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1. Introduction

For broadcast channels (BC) in multiuser multiple-input multiple-output (MU-MIMO)
systems, the overall achievable performance depends on the efficient use of the resources at
the base station (BS). When channel state information (CSI) is known at the transmitter the
gain is twofold: full spatial degrees of freedom can be attained [1] and the system can be
optimized over a new degree of freedom given by the users. In the literature of MU-MIMO
systems two dimensions of optimization are studied: multiplexing diversity and multiuser
diversity (MUD). The former is a consequence of the independent fading across all MIMO links,
which yields a set of parallel spatial channels where different data streams can be transmitted
increasing the system capacity [2]. The latter is given when users that are geographically far
apart have channels that fade independently at any point in time. For the system sum rate
maximization, such independent fading process is exploited so that the user with the largest
channel magnitude will be selected for transmission. In MU-MIMO systems spatial and
temporal communication can be performed in two ways: 1) orthogonal multiple access (time,
frequency, or code) and 2) spatial-division multiple access (SDMA). To achieve orthogonality
in time, all the spatial resources at the BS (N t  antennas) are used to communicate with one
user (Nr  antennas) at a time, which is known also as time-division multiple access (TDMA).
This technique avoids inter-user interference, achieves power gains that scale with N t ,
enhances data rates for a single user specially at low signal-to-noise ratio (SNR) regime, and
is robust to CSI uncertainty [1], [3]. SDMA exploits CSI at the BS allowing K >1 users to be
scheduled at the same time achieving multiplexing gains of min(N t , K Nr) at high SNR regime,
where the system is limited by the degrees of freedom and not by power. Since the BS has
knowledge of the data symbols and CSI, the multiuser transmission can be optimized using
coding techniques. The achievable rate region in BC is based on dirty paper coding (DPC) [4].
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The principle behind this optimum coding technique is that the BS knows the interference for
a given user and can pre-subtract it before transmission, which yields the capacity of an
interference free channel. However, DPC is a nonlinear process that requires successive
encoding and decoding whose complexity is prohibitive in practical systems and other
suboptimal techniques are preferred instead. In the literature, DPC has been interpreted as
beamforming (BF) [5] which is a SDMA scheme where data streams of different users are
encoded independently and multiplied by weight vectors in order to mitigate mutual inter‐
ference. Although BF is a suboptimal multiuser transmission scheme, several works (e.g., [3],
[5]) have shown that it can achieve a large portion of the DPC rate and its performance is close-
to-optimal for large N t  and K . Nevertheless, the optimization of the downlink BF weight
vectors is a non-convex problem [6]. The specific selection of the weight vector of a given user
may affect the performance of other users, i.e., the achievable signal-to-interference-plus-noise
ratio (SINR) of one user is coupled with the other users weight vectors and transmit powers
[6]. Since the weight vectors must be optimized jointly, optimum BF is a complicated task and
suboptimal weights given by Zero-Forcing (ZF) based methods can be used [5]. The joint
optimization of the beamforming weights, the power allocation, and the set of links that are
scheduled under SDMA mode is performed for a given global objective function. In BC system
literature a meaningful figure of merit is the total sum rate since it quantifies the total data
flow for a specific BF scheme and the open problems are power allocation and user selection.
If the set of scheduled users meets that N t ≥K Nr , power allocation can be given either by
Lagrangian methods (convex optimization [7]) or by equal power allocation (close-to-optimal
for the high SNR regime [8]–[12]). However, when the set of users is larger than the number
of spatial resources at the BS, i.e., N t < K Nr , user selection is required. The selection of the
optimum set of users that maximizes the sum rate for a given BF scheme with optimum power
allocation is a mixed non-convex problem. Indeed, in systems where users must be allocated
in different radio resources (slots or sub-channels) finding the optimum subsets of users under
SDMA mode for each radio resource is a NP-complete problem whose optimal solution can
only be found via exhaustive search (ES) [13]. Recent research works have proposed a number
of feasible heuristics algorithms that find a suboptimal yet acceptable solution to the sum rate
maximization problem with SDMA communication. The literature of MU-MIMO has been
focused on ZF-based BF schemes due to their tractability and the fact that some properties of
the wireless channels can be used to estimate the reliability of joint transmission for a given
set of users. The main objective of joint scheduling and BF is to make better decisions at the
media access control (MAC) layer by exploiting information from the physical (PHY) layer.
The literature reviewed in this chapter addresses the scheduling (user selection) process in the
MAC layer using PHY layer information without considering constraints from upper layers.
Our aim is to provide a comprehensive overview of algorithms proposed over the last years
regarding joint user selection and SDMA schemes that solve the sum rate maximization
problem in MU-MISO BC systems.
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2. System model

Consider a single-cell with a single base station equipped with N t  antennas, and a set S  of K
single-antenna users (Nr =1) illustrated in Fig. 1. We assume perfect CSI at the BS and the
channel coefficients are modeled as independent random variables, with a zero-mean circu‐
larly symmetric complex Gaussian distribution (Rayleigh fading). The signal received by the
k th user is given by:

K

k k k k k i k i i k k k
i¹k

y = p s + p w s + n = x+ nåh w h h (1)

where sk  is the intended symbol for user k , x∈ℂN t ×1 is the transmitted signal vector from the

base station antennas, hk∈ℂ1×N t  is the channel vector to the user k . Each user ignores the
modulation and coding of other users, i.e., it is assumed single-user detection where each user
treats the signals intended for other users as interference. nk∽��(0, σn

2) is the additive zero

mean white Gaussian noise with variance σn
2. The entries of the block fading channel

H= h1
T , ⋯ , hK

T T  are normalized so that they have unitary variance, and the transmitted signal

x=∑k =1
K pkwksk  has an average power constraint � xH x ≤P  where � ∙  is the expectation

operation. Since the noise has unit variance, P  represents the SNR.

Figure 1. Multiuser MISO Broadcast System

For linear spatial processing at the transmitter, the BF matrix can be defined as
W = w1, ⋯ , wK , the symbol vector as s= s1, ⋯ , sK  and P=diag p1, ⋯ , pK  is the matrix
whose main diagonal contains the powers. The SINR of the k th user is given by:
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and the instantaneous achievable data rate of user k  is rk = log2 (1 + SINRk ).

3. Problem formulation

The performance of a MIMO system is measured by a global objective function of the indi‐
vidual data rates or SINRs U (r1,  ⋯ , r K ). From the system perspective it is desirable to
optimize U (∙ ) instead of the individual rates ri ∀ i∈  S  since the latter are coupled by the
transmit powers and the beamforming weights in (2). Thus the performance depends on how
efficiently the resources are allocated to each user and how effectively the interference from
other users is mitigated. In this chapter we optimize the global utility function modeled as the
sum rate maximization problem using BF subject to global power constraints. For the case
where K ≤N t  the general optimization problem is given by

{ 21/2
, 1

R = max        s.t. 
K

BF
k k Fk
r Pb

=
£å

W P
WP (3)

where ∙ F  denotes the Frobenius norm, βk  is a priority weight associated to user k  defined
a priory by upper layers of the communications system to take into account QoS, fairness, or
another system constraint. Finding a solution of (3) is a complex problem due to the nature of
the optimum P and W and each solution depends on the system requirements expressed by
the weights βk  [14]. The computation of optimal beamforming weights wk  involves SINR
balancing [11] and since the weights do not have a closed-form, iterative computational
demanding algorithms have been proposed to determine them [6], [15]. Indeed, problem (3)
is NP-hard even when all priority weights βk  are equal [16].

3.1. Multiuser scenario

Let Ω={1, ⋯ , K } be the set of all competing users where K  is larger than the number of
available antennas at the BS, i.e., |Ω|= K ≥N t , where |Ω| denotes the cardinality of the set
Ω. In order to exploit the optimization dimension provided by MUD, it is necessary to select
a set of users S  whose channel characteristics maximize the sum rate when they transmit
simultaneously in the same radio resource. Such characteristics are defined by the type of
beamforming scheme, the power constraints, the SNR regime, and the deployment character‐
istics (N t  and K ). The sum rate maximization with user selection optimization problem can be
defined as:
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where H(S ) is the row-reduced channel matrix containing only the channels of the subset of
selected users S  and R BF (H(S)) is the achievable sum rate for such set. User scheduling is a
real time operation whose computational complexity and implementation efficiency affect the
performance of upper-layers. Moreover, finding the optimal solution of (4) requires an
exhaustive search over a search space of size L =∑i=1

N t K ! / (i ! (K - i) ! ), which is the number of
all ordered combinations of users.

Since the computation of the optimal solution of the sum rate maximization problem implies
the joint optimization over P, W, and S , the original problem (4) can be relaxed by taking one
or more of the following actions: 1) by using beamforming weights with a defined structure;
2) based on linear beamforming the power allocation can be performed either by Lagrangian
methods or by equal power allocation; and 3) based on the structure of the linear beamforming
it is possible to design user selection algorithms that exploit information contained in H and
at the same time, to achieve a good trade-off between performance and complexity. In the
following sections we will study systems with equally prioritized users (βk =1 ∀k∈Ω) and
the characteristics of state-of-the-art user selection algorithms that find suboptimal yet
acceptable solutions to the non-convex and combinatorial problem (4).

4. Linear beamforming

In this section we describe the structure of two sub-optimal linear beamforming schemes and
the optimal power allocation for each one of them. It is assumed perfect CSI at the transmitter
which can be attained through time-division duplex (TDD) scheme assuming channel
reciprocity [6]. Notice that the weight vectors multiply the intended symbols in (1) which can
be seen as a form of precoding, henceforward we use the terms beamforming and precoding
interchangeably.

4.1. Zero Forcing Beamforming

In Zero Forcing Beamforming (ZFBF), the channel matrix H at the transmitter is processed so
that orthogonal channels between the transmitter and the receiver are created, defining a set
of parallel subchannels [5]. The Moore-Penrose pseudo inverse of H(S ) is given by [17]:

1( ) ( ) ( ( ) ( ) )H H -=S S S SW H H H (5)

and the ZFBF matrix is given by the normalized column vectors of (5) as
W(S )= w̄1 / w̄1 ,  ⋯ , w̄|S | / w̄|S | . Under ZFBF scheme the sum rate maximizing power
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allocation is given by the water-filling algorithm and according to [5] the information rate
achieved with optimum P in (3) is given by :

( )
| |

1
( ( )) log( )ZFBF

i
i

R bm +

=
=å

S

SH (6)

where bi = ( H(S)H(S )H
ii
-1)-1 is the effective channel gain of the ith user and its allocated power

is pi = (μbi - 1)+, the water level μ is chosen to satisfy ∑
i∈S

(μ - bi
-1)+ = P  and (x)+ =max {x, 0}. If all

users in S  are allocated with nonzero power, the water level has the compact form [10], [18]:

μ = 1
|S | ( W̄(S ) F

2 + P)= 1
|S | (P +  ∑

i∈S
bi

-1).

4.2. Zero forcing dirty paper

Suboptimal throughput maximization in Gaussian BC channels has been proposed in several
works [5], [18], [19] based on the QR-type decomposition of the channel matrix H(S )=L(S )Q(S)
obtained by applying Gram-Schmidt orthogonalization (GSO) [20]. L(S ) is a lower triangular
matrix and Q(S ) has orthonormal rows. The beamforming matrix given by W(S )=Q(S )H

generates a set of interference channels yi = lii pisi + ∑
j<i

lij p js j + ni, i =1, ⋯ , k while no infor‐

mation is sent to users k + 1, ⋯ , K . In order to eliminate the interference component
I i =∑

j<i
lij p js j of the ith user, the signals p js j for i =1, ⋯ , k  are obtained by successive dirty

paper encoding, where I i is non-causally known. This precoding scheme was proposed in [5]
and the authors showed that the precoding matrix forces to zero the interference caused by
users j > i on each user i, therefore this scheme is called zero-forcing dirty-paper (ZFDP)
coding. The information rate achieved with optimum P in (3) under the ZFDP scheme is given
by [5]:

( )
| |

1
( ( )) log( )ZFDP

i
i

R dm +

=
=å

S

SH (7)

where di =|lii|2 is the squared absolute value of lii and μ is the solution to the water-filling

equation ∑
i∈S

(μ - di
-1)+ = P , which defines the ith power as pi = (μdi - 1)+.

5. Metrics of spatial compatibility

The sum rate maximization problem (4) can be solved by fixing the precoder structure and
power allocation method. Under ZF-based precoding the performance strongly depends on
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the spatial correlation between the components of H(S ). The more correlated the channels, the
higher the power penalty imposed by ZF schemes which yields a degradation of the achievable
SINRs and a poor system performance. For this reason, problem (4) has been tackled in the
literature by optimizing the spatial compatibility between scheduled users. This is accom‐
plished by optimizing a specific metric over the channel matrix which can be related or can
provide indirect information of the achievable sum rate for a given set of users and channel
realization. A metric of spatial compatibility is a function of the CSI at the transmitter so that

f :ℂ|S |×N t ↦ℝ+ where the mapping quantifies how profitable is to select S  for transmission.
Different metrics for spatial compatibility have been proposed in the literature and this section
presents a unified treatment of the most common metrics used by several algorithms that solve
(4) sub-optimally. It is worth mentioning that the optimization over a given metric may bring
some advantages in terms of computational complexity, for instance, iterative evaluation of
f (H(S )) does not require the computation of the optimum power allocation. Some metrics are
given by simple relations between the row vectors in H(S ) which avoids matrix operations.
Under certain SNR constraints described in Section 6, the user set that solves problem (4)
achieves maximum multiplexing diversity, i.e., its cardinality is equal to N t  [5]. In such a SNR
regime, the search space of the solution of problem (4) is reduced from L  to
L N t

= K ! / (N t ! (K - N t) ! ) and optimization over f (H(S )) can simplify the search of the
optimum user set S . In this section we introduce the channel metrics, its main properties, and
the relations between them.

5.1. Null space projection

Considering a given set of users S  with channels hi∀ i∈S  and for ZFBF the effective channel
gain of the ith selected user defined in Section 4.1 is given by [5]:

2 2 2
1

,

1 sin
[( ( ) ( ) )

 
] i i ii i iH
i i

b q
-

= ==
V V

S S
hh Q h

H H (8)

where P�i
=H̃i

H (H̃iH̃i
H )-1H̃i is the projector matrix onto �i =Sp(H̃i) the subspace spanned by

the rows of the aggregate interference matrix H̃i = h1
H , ⋯ , hi-1

H , hi+1
H , ⋯ , h|S |

H H  associated with
user i. Q�i

= I - P�i
 is the projector matrix onto the null space of �i. The operation in (8) is

equivalent to the projection of hi onto the null space spanned by the channel components of

H̃i illustrated in Fig. 2. Notice that hi
2 in (8) is affected by the weight sin2 θ�ihi

 which is the

squared sine of the angle between the channel vector hi and the subspace spanned by the

components of H̃i. The weight sin2 θ�ihi
 is referred in the literature as the projection power loss

factor since it will affect the effective amount of power that is transmitted over the ith link.
Using the properties of water-filling and the strong relationship between the sum rate
maximization and the maximization of the terms bi we elaborate a compact formulation of the
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maximization of metric (8). Theoretical results in [9] show that for the MISO BC system a
meaningful metric to estimate the achievable performance of S  is given by ∏

i∈S
bi under certain

constraints over the water level μ. However, for single antenna receivers the performance gap
between the sum and the product of the terms bi is negligible and hereafter we analyze the

metric ∑
i∈S

bi which is equivalent to a matrix trace operation. Let H̄(S )=H(S )H(S)H  and

Ḣ(S )=H̄(S )-1 be a Wishart matrix and its respective inverse which characterize the interaction
of all user channels in S . Considering the definitions in (6) and (8) the set of users that achieves
a suboptimal solution to problem (4) maximizing the sum of the effective channel gains is given
by the set of users that optimally solves of the following combinatorial problem:

:| |
arg min tr( ( ))

tNw ÌW =
= &

S S

S SH (9)

where tr(∙ ) denotes the trace operator. The optimum set Sω for the NSP metric is unique and

it will contain the users that maximize ∑
i∈S

hi
2sin2 θ�ihi

. The selection of S  based on the NSP

in (9) yields a close-to-optimal solution to problem (4) for a ZF-based precoding under the
following conditions: P > P0, K > N t , or large values of both K  and N t . The term P0 is a critical
SNR value that depends on H(S ) in order to meet the cardinality constraint over S  [5]. The
evaluation of the metric (8) is not unique and several algorithms described in next section use
different operations to compute or approximate it in order to define algorithms that solve (9)
with less computational complexity than the exhaustive search, especially when K →∞. Next
we present several methods to evaluate the NSP for ZFBF and ZFDP. The application of each
one of these methods lies in the complexity required to evaluate them and the available CSI at
the BS. In other words, each method represents a trade-off between accuracy of the NSP
evaluation and the required CSI at the transmitter.

5.1.1. Orthogonal projector for ZFBF

The computation of Q�i
 is not unique and different forms to evaluate such matrix can be

efficiently used in different contexts, i.e., depending on the available CSI at the transmitter, the
required computational complexity, and the deployment. Let us decompose matrix H̃i of the
ith user by means of singular value decomposition (SVD) [17] as follows:

[ ]
i i i i

H
i = S% % % %%

H H H HU VH V (10)

where ṼH̃i
 contains the N t - r  basis of the null space of H̃i and r = rank (H̃i).

Contemporary Issues in Wireless Communications32



The orthogonal projector matrix is given by Q�i
= ṼH̃i

ṼH̃i
H  and the set Sω in (9) maximizes the

objective function ∑
i

hiQ�i
2. In some scenarios described in the following sections, it is

assumed that the BS knows the basis of �i for any user i∈S . Let {v j} j=1
r  be the column vectors

of V̄H̃i
 defined in (10) and the NSP in (8) for the ith user can be computed as follows:

2
2

1
i

r
H

i i j j
j=

æ ö
ç ÷= -
ç ÷
è ø

åV
h Q h I v v (11)

The NSP operation in (11) can be also computed by applying GSO to H(S ) as in [21] which
represents a lower computational complexity than the SVD approach [22]. Using the basis of�i the magnitude of the NSP operation is given by hiQ�i

2 = hi
2 - ĥi

2 where ĥi is the

projection of hi onto each one of the orthogonal basis of �i given by [20]:

1

cos
ˆ i j

r i H
i j

j j

q

=
=å

h vh
v

v
h (12)

where the term cos θhiv j
 represents the coefficient of correlation between the vectors hi and v j

defined as [17]:

cos
i j

H
i j

i j

q =h v

h v

h v
(13)

The domain of the coefficient is 0≤ηhiv j
=cos θhiv j

≤1 and θhiv j
= π

2  means perfect spatial

orthogonality. The NSP computation is not unique and different matrix operations can be use
to evaluate it. Using the full channel matrix H(S ) and H̃i for all i∈S  the block matrix deter‐

minant formula to compute det(H(S )H(S)H ) reads [23]:

( ) ( ) 2
det ( ) ( ) det

i

H H
i i i= % %

V
S S H hHH H Q (14)

The orthogonal projection defined in (8) has a direct relationship with the correlation coeffi‐
cients defined in (13). The normalized power loss experienced by the ith channel when it
interacts with the subspace �i is called the coefficient of determination given by [17]:
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H
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D = V
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h h
(15)

where ∆�ihi

2  measures how much the vector hi can be predicted from the channel vectors of

H̃i. Notice that from (8) and (15) the projection power loss factor of hi due to the projection

onto the null space of �i is equivalent to 1 - ∆�ihi

2  which can be evaluated as follows [17]:

2 2 2
(1) ( )| (1) ( 1)1 (1 ) (1 )

i i i i k kp p p ph h ¼ -- D = - ¼ -
Vh h h (16)

where π(k ) is the k th ordered element of H̃i and ηhiπ(k )|π(1)⋯π(k -1) is the partial correlation

between the channel vector hi and the selected vector associated with π(k ) eliminating the
effects due to π(1)π(2)⋯π(k - 1). Using multiple regression analysis it is possible to evaluate

hiQ�i
2 = hi

2(1 - ∆�ihi

2 ) by extracting the partial correlation coefficients from the correlation

coefficients choosing one user order π out of (|S| - 1) ! permutations of the users in S  [17]. A
different approach can be applied if for a given set of channels h j ∀ j∈S  the orthogonal

projector matrix of each channel is known so that Q j = I - h j
H (h jh j

H )-1h j.

Figure 2. The spatial relationship between the components of vector hi and �i.

From [24] we have the following result:

,
,

i

n

j
j i j

n
¹ Î

æ ö
ç ÷= ®¥
ç ÷
è ø
ÕV

S

Q Q (17)
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which establishes that the orthogonal projector matrix onto �i can be approximated by
recurrently projecting onto independent orthogonal subspaces such that their intersection
strongly converges to Q�i

 as n grows. The NSP measured by tr(Ḣ(S )) has been used by several
user selection algorithms either by avoiding the exhaustive search required to solve (9) (e.g.,
[18], [19], [21]) or by using approximations of metric (8) (e.g., [25], [26]).

5.1.2. Orthogonal projector for ZFDP

In Section 4.2 the ZFDP beamforming was introduced and it was mentioned that the received
signal of user i contains an interference component from all j < i users, i.e., the previously
encoded users. Given an specific encoding order π(i), i∈ {1, ⋯ , |S|} (a permutation of the
users in S), the beamforming vectors wπ(i) are computed either by a QR-type decomposition
or by GSO as follows [27]:

wπ(i) =
Tihπ(i)

H

Tihπ(i)
H , Ti = {I for i =1

Ti−1−wπ(i−1)wπ(i−1)
H for i =2, …, q

and i =1, ⋯ , q with q = rank (H(S )). Ti is the orthogonal projector matrix onto Sp(hπ( j<i)) the
subspace spanned by all previously encoded users for which hπ( j<i)wπ(i) =0. Some authors (e.g.,
[25], [27]) use the following expression as an objective function over the channel matrix H(S )
for user selection and ZFDP beamforming:

2| |
1( ( )) i iif

=
=å S

SH h T (18)

Observe that user selection and sum rate maximization based on metric (18) implicitly depend
on one particular selected encoding order π out of |S|! different valid permutations. Since
different encoding order yield different values of (18), in [27] it was proposed a method to
perform the successive encoding optimizing of the order π. Such an optimum order is attained
by an iterative algorithm that evaluates (8) each iteration for every successive encoded user.
An alternative suboptimal approach can be employed as in [19] where π is defined by the
descending order of the effective channel gains of the users in S .

5.2. Approximation of the NSP

The objective function of problem (9) can be further relaxed by using a lower bound of tr(Ḣ(S ))
in order to avoid the computation of the inverse matrix Ḣ(S ). Considering the definition of
trace we have that

1tr( ( )) ( ( ))iil
-=å& S SH H (19)

and using the arithmetic-geometric mean inequality over λi(Ḣ(S )) it holds that [28]:
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| | ( ( )) tr( ( ))i

i
l £Õ & &S

S S SH H (20)

Since |S| is constant and independent of the selected channels for all L N t
 possible user sets,

the lower bound on the objective function of (9) can be simplified as:

1( ( )) det( ( ))i
i
l -=Õ & S SHH (21)

A suboptimal but less computational demanding way to find a set of users that solves problem
(4) is given by the set that solves the following combinatorial problem:

:| |
arg max det( ( ))

tNx ÌW =
=

S S

S SH (22)

where the optimized objective function only requires to compute the determinant of a matrix
product. Observe that the lower bound in (21) is closely related with (14) and the performance
degradation for the former metric arises because the terms det(H̃iH̃i

H ) ∀ i∈S  are neglected.

In [26] it was presented a greedy algorithm where the metric for user selection is based on an
approximation of (16) and the correlation coefficients are used instead of the partial correlation
coefficients. Such relaxation neglects the channel gain degradation due to the terms
π(1)π(2)⋯π(k - 1). Given channel matrix H(S ), the metric that approximates (19) is defined as
follows [26]:

2 2( ( )) sin , 
i ji

i j i
i jq

¹

æ ö
ç ÷L = " Î
ç ÷
è ø

å ÕS Sh hhH (23)

Using this metric a suboptimal solution to problem (4) is given by the set of users that solve
the following combinatorial problem:

:| |
arg max ( ( ))

tNL ÌW =
= L

S S

S SH (24)

5.3. ε-orthogonality

Several user selection algorithms (e.g., [25], [26], [29]) attempt to create groups of quasi-
orthogonal users based on the information provided by the coefficient of correlation (13). A
set of channels hi ∀ i∈S  is called ε-orthogonal if cos θhih j

< �,  ∀ i, j ∈S  [29]. Some works
addressed problem (4) by scheduling the set of user with minimum ε-orthogonality measured
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either over the normal channels [30] or over the eigenvectors computed by SVD [29]. If the
orthogonality among channels in H(S ) is the only metric considered to define S  (regardless of
the channel gains), problem (4) can be sub-optimally solved by the set S� that minimizes the �-
orthogonality among all L N t

 possible sets formally described as:

:| | ,
arg min max cos

i j
tN i j

q
ÌW = Î

æ ö= ç ÷
è øò

S S S

S h h (25)

Some works in the literature define S� as the set with minimum sum of correlation coefficients
∑
i
∑
j≠i

cos θhih j
,  ∀ i, j ∈S  or as the set with minimum average correlation coefficient [25], [29].

Observe that these objective functions are based on pairwise metrics and they can be negatively
biased by few terms with large values neglecting the remaining coefficients with relatively
small values. An alternative utility function that can identify such large terms is the geometric
mean over all correlation coefficients since it would assign the same priority to each of term.
In MU-MIMO systems the user grouping problem based on (25) for scheduling time slots, sub-
carriers, or both, can be modeled as a graph coloring problem [13], [31] or graph clique problem
[32] and complexity reduction is the main objective of the proposed grouping algorithms.

5.4. Orthogonality defect

The orthogonality defect derived from Hadamard's inequality [28] measures how close a basis
is to orthogonal. Given the matrix H(S ) this metric is given by:

( )

2
1

1

( ( ))
( )

ii

ii

d
l
=

=

= Õ
Õ

S
S

h
H

H
(26)

and δ(H(S))=1 if and only if the elements of H(S ) are pairwise orthogonal. The metric (26)
reflects the orthogonality of the set {hi}i ∈S  and has been used to evaluate the compatibility
between wireless channels in order to maximize the spatial multiplexing gain [29]. The original
problem (4) can be sub-optimally solved by the set that minimizes the orthogonality defect
which is formally described as:

:| |
arg min ( ( ) )

tNd d
ÌW =

=
S S

S SH (27)

Observe that problem (27) uses a weighted version of the utility function of problem (22) where
the weight is defined by the inverse of ∏

i=1
hi

2. The orthogonality defect can be seen as a scaled

version of the lower bound of metric (19).
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5.5. Condition number

The ZF-based beamforming methods are in general power inefficient since the spatial direction
of wi is not matched to hi. Inverting a ill-conditioned channel matrix H(S ) yields a significant
power penalty and a strong SINR degradation at the receivers. In numerical analysis a metric
to measure the invertibility of a matrix is given by the condition number. In MIMO system this
metric is used to measure how the eigenvalues of a channel matrix spread out and to indicate
multipath richness for a given channel realization. The less spread of the eigenvalues, the larger
the achievable capacity in the high SNR regime. For the matrix H(S ) the condition number is
defined as [33]:

max

min

| ( ( ))|
( ( ))

| ( ( ))|
l

k
l

=
S

S
S

H
H

H
(28)

and κ(H(S)) is an indication of the multiplexing gain of a MIMO system. Another definition
of the condition number is given by the product A A-1  for a given non-singular square

matrix A [20] and (28) generalizes that metric for any matrix H(S ) ∈  ℂ|S |×N t  where |S|≤N t .
If the condition number is small, the matrix H(S ) is said to be well-conditioned which implies
that as κ(H(S))→1 the total achievable sum rate in the MISO systems under ZF-based
beamforming can achieve a large portion of the sum rate of the inter-user interference free
scenario. Problem (4) can be sub-optimally solved by a set of users with the minimum condition
number and such set is formally described as:

:| |
arg min ( ( ) )

tNk k
ÌW =

=
S S

S SH (29)

Another important metric to estimate matrix condition is given by the Demmel condition
number. For such metric several applications in MIMO systems have been proposed in recent
years, e.g., link adaptation, coding, and beamforming [34]. The Demmel condition number can
be seen as the ratio between the total energy of the channels of H(S ) over the magnitude of the
smallest eigenvalue of H̄(S ) in the current channel realization and is given by the following
expression [34]:

min

tr( ( ))( ( ))
( ( ))Dk l

=
S

S
S

HH
H (30)

where tr(H̄(S ))= H(S ) F
2 , i.e., the Frobenius norm is related with the overall energy of the

channel. By using (30) the set of users that sub-optimally solves (4) is given by the solution of
the following combinatorial problem:
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6. User selection algorithms

For MU-MIMO BC systems with ZF-based beamforming the optimum solution to the sum rate
maximization problem implies the optimization over the power allocation and user selection
as well as the correct dimension and orientation of the signal subspace used by each selected
user [9]. Since this optimization is performed over several dimensions (time, space, signal
space, power, users) the optimum solution for the MU-MIMO scenario has not been found.
Even when the signal space spans over one dimension, i.e. single-antenna users, the optimum
solution to the sum rate maximization problem (4) in MU-MISO BC systems is given by an
exhaustive search whose computational complexity increases approximately with �(K N t). In
order to find a fair trade-off between complexity and performance, a large number of works
have addressed the sum rate maximization problem for ZFBF (e.g., [9], [21], [35] and ZFDP
(e.g., [18], [19]) by designing low-complexity algorithms that find a sub-optimal yet acceptable
solution to (4). The goal of such algorithms is to construct the solution set S  of quasi-orthogonal
users implementing different iterative approaches. Some works in the literature proposed
greedy opportunistic algorithms that exploit the instantaneous channel information. In a
greedy selection each new selected user finds a locally maximum for a given global objective
function so that the final set of users attempt to converge to a close-to-optimal solution. Another
approach to solve (4) is to use channel metrics and reformulate the original problem as an
integer program. In this section we present the principles and characteristics of different user
selection algorithms proposed in the literature. Our aim is to introduce generic structures of
the user selection process and to illustrate under which conditions they can be used to
maximize the sum rate and to reduce computational complexity for ZF-based beamforming.

6.1. Metric-based selection

The objective of the metric-based user selection is to find a set S  of users with spatially quasi-
orthogonal channels such that the profit from beamforming is maximized. User selection
algorithms can be design to relax the original optimization problem (4) by optimizing a
particular channel metric. This kind of optimization may face two main problems: 1) the large
search space L  for the optimum solution, and 2) how to discriminate between metrics of sets
with different cardinality without computing the objective function. Both problems are
partially solved by imposing a constraint in the optimizations problem, i.e., |S|= N t  ∀S⊆Ω
in problem (4) or by operating in the high SNR regime. This yields a search space of size L N t

and metrics that can be easily compared since they are applied over user sets of the same size.
In MU-MISO BC systems with ZF-based precoding and optimal power allocation, authors in
[5] showed that there exist a critical SNR that depends on H(S ) for which ∀P ≤P0 the maximum
sum rate is achieved by a subset S  with cardinality |S|< rank (H(S )). For an operation point
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∀P > P0 the system achieves full multiplexing diversity, i.e., |S|= rank (H(S )). The metric-
based user selection algorithms solve (4) in two phases. In the first phase S  is selected in order
to optimize a given metric and in the second phase the sum rate is evaluated for the previously
defined set. This means that the user selection and the resource allocation problems are
decoupled in this approach. The cardinality of S  is fixed in the first phase and it may be
modified during the second phase when the sum rate is evaluated. If power allocation is
performed based on water-filling, this might yield a zero power allocation (no data transmis‐
sion) for some users due to the instantaneous value of P0.

In the literature of user selection several algorithms solve problem (4) optimizing the NSP by
iteratively computing the sum of the effective channel gains each iteration. The optimum set
that maximizes the NSP is given by the solution of (9) which is a combinatorial problem that
requires the evaluation of L N t

 matrix product and inversion operations. Therefore, the set S
is found in a greedy fashion by selecting the user that locally maximizes the total sum of
effective channel gains which roughly requires L K =∑k =1

N t -1 (K - k ) evaluations of the metric
f (∙ ). Given S (n - 1) in the nth iteration, the optimum new user i∈Ω achieves the largest
effective channel gain when its channel is projected onto the orthogonal subspace spanned by
the previously selected users �=Sp(H(S(n - 1))). In [10], [21] the authors evaluate iteratively at
the nth iteration the intersection of the null spaces of the previously selected users S (n - 1) with
each new candidate user by means of GSO. Using this technique, it is not necessary to extract
the basis of the subspace spanned by the channel matrix (SVD) or to compute the orthogonal
projector matrix Q�i

 at each iteration [19]. Other user selection algorithms based on the NSP
further reduce the required computational complexity by approximating any of the its
alternative forms described in Section 5.1.1. The algorithm proposed in [26] approximates (16)
by using only the correlation coefficient between the users in S (n). The authors in [36] select
users based on metric (17) where each user computes its own projector matrix and the
algorithm approximates the NSP. The optimization of an approximation of the NSP yields a
suboptimal set of users and performance degradation regarding to (8) yet some gains in terms
of complexity are attained. The general structure of this kind of algorithms is presented in Alg.
1 and f (∙ ) is given by any metric defined in Section 5. Notice that the first selected user is the
one with the strongest channel which not necessarily belongs to the optimum set. However,
this criterion simplifies the initialization of S  and does not yield a significant performance
degradation, specially in the large K  regime [21].

Another relevant feature of this generic structure is given by the adjustment of Ω in each
iteration. This is relevant in the large K  regime where the number of operations required to
find the next user is roughly K  which can be computationally demanding. In order to reduce
the total number of metric evaluations, an optimization over Ω can be performed. For instance,
by performing an optimization similar to (25) per iteration for a given ε-orthogonality target
whose optimal value depends on K  and N t  [37]. The principle behind this optimization is that
the candidate users must satisfy the hyperslab condition Ω(n)= {hi   ∀  i∈  Ω(n - 1) :  cos θhig

≤ε}
for a given vector g [21]. The metric-based user selection does not guarantee full multiplexing
gain or sum rate maximization and authors in [10], [25] have proposed a second optimization
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once that S  have been found. This is referred in Alg. 1 as Removal Optimization and its objective
is twofold: to discard inactive users that do not receive data and to maximize the achievable
sum rate by optimizing the beamforming weights and powers of the active users.

Alg 1. Generic structure of the Metric-Based User Selection

6.2. Utility-based selection

This class of algorithms perform a joint user selection and resource allocation optimization by
evaluating the global utility function (3) each iteration (e.g., [10], [11], [18], [38], [39]). The
greedy algorithms are highly effective for sum rate maximization and well suited for ZF-based
beamforming. However, they require the evaluation of the power allocation and the achievable
sum rate for each unselected user in every iteration of the algorithm which involves matrix
operations (e.g., SVD or GSO). The algorithm in [18] was extended in [10] by computing an
inverse matrix operation based on the LQ decomposition avoiding the explicit calculation of
the Moore-Penrose pseudo-inverse, and reducing computational complexity. The general
structure of the utility-based user selection is summarized in Alg. 2. Notice that as in Alg. 1,
the set S  is initialized with the user with maximum channel magnitude which may not be part
of the optimum set. This greedy selection does not attempt to maximize the multiplexing
diversity since it will stop the search as soon as the aggregation of a new local optimal user i *

decreases the overall sum rate. In the low SNR regime and for low values of K , such stop
criterion highly improves the rate performance since power is allocated to strong users and
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there exist more degrees of freedom (DoF) at the BS to mitigate inter-users interference. This
approach may face two drawbacks: 1) the achievable fairness at low SNR and low K  regimes
since less users are scheduled; 2) the complexity in evaluating at most L K  times the achievable
sum rate. The fairness issue can be tackled by changing the global utility function, e.g.,
maximizing the weighted sum rate in (3) using the proportional fairness approach [21], [25],
[39]. The complexity problem can be alleviated by exploiting the properties of water-filling in
order to reduce the computational load of some matrix operations. Further complexity gains
can be obtained if the set of candidate users Ω is optimized each iteration, reducing the total
number of sum rate evaluations. This refinement proposed in [10], [18] is called Search Space
Pruning and is based on the fact that if water-filling allocates pi =0 to the ith user in Ω(n) at the
nth iteration, such user cannot achieved a nonzero power allocation in future iterations.

Alg. 2. Generic structure of the Utility-Based User Selection

6.3. User selection via integer optimization

The sum rate maximization formulation in (4) is a combinatorial problem subject to mixed
constraints. Some works in the literature reformulate the original problem similarly to the
metric-based approaches, performing user selection (S ) and resource allocation (wi and
pi ∀  i∈S  ) as independent processes [25], [26]. The NSP in Section 5.1 can be used to refor‐
mulate the utility-based selection presented in Alg. 1 as an integer program with linear
objective function and linear constraint [26]. Let us consider that for each user i∈Ω there exists
a function f i that computes the NSP assuming pairwise orthogonality with user
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j ≠ i,  ∀ j∈Ω. By computing metric (23) over all users in Ω the intersection of the projection
onto the null spaces for the ith user is given by:

2 2sin
i ji i j if q

¹
= Õ h hh (32)

where θhih j
 can be calculated from (13). By applying a change of variables over (32) we have

that f̃ i =ai + ∑
j≠i

bij, where ai =2log ( hi ) and bij =2log (sin θhih j
). In this way, the component

related to the channel gains and the one related to the spatial compatibility are decoupled and
they can be used to model a bi-criterion problem [25] or to render the NSP into an integer
problem [26]. The user selection based on the NSP seeks the maximum sum of the effective
channel gains, which can be approximated by ∑i∈S f̃ i subject to |S|= N t . In order to introduce
such constraint, we define the following binary variables:

ϕi =  {1 if user i is selected
0 otherwise φij =  {1 if users i and j are selected

0 otherwise

and the user selection modeled as an integer program based on the channel norms and
correlation coefficients (13) is given by [26]:
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Notice that the binary programming problem (33) is a reformulation of (24) and in contrast to
the metric-based selection in Section 6.1, the order in which the users are selected has no impact
on the orthogonality of the elements of H(S ). The solution to the user selection problem is given
by the binary variables ϕi so that S = {i ∈Ω:  ϕi =1} and power allocation based on water-filling
is performed over the set of selected users according to the employed precoding scheme. Since
the objective function is convex and the constraints are given by affine functions, this problem
can be solved by the pseudo-dual simplex method [7] for integer programs or by using
standard optimization packages like MATLAB.

7. Numerical examples

In this section we compare the average sum rate achieved when optimal and suboptimal user
selection is performed over different metrics of H(S ). The simulations consider perfect CSIT,
fading channels are generated following a complex Gaussian distribution with unit variance
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and the average sum rate is given in (bps/Hz). Since we evaluate system performance via
Shannon capacity expressions in (6) and (7), the results are independent of the specific
implementation on the coding and modulation schemes, which provides us a general design
insight.

The curves displayed in Fig. 3 are obtained by optimally solving the combinatorial problems
introduced in Section 5 whose optimum user sets are employed to evaluate (4) with ZFBF.
Notice that these results are upper bounds of the average sum rate for each metric, which
implies that any greedy user selection algorithm can achieve at most the same performance
for its optimized metric. The sum rate achieved by Sω in (9) has a negligible performance gap

regarding to the optimum set S ⋆ for low values of K , and such gap rapidly vanishes as K →∞
with a cost of matrix product and inversion for each possible set S ⊆  Ω. Due to the properties
of water-filling the sum rate is maximized when the terms bi have larger and uniform values.

For low values of K  there exists a performance gap between S ⋆ and Sω because the probability
that the terms bi have large uniform values is small. As K  grows this probability increases and
the performance gap vanishes. The average sum rate achieved by Sξ in (22) computes a lower

bound of the NSP metric (8) with a performance gap not larger than 1% regarding to S ⋆ for
K =6 and such gap vanishes as K  grows. This result suggest that (21) is a good candidate metric
for user selection since it achieves a good trade-off between complexity and performance. The
fact that δ(H(S)) cannot identify with accuracy the set that maximizes the sum rate is because
this metric only reflects the degradation of the product of the eigenvalues of H̄(S ) with respect
to the channel gains. Consider that for a given channel instance the optimum solution of (27)
yields δ(H(Sδ))=1 which may indicate that H(Sδ) forms an orthogonal basis yet this results
does not provide information regarding the channel magnitudes. Observe that the optimum
channel matrix H(S ⋆) does not achieve perfect ε-orthogonality or pairwise orthogonality
among its components. The sum rate attained with the solution of problems (27), (29), and (31)
degrades as K  grows. This is due to the fact that for large multiuser diversity the probability
of finding a set of users that minimizes the dispersion of the eigenvalues of H̄(S ) increases but
this does not imply that the maximum sum of effective channel gains or transmitted power is
achieved. Metric (23) improves its performance when K →∞ since the probability that H(SΛ)
achieves both large sum of effective channel gains and pairwise uncorrelated channels is a
function of the multiuser diversity. The performance gap between SΛ regarding S ⋆ ranges
from 12% for K =6 to less than 1% for K =100. The advantage of metric (23) is that only the
computation of correlation coefficients in (13) is required avoiding matrix operations. The
performance gap between the solutions of (24) and (9) depends on the spatial resources at the
transmitter since the probability that two independent channels hi and h j are correlated is a
decreasing function of N t . For the ε-orthogonality optimization in (25), the set S� may be not
unique since two different sets may containing the same maximum correlation coefficient but
their achievable sum rates may be quite different. Due to the fact that channel magnitudes are
neglected, problem (4) is solved without fully exploiting multiuser diversity.

Contemporary Issues in Wireless Communications44



Figure 3. Average sum rate versus the number of users K  with SNR = 18(dB) and N t = 4.

In Fig. 4 and Fig. 5 we compare several user selection algorithms that find sub-optimal solution
to (4), namely the metric-based selection using the NSP metric proposed in [21] using GSO,
[19], [35] using SVD, and the NSP approximation based on (23) proposed in [26]. The optimal
solution of (4) is found by exhaustive search subject to |S | = N t , i.e., maximum multiplexing
gain. In order to highlight the contribution of multiuser diversity we compare performance
with respect to two simplistic user selection approaches, one based on the maximum channel
gain (MCG) criterion (selecting the N t  users with higher channels norms), and a second
approach performing round robin user scheduling (RRS) policy. We compare the performance
of the metric-based selection in Section 6.1 with two greedy utility-based (sum rate) algorithms
in Section 6.2 [18] and [40], and with the integer linear program (ILP) selection described in
Section 6.3.

In Fig. 4 we compare the average sum rate as a function of the number of users for different
user selection strategies for both precoding techniques. For the case of ZFBF Fig. 4 (a) and
K <10, the solution set of the utility-based selection in [18] is achieved with a cardinality
less than N t  compared to the optimum selection. This suggest that when K ≈N t  is more
efficient  to select  the users in a greedy fashion as described in Section 6.2,  than to per‐
form the selection based on channel metrics. When the number of competing users is large
K ≫N t ,  the performance gap between the three user  selection approaches described in
Section 6 decreases and all techniques achieve maximum multiplexing gain. For the large
K  regime,  the  metric-based  selection  achieves  a  performance  close  to  the  utility-based
selection with less computational effort. Moreover, the performance of the NSP approxima‐
tion in [26] converges to one of [19], [21], [35] with more gains in terms of computational
complexity. In the case of ZFDP Fig. 4 (b) all approaches in Section 6 achieve full multiplex‐
ing diversity regardless the regime of K . This is due to the fact that ZFDP can efficiently
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use all spatial resources at the transmitter for the high SNR regime. The utility and metric
based selection techniques achieve the same performance over all  range of  K .  The NSP
approximation metric  in  [26]  achieves more than 95% of  the optimum capacity and the
performance gap reduces as the number of  users increases.  Notice that  the approach in
Section 6.3 optimally solves problem (24) and its performance is an upper bound for the
user  selection in  [26].  The performance of  all  approaches presented in Section 6  is  sub-
optimal, yet they represent different and acceptable trade-offs between sum rate perform‐
ance, computational complexity, and multiplexing gain for different values of K  and the
SNR regime.

In Fig. 5 the average sum rate is a function of the SNR for ZFBF and K =10. The results
show that  for  P < P0≈10(dB) the utility-based selection is  more efficient  than the metric-
based  selection  in  the  low  SNR  regime.  In  the  high  SNR  regime  the  performance  gap
between the optimum selection and the approaches in Section 6 is less than 10%. Observe
that even the NSP approximation metric in [26] can efficiently exploit multiuser diversity
and the approaches based exclusively on channel magnitudes (MCG) and random selec‐
tion incur in a large performance degradation. Comparing the performance of the utility-
based versus the metric-based user  selection is  in  general  not  fair  since the former will
optimize  directly  its  utility  function  while  the  latter  attempts  to  reduce  computational
complexity by optimizing a simpler utility function. The performance gap between the two
approaches is  large for  low SRN and K  regimes.  The reason is  that  the former directly
optimizes the set of selected users while the latter indirectly estimates if a given set can
maximize  the  sum  rate.  In  the  high  SNR  regime,  the  gap  between  both  approaches
diminishes and results  in  [18]  show that  the achievable  sum rate  in  both approaches is
proportional to the number spatial resources N t  at the transmitter.

Figure 4. Average sum rate versus the number of users (K ) with SNR = 18 (dB) and N t = 4 for (a) ZFBF and (b) ZFDP.
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Figure 5. Average sum rate versus the SNR for the with K = 10, N t = 4, and ZFBF.

8. Summary

In this chapter, we have presented several metrics and techniques for user selection in
multiuser MISO scenarios. This topic has been object of extensive research over the last years
for different wireless scenarios. Several metrics that evaluate spatial compatibility, matrix
invertibility, pairwise orthogonality, and eigenvalue dispersion were presented and compared
for the sum rate maximization with user selection problem. Results show that the null space
projection and its approximations are the metrics that most efficiently identify the set of users
that maximizes the sum rate for both precoders ZFBF and ZFDP. Since the optimal user
selection for sum rate maximization is a complex combinatorial problem different sub-optimal
selection strategies were presented. The metric-based and utility-based techniques compute
the user selection in a greedy fashion finding close-to-optimal solution. The metric-based
selection was reformulated as an integer program selection which provides an upper bound
of the performance of a metric based on the null space projection. Numerical results show that
depending on the multiuser diversity and SNR regime one strategy of user selection can be
preferred over the others reaching a fair trade-off between performance and complexity.
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