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Chapter 13

Ecohidrology and Nutrient Fluxes in Forest Ecosystems

of Southern Chile
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Additional information is available at the end of the chapter

1. Introduction

Nitrogen (N) cycling in terrestrial ecosystems is a global environmental concern. The N cycle

is a complex interplay where biotic and abiotic processes interact to transform and transfer N

in an ecosystem. In general, one can simplify by classifying terrestrial N cycles all over the

world in two groups: ‘tight’ N cycles and ‘open’ N cycles. The ‘tight’ N cycle is characterized

by its high efficiency in producing bioavailable N and retaining it in the plant-soil system. The

‘open’ N cycle, on the other hand, is then considered to be less efficient, showing significant

loss of N towards aquatic ecosystems and the atmosphere. The latter losses might lead to

adverse effects on stream water and air quality, contributing as such to ‘global change’ [1].

The movement of nutrients between ecosystems is called geochemical cycling or external

cycling. Two important input processes to forests are atmospheric deposition and mineral

weathering [2]. The atmospheric input to forests consists of dry, and wet deposition. Aerosol

and gases can by deposited directly from the air to plant and soil surfaces during rainless

periods by dry deposition. Wet deposition is defined as the input of atmospheric compounds

to the earth´s surface by rain, hail, snow and/or occult deposition that occurs via fogs and

clouds, which can be important in mountainous regions [3]. During rain events, dry deposition

is washed off from plant parts and, together with wet deposition, reaches the forest floor as

throughfall and stem flow. A second input process is the weathering of soil minerals as a result

of chemical dissolution. In combination with atmospheric deposition, mineral weathering is

the only long-term source of base cations for terrestrial ecosystems [2].

The temperate climate region of southern Chile still reflects undisturbed, pre-industrial

environmental conditions [4]. This is in strong contrast with land use, which has been altered

significantly over the last decades and centuries. Only fragments of the original forest

vegetation remain unaltered, and are located in the Coastal and Andes mountain ranges (CMR



and AMR, respectively). Exotic tree plantations and agricultural areas dominate the central

valley of southern Chile [5]. These characteristics make this region an ideal study area to

investigate human impacts on biogeochemical nutrient cycling. Temperate forests in Chile are

not yet affected by elevated N deposition, as is the case for forests in Europe or northeastern

North America [6]. However, anthropogenic activities such as transport, industry and

agriculture have been increasing in central and southern Chile. These activities can substan‐
tially alter the atmospheric N load and enhance N input on forest ecosystems in Chile [5].

Several biogeochemical studies have been carried out most in humid temperate forest

ecosystems between 40° and 43° S in southern Chile [i.e. 7; 8; 9]. The annual mean temperature

is 5 to 12° C and precipitation ranges from 2000 to 7000 mm in the AMR [3]. Data from [5]

reported that mean annual N composition of the rainwater in the CMR and AMR ranges

(41°-43° S), varied between < 30 – 43 NO3
--N µg L-1 and 9.8 – 26.2 NO3

--N µg L-1. Similarly,

NH4
+-N concentrations were < 50 NH4

+-N µg L-1 and between 39.5 – 45.4 NH4
+-N µg L-1 for

CMR and AMR, respectively. Forests in the CMR, are located immediately near the ocean and

are unique in this sense that external input of major elements are almost exclusively due to

marine aerosols. Since trees canopy act as efficient filters, forests can capture large amounts of

atmospheric deposition, especially occult deposition (i.e: fog and cloud). Normally, mountain

forest ecosystems are very efficient in trapping nutrients, especially N and cations from clouds

and fogs [10; 11; 4].

Stream nutrient loads are heavily dependent on catchment vegetation. Alteration of canopies

and the soil under it, have a significant impact on nitrogen (NO3
--N; NH4

+-N; DON and TDN)

and phosphorus (PO4
3+-P and TDP) reaching the stream. Human disturbances have a direct

impact on biological communities and may lead to land degradation, causing a change in

ecosystem services and livelihood support. Temperate rain forest ecosystems of southern Chile

have efficient mechanisms of retention for essential nutrients, especially NH4
+and NO3

-[7, 3).

[6] described that the dominant form of N leaching was dissolved organic nitrogen (DON) for

unpolluted forests of southern Chile. Other studies in the area had reported that conversion

from native forests to exotic fast-growing plantations is likely to decrease N retention on

catchments [12].

1.1. Native temperate rainforests of southern Chile

Native temperate rainforests of southern Chile represent an important global reserve of

temperate forest with an extraordinary genetic, phytogeographic and ecological significance

[13] with a worldwide high conservation priority [14]. These forests cover an area of 13.5

million ha. and are isolated by physical and climatic barriers, resulting in high endemism in

plants and animals: 28 of 82 genera of woody plants (34%) are endemic to the region, along

with 50% of vines, 53% of hemiparasites and 45% of vertebrates [15]. Some taxa are derived

from ancient elements in southern Gondwana. Some relict tree species of conifers have the

longest recorded lifespan, reaching an age of up to 3,600 years, constituting an excellent

historical document for studies in reconstruction of climatic variability [16]. Most of the

Valdivian eco-region is also considered as part of the world’s 25 hotspots for biodiversity

conservation and some of its forest types are included among the last frontier forests in the
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planet. These forests support fundamental ecological functions, which provide a range of

ecosystem services and goods such as conservation of biological diversity, maintenance of soil

fertility, and timber and non-timber products [17]. Also they contribute to maintain fresh water

supply, which in turn supports the availability of drinkable water for cities [18].

Native forests in the Valdivian eco-region (36° S through 48° S) have suffered anthropical

disturbances due to inadequate logging practices, and to agricultural land or exotic fast

growing plantations conversion. Rapid conversion to forest plantations between 1975 and 2000

resulted in deforestation rates of 4.5% per year within an area of 578,000 ha in the Maule region

(38° S), facilitated through afforestation incentives [19]. Another important cause of defores‐
tation has been human-set fires, with an annual average of 13,000 ha burned in the period 1995–

2005 and a high interannual variability associated to rainfall variation [20]. Anthropogenic

land cover change in the central depression of southern Chile (40°-42° S) is the most evident

process of deforestation and agricultural expansion. A large fraction of the Nothofagus forests

in that region has been cleared for agriculture during the last century [21]. Patches of second-

growth forest cover vast areas of the regional landscape, leaving only scattered stands as a

result from intensified agriculture activity. Direct effects of past land use may occur via long-

term (> 50 yr) physical alteration of the rhizosphere caused by historic practices. Soil compac‐
tion is an enduring consequence of cultivation, grazing, and logging that can cause increased

bulk density and reduced pore space [1]. These changes may affect the abundance of aerobic

and anaerobic microorganisms and subsequently reduce the cycling of several elements,

including N.

1.2. Eucalyptus plantation forests

In south-central Chile (35-40° S), the native vegetation has been converted to agricultural uses,

primarily plantation forestry, which has resulted in a landscape dominated by industrial

forestry plantations. The amount of land in the region classified as plantation forestry has

increased by 55 % between 1998 and 2008 (116–179 thousands ha; [22]. As in other parts of

Chile, over 20,000 ha of those new plantations have replaced native forests in the region [19,

23], mainly located in the CMR. The growth of exotic species in non-native environments has

uncertain ecohydrological consequences [24]. Therefore, there is much concern about their

water consumption. Several authors have concluded that the consequences of exotic fast

growing plantations are: (i) the decrease of discharge due to higher evapotranspiration [25,

26]; and (ii) changes in the soil hydrological properties, such as infiltration rates [27] and soil

hydrophobicity [28].

2. Objectives

In small headwater catchments located at the Costal mountain range (CMR), in southern Chile

(40° S), concentrations and fluxes of NO3
--N, NH4

+-N, DON, TDN, TDP and base cations (Ca2+,

Mg2+, Na+and K+) in bulk precipitation, throughfall and catchment discharge water were

measured. The main objective of this study was to compare how hydrological variability affects
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catchment nutrient load responses with different land cover of native forests and exotic

plantation of Eucalyptus spp., in order to evaluate possible effects of land use

3. Material and methods

3.1. Description of the study sites

We selected five catchments with different land cover: (a) one with old-growth native ever‐
green rainforest (ONE), (b) one with native deciduous Nothofagus obliqua forest (ND), (c) one

with secondary native evergreen forest (NE), (d) one covered with exotic fast growing

Eucalyptus nitens (FEP) and (e) one with fast-growing exotic cover of Eucalyptus globulus (EG),

located at CMR (40°S), near the city of Valdivia, Chile. All five catchments are located inland

from the Pacific coast. The ONE catchment has an area of 2.8 ha at 336 m a.s.l. and is 20 km

from the coast. The ND catchment has an area of 10.1 ha at 71-125 m a.s.l., and is 23.0 km from

the coast. The NE catchment has an area of 3.1 ha at 227-275 m a.s.l. and is 2.0 km from the

coast. The FEP catchment has an area of 54.8 ha and is 18 km from the coast, and the EG

catchment has an area of 5.6 ha at 250-297 m a.s.l., and is 2.6 km from the coast.

3.2. Forest cover

In the catchment covered by old-growth native evergreen rainforest (ONE) the main canopy

species are Eucryphia cordifolia Cav., Aextoxicon punctatum Ruiz et Pav. and Laureliopsis

philippiana (Looser) Schodde. This last shows the highest density (718 tree ha-1) and basal area

(37.2 m2 ha-1) (Figure 1). The understorey is dominated by Amormyrtus luma, Amomyrtus meli,

Drimys winteri and Myrceugenia planipes. The attributes of the old-growth native rainforests in

the study area includes: increase in the proportion of successional species, the promotion of

better growth rates to reach large diameters, the development of a rich understory and new

regeneration cohorts, the increase of vertical structure, the development of increased wildlife

habitat, and the presence of dead wood in the system (snags, and coarse woody debris) [29].

The main canopy species in the mixed ND catchment is the deciduous species Nothofagus

obliqua (Mirb.) Oerst. reaching heights of 35 m, which covers 63.3 % of the catchment. Also,

13.8 and 7.9 percent is covered by native secondary forests of Gevuina avellana and Astrocedrus

chilensis planted in 1983 and 1982, respectively, and 15.0 percent is covered by the fast-growing

Eucalyptus sp. plantation. Understorey trees include Luma apiculata, Podocarpus salignus,

Aextoxicon punctatum, Amomyrtus meli, Gevuina avellana and the exotic tree Acacia melanoxylon.

Shrubs that reach heights over 3 m are mainly Chusquea quila Kunth with a 95% canopy cover.

In the NE catchment, the vegetation cover is characterized as a second growth native evergreen

forest, dominated by Myrtaceae spp., Amomyrus luma (Mol.) Legr. et. Kaus (29%), Amomyrtus

meli (Phil.) Legr. et. Kaus (25%), Laureliopsis phillipiana (Mol.) Mol. (14%), Myrceugenia pla‐
nipes (Hook. et Arn.) Berg. (13%), Dyasaphillum diacanthoides (Less.) Cabrera (7%), Gevuina

avellana (Molina) Molina (6%), Lomatia ferrugina (Cav.) R. Br., Persea lingue (Ruiz et Pav.) Nees

ex Koop. and Myrceugenia exucca (DC.) Berg. (2% each) and Aextoxicon punctatum (1%). This
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catchment is also used as a source of wood by local residents and as an occasional grazing

ground for animals during the winter.

The FEP catchment is covered with Eucalyptus nitens of 4 and 14 yr-old. However, this catch‐
ment has had already 5 E. nitens rotations; density of 2911 tree ha-1 and the basal area is 131.9

m2 ha-1. In FEP, the highest density was observed in the diameter 20-25 and 25-30 cm (Figure 2).

The total density ranges between 2911-2733 tree ha-1 in the sites. Basal area ranges between 131.9

and 144.4 m2 ha-1, and the mean height of the trees was 25.4 m. The riparian vegetation of the

catchment with Eucalyptus nitens plantation has a large proportion of small trees and shrubs

with a diameter distribution between 5-10 cm (Figure 3). The main tree species is Luma apiculata

with 2180 tree ha-1 and the shrub Aristotelia chilensis with 815 tree ha-1 (Figure 3).

In EG catchment, the vegetation cover is composed of 80% exotic plantation of Eucalyptus

globulus and 20% native evergreen remnant as a buffer zone. This is composed of Berberis

darwini (Hooker) and Ovidia pillopillo (Gray) Hohen ex Meissn. (both with 29% cover), Eucriphya

cordifolia Cav. (25.8%), Lomatia ferruguinea (Cav.) R. Br. (9.7%), Dasyphyllum diacanthoides (Less.)

Cabrera and Raphitamnus spinosus (Juss.) Mold. (both with 3.2%). Originally this catchment

was a native evergreen forest. However it was cleared (35 years ago) with fire to open areas

for grazing animals, and in some areas, for the extraction of wood. Recently (9 years ago) the

grassland was replaced by exotic trees (Eucalyptus globulus). Local residents use the forest as

a source of wood and also allow animals to graze on the grass as well as on tree shoots.
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EC=Eucryphia cordifolia, GA=Gevuina avellana, LP=Laureliopsis philippiana, OE=other species) in the catchment with na‐
tive old-growth evergreen rainforests.
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3.3. Soils and climate

Climate in the area of study, is rainy temperate. In the meteorological station Isla Teja (25 m

a.s.l.), 10 to 20 km from the study sites, the mean annual temperature is 12.0 °C (January mean
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is 17 °C and July mean is 7.6 °C) and the mean annual precipitation is 2,280 mm. Rainfall is

concentrated during winter (May–August, 62 %) and decreases strongly in the summer

(January–March, 9 %). Soils in the study area are red clayish derivatives from ancient volcanic

ashes, deposited over a metamorphic geological substratum, dominated by micaceous schist

and quartz lenses. The soils are shallow (< 1.0 m depth) in EG and NE catchments, and

predominantly deep (> 1.0 m) in ND catchment. Soils in the EG catchment are characterized

by poor infiltration rates, and in the NE and ND catchments by high infiltration rates [27].

Soils at ONE and FEP catchments have approximately the same texture in the bottom of the 1

meter depth soil profile, however the top layers (0 to 15; and 15 to 30) have consistently 10%

more clay, and 1% less sand in FEP compared to ONE soil profiles. In the FEP catchment, clay

content ranges between 37.2 – 45.1 %, organic matter content ranges between 1.8 – 17.1%,

inorganic-N (NO3
--N and NH4

+-N) ranges between 9.8 – 21.0 mg kg-1, Ca2+between 0.19 – 0.23

cmol kg-1 and Mg2+ranges between 0.09 – 0.16 cmol kg-1. While, ONE soil clay content ranges

between 31.1 – 37.3 % and organic matter content ranges between 5.9 – 17.8 %, inorganic-N

ranges between 11.2 – 57.4 mg kg-1, Ca2+ranges between 0.23 – 1.32 cmol kg-1 and Mg2+ranges

between 0.10 – 0.71 cmol kg-1.

4. Methods

Bulk precipitation was sampled using four plastic rain collectors attached to a 2.5-liter bottle.

Bulk precipitation collectors (surface area 200 cm2,) were installed in open areas (no trees were

within 20 m of the sampling point), located between a distance of 100 – 500 m. Throughfall

water was collected, using 2-4 collectors (surface area 254 cm2) were installed inside each type

forest. All collectors were installed 1.2 m above the forest floor and installed inside opaque

tubes in order to avoid light penetration that could promote algae growth. Throughfall

collectors had a thin mesh at the beginning of the neck of the funnel, in order to prevent insects

and leaves entering the collection bottles, and designed with a plastic ring in order to exclude

bird droppings [30]. Soil water was sampled at two different depths (0.3, 0.6 m) with low-

tension porous-cup lysimeters (max 60 kPa of tension was applied) (Soil Moisture equipment

corp.).

Discharge from each catchment was constantly measured by a pressure transducer paired with

a baro diver (Schlumberger Water Services). Water samples were taken directly from the

streams with an ISCO-6712 automatic sampler in each catchment. Stream samples were

composed by two 250 mL aliquots taken each 30 minutes (1 h compound sample per bottle).

Samples were filtered through a borosilicate glass filter (Whatman) of 0.45 µm. NO3
--N (NO3

--

N+NO2
--N) was determined by the cadmium reduction method, where NO2

--N was always

below detection limits. NH4
+-N was determined with the phenate method (blue indophenol),

detection limit (DL) was < 2 µg L-1, for nitrite, nitrate and ammonia. Dissolved Inorganic

Nitrogen (DIN) was calculated as follows: DIN=NO3
--N+NO2

--N+NH4
+-N. Total dissolved

nitrogen (TDN) was determined by the sodium hydroxide and persulfate digestion method

(DL < 15 µg L-1). Organic nitrogen (DON) was calculated by subtracting (DON=TDN-DIN)
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concentration from TDN. Total dissolved phosphorous (TDP) was measured by the sodium

hydroxide and persulfate digestion method (DL < 3 µg L-1) at LIMNOLAB (Limnology

Laboratory, Universidad Austral de Chile). Ca2+and Mg2+(± 0.05 mg L-1) were analyzed by AAS,

while Na+and K+(± 0.05 mg L-1) by AES in the Forestry Nutrition and Soil Laboratory, Univer‐
sidad Austral de Chile.

Canopy enrichment factors were calculated as the ratio between throughfall and bulk precip‐
itation from different forest covers (throughfall / bulk precipitation). Fluxes were calculated

using discharge and rainfall volumes. While nutrient retention (R) was calculated as follows:

( )
®

Retention = Input – Output  / Input

Where,  R > 0, + Retention

R = 0, Equilibrium

R < 0, - Retention

5. Results and discussion

5.1. Throughfall enrichment factors

Canopy enrichment factors are presented in Figure 4. ND and ONE forests showed the highest

enrichment and variability, whereas the EG plantation showed the lowest. The nutrient which

presented the lowest annual enrichment in all throughfall samples was NO3
--N ranging from-0.8

for EG, through 1.5 for FEP. The highest enrichment was DON (10.3 times) for ONE and TDP

(10.7 times) for ND forests. This enrichment is due to two processes: the washing off of the

unquantified N input by dry deposition, on the one hand, and the N uptake from wet, dry

particulate and gaseous deposition by leaves, twigs, stem surfaces, and lichens, on the other

hand [31]. The old-growth evergreen forests (like ONE catchment) are multi-stratified and have

an understory of high diversity, resulting in a complex and diverse structure and species

composition. Also, [32] reported that DIN and DON concentrations were higher in through‐
fall than in bulk precipitation, particularly for nitrate, in a native Nothofagus obliqua forest and

a Pinus radiata plantation, located near of the study sites. [8] observed 3.7 times throughfall

enrichment for NO3
--N, in an evergreen Nothofagus betuloides forest (9.8 µg L-1 and 36.5 µg L-1

for bulk precipitation and throughfall, respectively) and a 1.7 throughfall enrichment under a

deciduous Nothofagus pumilio forest (26.2 µg L-1 and 43.5 µg L-1 for bulk precipitation and

throughfall, respectively) at cordillera de los Andes (40° S, 1120 m a.s.l.). However, NH4
+-N was

retained by canopies. Data from forested sites in the USA and Europe [33] showed that net

canopy exchange of N (throughfall plus stemflow minus bulk precipitation) was negative for

NH4+and NO3-at all sites, indicating that canopies were clearly sinks for inorganic N.

5.2. Annual nutrient fluxes

TDN annual retention and net annual fluxes (in kg N ha-1 yr-1) was 0.58 (1.43); 0.90 (9.31)

and-4.79 (-7.14) for NE, ND and EG forests, respectively. TDP annual retention and net annual
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fluxes (in kg P ha-1 yr-1) were 0.70 (0.08); 0.96 (0.06) and-1.44 (0.4) for NE, ND and EG, respec‐
tively (Figure 4). Studies in watersheds in the United States [34] reported that thin or porous

soils and high infiltration rates have less capacity to retain N. However, in our study, catch‐
ments with high infiltration rates, such as NE and ND showed greater N retention than soils

with very low infiltration rates, such as EG. In our study, the differences in DIN retention were

evident between native forests and Eucalyptus plantation, as also has been described previously

by [12]. However, [35] observed using land cover, watershed area and precipitation as

predictors for water quality (nitrate, ammonia, DON, TDP and electric conductivity) for local

models explained 79.5% of the variance.
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Figure 4. Throughfall enrichment factors for the five catchments (left) and annual nutrient fluxes for three catchments

(right). EG=Eucalyptus globulus plantation, NE=native secondary evergreen ND=native deciduous, ONE=native old-

growth evergreen, FEP=Eucalyptus nitens plantation.

5.3. Nutrient concentration in stream water

Nitrogen and phosphorous concentrations in stream water are variable in forest ecosystems

of southern Chile (see Table 1). In general, the highest values of TDN and TDP concentrations

are in Fitzroya cuppressoides forest (176.5 µg N L-1) located in Coastal mountain range and in

Nothofagus pumilio forest (67.3 µg P L-1) located in Andean mountain range. The lowest values

were found in an evergreen forest (36.8 µg N L-1), located in Coastal mountain range and in

Fitzroya cuppresoides forest (4.6 µg P L-1), and located in the Coastal mountain range. Concen‐
trations of inorganic N were smaller in the evergreen forest (33.2 µg L-1) and in E. nitens

plantation (33.6 µg L-1) compared to organic N (94.4 and 67.0 µg L-1, respectively), in agreement

with previous research in southern Chile [6; 3] demonstrating that dissolved organic nitrogen

is responsible for the majority of nitrogen losses from unpolluted forest ecosystems.

Ecohidrology and Nutrient Fluxes in Forest Ecosystems of Southern Chile 9

http://dx.doi.org/ 10.5772/59016

343



Type of forest Forest description Location TDN TDP References

Native deciduous Nothofagus pumilio AMR nd 67.3 [8]

Native deciduous Nothofagus betuloides AMR nd 9.2 [8]

Native deciduous Nothofagus betuloides AMR 62 nd [3]

Native deciduous N.nervosa-N. obliqua AMR 73.3 44 Unpublished

Native evergreen Evergreen forest AMR 157 18 Unpublished

Native evergreen Evergreen forest AMR 67.3 37.4 Unpublished

Native evergreen
S. conspicua - L.

philippiana
AMR 109 4.9 Unpublished

Native conifer Fitzroya cuppressoides CMR 177 4.6 [9]

Native evergreen Evergreen forest CMR 36.8 24.1 [12]

Native evergreen Evergreen forest CMR 127 11.1 Unpublished

Native deciduous Nothofagus dombeyi CMR 153 nd [32]

Exotic monoculture Eucalyptus spp. CMR 94.8 30.1 [12]

Exotic monoculture Eucalyptus nitens CMR 100 11 Unpublished

AMR average 85.6 30.1

CMR average 115 16.2

Table 1. Mean concentrations (µg L-1) of TDN and TDP in stream water for different forest ecosystems under a low-

deposition climate, southern Chile. At the end of the table 1, is the average for each location: Andean mountain range

(AMR) and Coastal mountain range (CMR).

5.4. Relationships between discharge and nutrient concentrations

Nutrient exportation is related to hydrology, since water transports chemical compounds and

particles. The relations of TDN and TDP with catchment discharge were positive for all

nutrients except DIN, which showed a negative relation with discharge, during wet season

(Figure 5). This negative relation is due to the dilution of nitrate with rainfall water which has

higher concentrations of NH4
+-N.

For dry season, the fitted models showed relatively high adjusted r2 values for the E. nitens

covered catchment for TDN and TDP (0,952 and 0,826, respectively; both with p < 0.05).

However, the old growth covered catchment showed much lower values for TDN and TDP

(0.317 and 0.519, respectively). Nevertheless, only TDP was significant. Dry season event DIN

exportation was best fitted with a linear model. However, the fit was poor and not significant

for both catchments. During wet season, the adjusted r2 values were higher for E. nitens

covered catchment than the old growth covered catchments (Table 2). On figure 5, is clearly

seen that during dry season TDN, TDP and DIN increase rapidly as discharge increases in E.
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nitens covered catchment (FEP). However this is not observed for the old growth covered

catchment (ONE). However, during wet season TDP shows greater increase in concentrations

in ONE, rather than FEP. TDN and DIN shows the same behaviour in both catchments.
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Figure 5. Total dissolved nitrogen (TDN), Total dissolved phosphorus (TDP) and Dissolved inorganic nitrogen (DIN)

concentrations during one dry and wet season events (for the period March – November 2013), for the catchments cov‐
ered with old growth native evergreen (ONE, in dark red circles) and catchment covered with Eucalyptus nitens (FEP,

inverted orange triangles).
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Dry season event Wet season event

Catchment TDN TDP DIN TDN TDP DIN

ONE 0,317 (L) 0,519 (3EG) 0,170 (L) 0,331 (L) 0,331 (L) 0,05 (L)

FEP 0,952 (1EG) 0,826 (2EG) 0,04 (L) 0,728 (L) 0,765 (2EG) 0,388 (L)

Table 2. Adjusted r2 values after fitting linear (L, f=y0+a x); single parameter exponential growth (1EG, f=e(a x)); 2

parameter exponential growth (2EG, f=a e(b x)) and 3 parameter exponential growth (3EG, f=y0+a e(b*x)) models.

Dry season event Wet season event

Catchment Ca2+ Mg2+ Ca2+ Mg2+

ONE nd nd 0,554 (L) 0,184 (L)

FEP nd nd 0,026 (L) 0,857 (ED)

Table 3. Ca2+and Mg2+vs. discharge during events for each catchment. Adjusted r2 values after fitting linear (L, f=y0+a

x) and exponential decay (ED, f=a e(-b x)) models.
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Figure 6. Ca2+and Mg2+concentrations vs discharge for the wet season event. Dark red dots and continuous line stands

for old growth evergreen covered catchment (ONE), while inverted orange triangles and segmented line stand for Eu‐
calyptus nitens covered catchment (FEP).

Typically, products of mineral weathering (e.g. Ca2+and Mg2+) decline in concentration when

the discharge increases caused by rainfall (stream water dilutes). This was observed during

wet season event, and only in FEP, for both cations. ONE showed an increase in concentration

for Ca2+and a slightly reduced concentration for Mg2+.

We observed negative correlations between stream discharge and base cations concentrations

(Figure 6). Typically, products of mineral weathering (e.g. Ca2+and Mg2+) decline in concen‐
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tration when the discharge increases caused by rainfall (stream water dilutes). [36] reported

inverse relationship between stream discharge and concentrations of Ca2+and Mg2+. However,

[37] reported that during storms, both positive and negative relationships were observed

between stream discharge and Ca2+and Mg2+concentrations and in some storms an initial

increase in concentration was followed by dilution. On the other hand, [38] reported in an

undisturbed old-growth Chilean forest that Ca2+concentration demonstrated dilution when

stream discharge increase and enhanced hydrological access occurred only for H+. According

to [39], mica schists, present in the geological substrate at the coastal mountain range, are rich

in micas and minerals and contain high levels or iron and magnesium. Hence, concentration

levels of magnesium in stream water probably are influenced by the geological substrate.

However, the dilution and increase in concentration (on FEP and ONE, respectively) is mostly

due to the dilution of stream water discharge with throughfall.

6. Conclusions

We conclude that the mixed-deciduous (ND) and old-growth evergreen (ONE) forests show

the highest canopy enrichment for throughfall, while the Eucalyptus plantations (FEP and EG)

showed the minimum enrichment. The highest enrichment was DON (10.3 times) for ONE;

and TDP (10.7 times) for ND catchment. In general, the differences in enrichment are attributed

to high LAI (Leaf Area Index) values in both native forests: the old-growth evergreen forests

are multi-stratified and have an understory of high diversity, and particularly in the mixed-

deciduous forest the presence of a thick layer of bamboo (Chusquea quila), which covered the

soil. Our results differing from forested sites in North America and Europe which indicates

that the canopies are generally acting as sinks for inorganic-N [33]. Also [40] have reported

that NO3
–-N concentrations decreased in stemflow and throughfall relative to precipitation in

old-growth forest in North America. However, in a data compilation from 126 European sites

with high deposition climate in Scandinavia, Netherlands and Germany, [41] reported that

inputs are enhanced by up to 3-5 times in throughfall through addition of dry deposition. On

the other hand, our results show that the highest canopy enrichment was DON (dissolved

organic nitrogen) especially in both native evergreen and deciduous forests. Also, DON was

the most important nutrient fluxes in the native forested catchments, according to the literature

[6] that reported that the dominant form of N leaching is dissolved organic nitrogen (DON) in

unpolluted forests of southern Chile.

Annual retention of TDN in native deciduous and evergreen forests was 0.90 and 0.58, and

TDP retention was 0.96 and 0.70, respectively. While the exotic Eucalyptus plantation there was

a net release or loss of 4.79 and 1.44 for TDN and TDP, respectively. Studies in watersheds in

the United States [34, 42] reported that thin or porous soils and high infiltration rates have less

capacity to retain N. However, in our study, catchments with high infiltration rates, such as

evergreen and deciduous forests showed greater N retention than soils with very low infil‐
tration rates, such as Eucalyptus globulus plantation. Our results suggests that in native forests,

rainfall water was infiltrating and percolating (subsurface flow) exporting less N in contrast

to Eucalyptus plantation in which as soil has less porosity and infiltration rates due to land use
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history. The Eucalyptus plantation catchment was cleared (35 years ago) with fire to open areas

for grazing animals, and in some areas, for the extraction of wood, and recently (9 years ago)

the grassland was replaced by exotic trees (Eucalyptus globulus).

Nutrients (TDN and TDP) shows the same behavior in both catchments, their concentration

tends to increase as catchment discharge increases. DIN however, showed a different behavior

for dry and wet season events. In the native old growth evergreen forest (ONE), DIN lower its

concentrations as discharge increased, however in E. nitens covered catchment (FEP) increased

its concentration. The latter is mostly due to the dilution or the increase of NO3
—N in stream

discharge. However, during wet season both catchments showed the same DIN exportation

behavior, though FEP had twice as much DIN when compared to ONE.

We are aware that modelling help to unravel and understanding hydrological processes and

therefore nutrient exportation occurring within soil catchments. However there are many

things to take in to account for, like biota (trees and microorganisms). However, discharge

appeared to be a good predictor for TDN and TDP, for both events shown here. This was only

seen in FEP, and not in ONE. DIN on the other hand showed poor model fitting. This means

that there is still one or several unknowns on the control of DIN exportation during events.

The studies of events provide us with a much detailed perspective of what’s happening within

the catchment as an ecosystem, either pristine or heavily intervened. The reality is that

ecosystems are going to keep “developing”, each time with more and more relation to rural

and city population. These pristine environments are in great danger and have to be protected

from the inhabitants and other anthropic pressures, mostly cattle and land cover change to

agricultural lands and exotic species.

Pristine study sites are recognized by being scarce and require a lot of efforts (monetary, time

and struggle). In Chile, we have the luxury to have such areas near by some cities, nevertheless

it will require more effort to keep it as pristine as possible. The prize for keeping this areas are

many, from biodiversity hotspots to be able to unravel some of the black boxes that still exists

regarding nutrient exportation and what are the effects of land cover change.

We would like also to address that soil use/cover change history, also plays an important role

in N and P retention. Therefore before planting or doing forestry and agricultural activities,

soil should be treated in order to enhance nutrient and water retention capabilities.
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