure 3), the alleles DRB1*03
and DRB1*11 were more frequent in group A, while for DRB1*04 and DRB1*13 it was the
opposite. None of these differences was statistically significant. The A*01 B*08 DRB1*03
haplotype was the most frequent in both groups. Nevertheless in allergic patients the A*02
B*51 DRB1*11 haplotype was the second most frequent, but the fifth one in healthy individuals
(5.8% vs 1.4%, p=0.059).

Figure 1. HLA class I, locus A. Frequency distribution of allergic patients (blue) compared to control group (red), not
significant
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Figure 2. HLA class I, locus B. Frequency distribution of allergic patients (blue) compared to control group (red), not
significant

Figure 3. HLA class II, locus DR. Frequency distribution of allergic patients (blue) compared to control group (red), not
significant
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Results of phenotypic frequency of cytokine single nucleotide polymorphisms (SNP’s) in the
promoter region for subjects in the study the results are expressed in Figures 4 and 5.

Figure 4. Cytokine single nucleotide polymorphisms (SNP’s) : IFNg, IL-10, IL-6, TNFa, and IL-12b Frequency distribu‐
tion of allergic patients (blue) compared to control group (red)

Figure 5. CCL4 gene expression in the patients submitted to CPT and NPT, before challenge (T0) and at 60 and 240
minutes after challenge (individual response values, average and SD).
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It was found a higher phenotypic frequency for the following cytokine SNP’s: TNFα-238GG
(p<0.0001), TGFβ+869CT (p<0.0001) and IL4-1098TT (p=0.003). On the other hand, there were
lower frequencies for TNFα-238AG (p<0.0001), TGFβ+915CC (p=0.024) and IL4-1098GG
(p=0.005). In the allergic group it was not found any homozygous individual for TGFβ+869TT
(p<0.0001), but conversely There was an increase of heterozygous individual compared with
the control group (p=0.004).

No differences were observed between patients with concomitant asthma complaints and
those with only rhinitis symptoms.

2.2. Gene expression and allergy challenge test

2.2.1. Subjects

From the previous mentioned 85 voluntary adult patients studied, with respiratory allergy to
Dermatophagoides pteronyssinus (Dp) we selected a sample of 42 patients. These patients were
enrolled to being submitted to an specific allergic challenge test, so H1-antihistamines and
corticosteroids, either nasal or oral, were stopped 2 weeks and 4 weeks prior to the challenge
test, respectively.

The specific allergic challenge test was performed using a standardized lyophilized Dp extract
by nasal and ocular in 21 patients for each methodological procedure [21]. All patients were
submitted to a previous respiratory function test (pletismography using Master screen Body
Jaeger®) to assure the standard safe criteria (FEV1 ≥ 80% and FEV1/FVC ≥ 80).

Symptoms as dyspnoea, thoracic oppression, wheezing or cough were asked to being men‐
tioned to all patients after challenge test.

The local ethics committee approved the study and all the participants gave written informed
consent before entry.

2.2.2. Specific nasal and conjunctival challenge tests

All the patients performed skin prick tests with an aqueous extract of Dp with 5 mg/ml
concentration (23 mg/ml of Der p 1, BialAristegui, Bilbao, Spain), with the dilutions of 1/1, 1/10,
1/100 and 1/1000 and negative and positive controls, according to standardized procedures
[21, 54] (Dreborg 1993). The concentration used for specific provocation was the minimum that
induced a prick test wheal at least equal to that induced by histamine.

All the specific challenge tests were performed after a period of adapting of room temperature
for at least 30 minutes, and at the same period of the morning.

Nasal provocation test (NPT) were carry out by the administration of 160μl, corresponding a
2 consecutive puffs, of aerosolized spraying of Dp extract administered to the unilateral inferior
nasal turbinate of the less congested nostril, and asking patients to perform apnea during the
application of the allergen. Conjunctival provocation test (CPT) comprised on the unilateral
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administration of 50μl, one drop, of allergen extract in the inferior and external quadrant of
the bulbar conjunctiva.

Both ocular and nasal symptoms were recorded after challenge test and registered filled at the
1st and the 5th minutes, according specific clinical score system [21, 39].

2.2.3. Clinical score scaling

For evaluation the clinical responses an adaptation of the previously used a nasal clinical score,
NCS, [39] and ocular clinical score, OCS, [48] were applied at the 1st and the 5th minutes [21,
54] as well as the total clinical score (TCS), representing the sum of NCS (range: 0-15) and OCS
(range: 0-13) ranging from 0 to 28 points.

Although the late record symptoms occurred 5 minutes later after the challenge test all patients
remained under strictly clinical observation for at least 4 additional hours. Clinical evaluation
scores was interrupted after the 5th minute, but all the patients maintained medical observa‐
tion during the next 4 hours.

2.2.4. Patient groups

Blood samples were collect to PAXgene blood RNA tubes to all patients before the allergic
challenge test (NPT or CPT) and at 60 or 240 minutes, according to the following subgroups.

T0 and T60 minutes T0 and T240 minutes

CPT CPT

n=11 [F=8+M=3]
Age: 28.36±5.0 years [20-36]

n=11 [F=7+M=4]
Age: 27.90±6.8 years [17-39]

NPT NPT

n=12 [F=6+M=6]
Age: 32.5±8.7 years [19-43]

n=10 [F=6+M=4]
Age: 25.3±7.5 years [18-43]

2.2.5. Methods

Peripheral blood was collected in a PAXGene Blood RNA tube (Qiagen) and total RNA
extraction performed with the PAXgene Blood RNA kit (Qiagen) according to the supplier’s
instructions in a QIAcube BioRobot [59]. Total RNA quantification and RNA integrity
evaluation was analyzed using a 6000 Nano Chip kit, in an Agilent 2100 bioanalyzer (Agilent
Technologies) and 2100 expert software.

RNA was reverse transcribed with SuperScript III First-Strand Synthesis SuperMix for qRT-
PCR (Invitrogen), according to the manufacturer’s instructions. Relative quantification of gene
expression by real-time PCR was performed in the LightCycler 480 II (Roche Diagnostics).
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Real-time PCR reactions were carried out using QuantiTect SYBR Green PCR Master Mix and
QuantiTect Primer Assay (Qiagen) and 20 ng of cDNA sample, in a total volume of 10 μl. All
samples were run in duplicate.

Real-time PCR results were analyzed with the LightCycler software (Roche Diagnostics).
GeNorm Reference Gene Selection kit (PrimerDesign Ltd) in conjunction with the geNorm
software (PrimerDesign Ltd.) were used to select the reference genes to normalize data. The
normalized expression levels of the genes of interest were calculated by using the delta-Ct
method.

2.2.6. Statistical analysis

Statistical analyses were performed using SPSS® Statistics 17.0 software. To determine the
statistical significance of the differences observed, the non-parametric Mann–Whitney U-test
and Wilcoxon paired-sample test were performed. A statistical significant difference was
assumed with p < 0.05.

2.2.7. Results

All the patient groups demonstrated clinical positive response to a single dose of Dp extract
[21], the symptoms were progressively decreasing, without need of therapeutic intervention.
There were neither bronchial symptoms nor systemic reactions in any of the provocation tests.

It was observed in most of the patients, even at 60 minutes after challenge, differences in gene
expression for cytokines, chemokines and nuclear transcription factors related to allergen
exposure.

No differences were observed between patients with only nasal complaints compared to those
that had associated clinical asthma.

We did not observe a similar pattern between the two routes of specific allergen challenge and
in the two different periods of time in analysis.

Results of some chemokine gene expression after specific allergen challenge test are presented
in figures 6 to 8.

The cytokine gene response to allergens did not show a homogeneous profile in the subgroups
of patients studied, but it was evident that individually, there were changes in mRNA
expression in many patients, as seen in Figures 9 and 12.

So we can distinguish two different groups of patients: one with very high values (also with
high values of total serum IgE but without correlation with the clinical severity- data not
shown) and the other with low expression of gene levels (Figures 13 and 14). However, this
difference was not found for the cytokine receptor gene, IL-4R, Figure 15.

Figures 16-18 show the results of specific response to allergens in genes related to nuclear
transcription factors on the four subgroups of patients.
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Figure 6. CXCL1 gene expression in the patients submitted to CPT and NPT, before challenge (T0) and at 60 and 240
minutes after challenge (individual response values, average and SD).

 

Figure 7. CXCL2 gene expression in the patients submitted to CPT and NPT, before challenge (T0) and at 60 and 240
minutes after challenge (individual response values, average and SD).
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Figure 8. CXCL5 gene expression in the patients submitted to CPT and NPT, before challenge (T0) and at 60 and 240
minutes after challenge (individual response values, average and SD).

 

 

 

Figure 9. IL-10 gene expression in the patients submitted to CPT and NPT, before challenge (T0) and at 60 and 240
minutes after challenge (individual response values, average and SD).
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β
Figure 10. IL-1β gene expression in the patients submitted to CPT and NPT, before challenge (T0) and at 60 and 240
minutes after challenge (individual response values, average and SD).

 

Figure 11. IL-1R2 gene expression in the patients submitted to CPT and NPT, before challenge (T0) and at 60 and 240
minutes after challenge (individual response values, average and SD).
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c i v aFigure 12. IL-17RA gene expression in the patients submitted to CPT and NPT, before challenge (T0) and at 60 and 240
minutes after challenge (individual response values, average and SD).

Figure 13. IL-4 (low levels) gene expression in the patients submitted to CPT and NPT before challenge (T0) and at 60
and 240 minutes after challenge (individual response values, average and SD).
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Figure 14. IL-4 (lhigh levels) gene expression in the patients submitted to CPT and NPT, before challenge (T0) and at
60 and 240 minutes after challenge (individual response values, average and SD).

 

 

 

Figure 15. IL-4R gene expression in the patients submitted to CPT and NPT before challenge (T0) and at 60 and 240
minutes after challenge (individual response values, average and SD).
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Figure 16. JAK2 gene expression in the patients submitted to CPT and NPT, before challenge (T0) and at 60 and 240
minutes after challenge (individual response values, average and SD).

 

Figure 17. EGR1 gene expression in the patients submitted to CPT and NPT, before challenge (T0) and at 60 and 240
minutes after challenge (individual response values, average and SD).
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Figure 18. JUNB gene expression in the patients submitted to CPT and NPT, before challenge (T0) and at 60 and 240
minutes after challenge (individual response values, average and SD).

Overall, there seems that does not exist a specific profile of genes in response to cytokines,
chemokines and nuclear transcription factors. However, even in first period of time after
challenge (T60), many patients showed marked changes, since the beginning of the allergic
reaction (Figures 19 to 21).

 

                                                         
  

 

 

Figure 19. Global nuclear transcription factor gene responses in the patients submitted to CPT and NPT, according to
the periods of time in study (A: 60 minutes; B: 240 minutes).
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Figure 20. Global cytokine gene responses in the patients submitted to CPT and NPT, according to the periods of time
in study (A: 60 minutes; B: 240 minutes).

 

                                                        Figure 21. Global chemokine gene responses in the patients submitted to CPT and NPT, according to the periods of
time in study (A: 60 minutes; B: 240 minutes).

2.2.8. Discussion

Allergic diseases and particularly respiratory allergy are complex disorders often present in
the same family or closely related subjects. Genetic factors undoubtedly contribute to disease
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susceptibility but the expression of the disease can be modulated by environmental exposures
and the interactions between the two. In this context it is emphasized the role of infection,
allergens, pollutants, oxidative stress and cytokine dysregulation [50]. In the case of allergy
and asthma in particular because they constitute a complex and multifactorial disease, each of
the individual factors by itself can determine distinct phenotypes that result in the polarization
of distinct cellular pathways, resulting into the final clinical expression.

The last decade has been marked by the publication of a lot of genome-wide association studies
(GWAS) in asthma or allergy phenotypes. GWAS have reported novel and interesting genes
but have also confirmed the role of some functionally relevant genes previously described.
However, heritability of allergic diseases has not been elucidated completely so far [1].

Considering that respiratory allergy, like epigenetic mechanisms, is heritable, nevertheless
exists a strongly familial condition (36% to 79% heritability) with a non-Mendelian pattern of
inheritance and polymorphisms in more than 100 genes, but these associations have infre‐
quently been replicated, scientifically supported, and so the genetic has explained only a small
portion of the cause of this disease [80, 81].

In the selection of the sample of our patients we were intended to be homogenous, in particular
to the type of allergen sensitivity, ethnicity and area of residence and similarly of environ‐
mental surrounding.

Although we found some more frequent haplotypes in allergic patients we could not identify
significant differences compared to healthy subjects. However, the second most frequent
haplotype was A*02 B*51 DRB1*11, corresponding to the fifth most frequent in control group.

Ours results are according to others studies, namely in Greek allergic children, that also failed
to demonstrate a positive correlation between HLA haplotypes and allergy to Dermatopha‐
goides species [53]. So, as previously reported by a European study, it seems reasonable to
assume that specific sensitization is influenced by genetic variants leading to its initiation, as
well as to its enhancement [32].

HLA super-locus is a genomic region in the chromosomal position 6p21 [31]. It is highly
promising for future research particularly since it carries on the correlation of HLA-DRB1 in
allergic asthma, HLA-DQB1 in occupational asthma and HLA-DPB1 in aspirin-sensitive
asthma. However, it is difficult to study the role of class II genes in vivo because of the
tremendous heterogeneity of human population, the strong linkage disequilibrium among
different class II genes, and also the highly complexity of MHC.

An interesting issue in this subject is the “epistasis”, representing the action between 2-loci, in
opposite side to Mendel´s classical law of heredity. Epistasis designation applies when two or
more loci interact to create a new phenotype, and when an allele at one locus masks or modifies
the effects of alleles at one or more other loci. The phenotypic effect of a specific gene mutation
entirely depends on the overall genetic background affected by many other gene mutations.
Furthermore, the combined effects of more than 2 loci on phenotypes are not simply additive,
but are either synergistic or antagonistic [81].
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A wide range of studies has demonstrated the enormous variability of clinical phenotypes in
allergic disease and respiratory allergy, representing the tremendous variability and gene
diversity.

An interesting study, focused on single nucleotide polymorphisms (SNPs) from 17q21 locus,
demonstrated scattering different frequencies of SNPs between distinct ethnic populations
[36]. Therefore, comparisons of results between different populations are often hazardous as
explained earlier.

Regarding the results of SNPs in our patients with respiratory allergy we stress relevant
differences concerning IL-4, TNF-α and TGF-β genes.

TNF-α and IL-4 are relevant cytokines interested in the allergic reaction and also promotes the
development of Th2 cell response to aeroallergens [7]. In the population that we studied we
found strong increment of TNFα-238GG and IL4-1098TT phenotypes compared to healthy
individuals. Conversely a decrease in phenotypic expression was found to TNFα-238AG and
IL4-1098GG.

TGF-β is a master regulator of the immune response and exerts important anti-inflammatory
functions [68] and is deeply involved in allergy. In our allergic patients TGFβ+869CT pheno‐
type had a clearly increased frequency, and the genotype TGFβ+869TT was completely absent
compared to healthy population.

So far, as our knowledge, this phenotype was not previously involved in allergy or asthma. A
study in cystic fibrosis demonstrated that higher plasma levels of TGFβ1 were observed in
patients carrying the TGFβ1 +869TT genotype, intermediate levels for +869CT genotype and
low levels to +869CC genotype. Together with these results it was also observed that the
+869CC genotype had a more severe phenotype, and the +869TT genotype had the higher rate
of decline of lung function, compared to +869CT genotype [17].

The IgE-mediated allergic reaction dictates a premature systemic effect, which will develop
simultaneously to immuno-inflammatory mechanisms at the local of allergen exposure. In
previous  studies  we have demonstrated that  in  parallel  to  the  immediate  response that
results from an IgE-dependent allergenic mechanism, the cellular response occurs early in
the process, and the involvement of the central immune organs is crucial since the beginning
of the reaction [54, 55].

In this study we provide evidence that mRNA gene expression take place earlier on peripheral
T cells after allergen exposure, at least 60 minutes later. This fact occurs independently of the
technique of allergen provocation, in spite of the differences on the mechanisms and cell traffic
ways involved, because they are distinct mucosae. Obviously, this modification in the
production of mRNA does not imply that all of it will be completed in an efficient manner,
particularly since there are strictly necessary requirements in cell regulation and biological
skill conditions that allows the synthesis of the protein or its biological mediator.

Naturally, this modification in the production of mRNA does not imply that all of it will be
completed in an efficient manner, particularly since in cell regulation there are specific
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requirements and biological conditions allowing the synthesis of the corresponding protein or
its biological mediator.

In this context, it is very important to analyse the individual results in the different subgroups,
since the high individual variation does not allow an unequivocal evaluation of the average
values of the sample. For this study we did not considered to be relevant the existence of a
separate control group of allergic patients, since the time point T0 would be a better internal
control [54]. It was also evident that the individual response of each patient is highly variable,
most likely depending on the genetic endowment of each patient, although the clinical pattern
and the allergic sensitization (Dp) was the same.

During the inflammatory mechanism a set of different cytokine and chemokine molecules are
able to promote not only the appropriate regulation of leukocytes and other cells recruitment
but also the efficient network that permitting an accurate intracellular signaling control [73].

The existence of 23 chemokine receptors and 48 chemokine ligands guarantees a tight control
and fine-tuning of the immune system [83]. Conceptually, it is considered that these biological
mediators require long periods of cell maturation and synthesis, as described in several papers
using culture cells [25; 29].

However, our results support the involvement of genic cytokines and chemokines are earlier
events, indeed consistent with the early cell trafficking between places of allergenic aggression
and those dependent on the central and secondary immune system, as noted in previous work

However, our results support that the involvement of genic cytokines and chemokines are
earlier events, indeed consistent with the quickly cell trafficking between the local site of
allergenic aggression and those sites dependents on the central and secondary immune system,
as noted in previous research from our group [55].

More than a common standard for the same respiratory allergic disease and for the same the
most important allergic sensitization is the observation of the individual profile of each patient.
Indeed, IgE-mediated allergy in spite of a pathogenic mechanism conductor has at clinical
level, is extremely heterogeneous. The results shown in Figures 18 to 20 also showed a
tremendous heterogeneity in gene expression after allergen provocation, between our patients.

The gene expression levels of IL-4 results are extremely interesting, because unquestionably
two distinct profiles are observed (high and low levels), but without correspondence with those
achieved for IL-4R. Also, the level of gene expression of IL-4 was correlated with total serum
IgE levels, but without correlation with the clinical severity profile, as supported by clinical
practice [18].

Unlike other diseases, allergy and asthma appear to be arguably multifactorial and multigenic
disorders, and therefore it has not been possible identify till now one or a set of specific genes
that may be genetic markers [57, 81], although recent paper identifies the involvement of
GSTO2 loci in asthma, and GSTA1 as risk factor for asthma and allergies in Italian patients [56],
while Genome-wide association studies (GWAS) represent the most powerful approach for
asthma, have identified several distinct others genotypes from IL-18R1, IL-33, SMAD3,
ORMDL3, HLA-DQ and IL-2RB loci [31].

Genetic Aspects of Respiratory Allergy
http://dx.doi.org/10.5772/59097

23



As mentioned before, allergy and asthma are chronic inflammatory and polygenic disorders,
and so any isolated specific gene could claim be an asthma gene. Therefore, recently in order
to best understanding the intricate heterogeneity of this disease the designation of phenotype
and endotype have been used to stress the complexity of the mechanisms and clinical patterns
[10, 31].

In the pathogenesis of chronic inflammatory diseases such as asthma several transcription
(signal transducer and activator) factors are known to play a crucial role, acting as agonists or
antagonists [79]. A transcription factor is formed by a sequence-specific DNA-binding factor.
It is a protein that specific binds to specific DNA sequences, so it is able to controlling the rate
of transcription of genetic information from DNA to messenger RNA.

These factors perform this purpose alone or with other proteins in a complex, by promoting
(activator), or blocking (repressor) the recruitment of RNA polymerase. These enzymes permit
the efficient genetic transcription from DNA to RNA to a specific gene.

A defining feature of transcription factors is that they contain one or more DNA-binding
domains, which linked to specific sequences of DNA adjacent to the genes that they regulate.

For an efficient transcription are needed additional proteins (not classified as transcription
factors) such as coactivators, chromatin remodelers, histone acetylases, deacetylases, kinases,
and methylases, having crucial roles in gene regulation, but lack DNA-binding domains.

So these factors are very important and therefore we also studied three of them.

EGR1, also knew as early growth response protein 1, have engaged in multi functions such as
transcriptional regulator, mitogenesis, cell proliferation and differentiation regulation,
apoptosis and tumor suppressor gene [28]. Previous report had highlighted the potential
stimulatory and inhibitory effects on EGR1 by STAT6 (Th2 differentiation enhancer) and
STAT1 (Th1 differentiation enhancer), respectively.

Overall our patients, we have observed at 60 minutes later the allergen exposure an increase
of expression of EGR1, favoring the allergic reaction, but at 240 minutes after provocation levels
had decreased, possibly due to mechanisms of self-control of allergic reaction.

In opposite, the JUNB expression decreased at least after 60 minutes of the beginning of the
allergic reaction, and going increasing later at 240 minutes. This factor is mainly a Th2 cell
related transcription factor (Il-4), but also have role favoring other cytokines: IL-1, IL-2, and
IL-10 [79]. So, we hypothesize that the earlier involvement could favouring the beginning of
the allergic reaction, but also could be later a down-regulator factor.

JAK2 belongs to a tyrosine kinase family, and its activation engages the transcription factor
STAT3 to initiate JAK-STAT pathway [82]. It signalizes the interferon receptors, and GM-CSF
receptor family (IL3R, IL5R, GM-CSF-R). In our patients we did not observed. In our patients,
we did not observe relevant performance for this transcription factor.

Allergic diseases are complex and multifaceted, and asthma in particular was widely recog‐
nized as condition in which both genes and the environment play critical roles.

Allergic Diseases - New Insights24



Currently, GWAS try to identifying a number of candidate genes evocative of biological
relevance, but have failed to report for more than a reduced amount of phenotypic variance –
a situation that has come to be known as the problem of the missing or hidden heritability [13,
76].

In our patients we could verify that the allergen challenge determines a very early cellular
response with gene and protein expression.

At present, the environmental influence with direct effects on epigenetic plan offers an
explanation for this extreme individual variability, one clinical disease but different pheno‐
types and endotypes, not yet fully characterized.

So, in spite of the same genetic heritage, each individual and each patient, with an equal
number of chromosomes and genes, have a specificity and uniqueness: all equals but all
different from one to each other.

In Figure 22 we present the results of 4 allergic patients with asthma and rhinitis.

 

                        

 

 

 

Figure 22. Overall results of 4 patients with allergic asthma and rhinitis

Gene expression of cytokines and chemokines seem to have a strictly correlation with the
results obtained in the study of nuclear transcription factors, ERG1 and JUNB, as discussed
before.
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The susceptibility to elicit an allergic response or in opposite side its own inhibition is under
liability of a time-dependent dynamic response since the allergen exposure. It might be more
appropriate to view genes as a frame surrounding a complex network of biological processes.
The frame delimits and supports the network, but the connections within the network
determine its functions.

Besides the identification of novel pathological mechanisms and therapeutics, the wealth of
information leads to the vision of genes forecasting asthma risk and phenotypes, with genetic
scores and eventual personalized medicine with more effective treatments. Gene-environment
interactions might difficult the achievement of such knowledge. Thus, even after the completed
sequence of the human genome, the scientific community maintains expectations that genetics
may be a decisive tool in the allergic risk prediction and personalized tailor-made treatments.
At present asthma epigenetics is still in its infancy and a promise to keep [13].
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