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1. Introduction

Spinal cord injury (SCI) often leads to persistent functional deficits, due to loss of neurons and
glia and to limited axonal regeneration after injury. Recently, three independent groups have
reported that transplantation of human adult dental pulp stem cells (DPSCs) and stem cells
from human exfoliated deciduous teeth (SHEDs), into the acute, sub-acute or chronic phase of
rat or mouse SCI resulted in marked recovery of hindlimb locomotor functions. This review
summarizes the primary characteristics of human dental pulp stem cells and their therapeutic
benefits for SCI treatment. Experimental data from a number of preclinical studies suggests
that pulp stem cells may promote functional recovery after SCI through multifaceted neuro-
regenerative activities.

2. Dental pulp stem cells

Humans have two sets of teeth, 20 deciduous and 32 permanent ones. In the center of each
tooth, there is a cavity pulp chamber, which is filled with soft connective tissue called dental
pulp (Nanci and Ten Cate, 2003) (Fig.1). The major components of dental pulp are odontoblasts,
fibroblasts, immune cells, extracellular matrix, blood vessels and nerve fibers. The pulp tissues
are connected with systemic network through the apical foramen; this provides nutrition and
sensation for responding to the external stimuli. Human adult dental pulp stem cells (DPSCs)
and stem cells from human exfoliated deciduous teeth (SHEDs) are self-renewing stem cells
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residing within the perivascular niche of the dental pulp (Gronthos et al., 2002b). They are
thought to originate from the cranial neural crest, of embryonic period and they simultane‐
ously express early markers for both mesenchymal, neuroectodermal stem/progenitor cells
and some of embryonic stem cells markers (Gronthos et al., 2000, Miura et al., 2003, Kerkis et
al., 2006, Sakai et al., 2012).

Figure 1. Diagram of tooth and pulp stem cells. (A) The tooth and its supporting structure (from Ten Cate's Oral Histl‐
ogy, Nanci and Ten Cate, 2008). PDL, Periodontal ligament. (B) Morphology of pulp stem cells. They exhibit a fibroblas‐
tic morphology with a bipolar spindle shape. Scale bar in (B): 500 μm.
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Most SHEDs and DPSCs express a set of adult bone marrow stromal stem cell (BMSC) markers
(CD90, CD73, and CD105), neural stem/progenitor cell markers (Doublecortin, GFAP, and
Nestin), and early neuronal and oligodendrocyte markers (βIII-tubulin, A2B5 and CNPase),
but not markers for mature oligodendrocytes (MBP and APC) (Sakai et al., 2012). Since
naturally exfoliated deciduous and impacted adult wisdom teeth are dispensable, DPSCs and
SHEDs can be easily obtained by utilizing a simple protocol (Liu et al., 2006). DPSCs and
SHEDs exhibit a faster rate of proliferation and a higher number of population doublings in
vitro, compared with BMSCs. Furthermore, the rate SHEDs is 1.5 times faster than that of
DPSCs (Miura et al., 2003). Like BMSCs, they are multipotent cells that can differentiate in vitro
into a variety of cell types including odontoblasts, osteoblasts, chondrocytes, adipocytes,
endothelial cells, myocytes, and functionally active neurons (Gronthos et al., 2000, Gronthos
et al., 2002a, Batouli et al., 2003, Miura et al., 2003, Nosrat et al., 2004, Kerkis et al., 2006,
d'Aquino et al., 2007, Arthur et al., 2008, Arminan et al., 2009, Wang et al., 2010). Furthermore,
when transplanted into the transected spinal cord (SC), they specifically differentiate toward
mature oligodendrocyte lineages (Sakai et al., 2012: see below).

A cDNA microarray analysis showed that SHEDs express many genes encoding extracellular
and cell-surface proteins at levels at least two-fold higher than are expressed in BMSCs (Sakai
et al., 2012). It has been shown that the array of trophic factors produced by engrafted DPSCs
and SHEDs provide significant therapeutic benefits for the treatment of preclinical animal
disease models, including myocardial infarction, systemic lupus erythematosus (SLE),
ischemic brain injury, SCI, and colitis (Gandia et al., 2008, Nakashima et al., 2009, Yamaza et
al., 2010, de Almeida et al., 2011, Leong et al., 2012, Ma et al., 2012, Sakai et al., 2012, Taghipour
et al., 2012, Zhao et al., 2012, Inoue et al., 2013, Yamagata et al., 2013). Thus, these studies
collectively show that tooth-derived stem cells are a highly proliferative, multi-potent, and
self-renewing ecto-mesenchymal stem cell-like population that actively secretes a broad
repertoire of trophic and immunomodulatory factors.

3. Brief overview of the pathophysiology of SCI

The development of effective treatments for SCI has been stifled by this injury’s complicated
pathophysiology. During the acute phase, a primary mechanical insult disrupts tissue
homeostasis. This triggers a secondary response, in which activated resident microglia and
infiltrating blood-derived macrophages initiate severe inflammation by releasing high levels
of multiple neurotoxic factors that induce the necrotic and apoptotic death of neurons,
astrocytes, and oligodendrocytes. This response spreads beyond the initial injury site, and
leads to irreversible axonal damage and demyelination (Schwab et al., 2006, Popovich and
Longbrake, 2008, Rowland et al., 2008). Subsequently, reactive astrocytes and oligodendro‐
cytes near the site of the injured spinal cord (SC) respectively produce chondroitin sulfate
proteoglycans (CSPG) and myelin proteins (including myelin-associated glycoprotein (MAG),
Nogo, OMG, Netrin, Semaphorin, and Ephrin). These extracellular molecules function as axon
growth inhibitors (AGIs), acting through the intracellular Rho GTPase signaling cascade
(Silver and Miller, 2004, Yiu and He, 2006). Thus, multiple pathogenic signals act to synergis‐
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tically accelerate the progressive neuronal deterioration following SCI. Therefore, therapeutic
strategies for functional recovery from SCI must exert multifaceted reparative effects targeting
a variety of pathogenic mechanisms (Schwab et al., 2006).

4. Multifaceted neuro-regenerative activities of pulp stem cells

4.1. Anti-inflammatory activity

Under various pathogenic conditions, macrophages differentiate into polarized pro-inflam‐
matory (M1) or anti-inflammatory (M2) states, and direct either detrimental or beneficial
effects on tissue healing (Gordon, 2003, Mosser and Edwards, 2008). In the acute phase of SCI,
the majority of accumulating microglia/macrophages are of the M1 type, and few M2 macro‐
phages are seen throughout this period (Kigerl et al., 2009, David and Kroner, 2011). The
activated M1 macrophages secrete high levels of pro-inflammatory cytokines and neurotoxic
factors, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, glutamate, and
reactive oxygen species (Hausmann, 2003, Donnelly and Popovich, 2008). These neurotoxic
factors accelerate glial scar formation (Popovich and Longbrake, 2008), and they induce
neuronal cell death (Takeuchi et al., 2006, Block et al., 2007) and the retraction of damaged
dystrophic axons (Horn et al., 2008, Busch et al., 2009). In contrast, M2 cells counteract the pro-
inflammatory M1 effects and promote tissue remodeling by secreting anti-inflammatory
cytokines (e.g. IL-10 and TGF-β), and scavenging cellular debris (Gordon, 2003, Mosser and
Edwards, 2008, David and Kroner, 2011). Thus, macrophage polarity has the potential to
determine the level of inflammation and the resultant prognosis following SCI.

Recent studies have demonstrated the induction of M2 macrophage polarization following
SCI, and some of the underlying mechanisms are beginning to be elucidated. CSPG, a major
component of the glial scar that is mainly known for its ability to inhibit axonal growth, has
recently been shown to promote M2 polarization of infiltrating blood-derived macrophages
(Rolls et al., 2008, Shechter et al., 2009, Shechter et al., 2011). In addition, recent reports have
shown that BMSC transplantation using SCI or brain ischemia models leads to M2 induction
(Ohtaki et al., 2008, Nakajima et al., 2012). BMSC-mediated M2 induction requires both the
pre-sensitization of BMSCs by pro-inflammatory factors, such as IFN-γ, TNF-α, and LPS, and
direct cell-to-cell contact (Nemeth et al., 2009, Singer and Caplan, 2011). Thus, CSPG together
with pro-inflammatory factors in the injured SC may be involved in the pre-sensitization of
engrafted BMSCs to activate their M2-inducing machinery.

As described in the previous section, SHEDs also exhibit strong immunosuppressive proper‐
ties that effectively ameliorate several autoimmune diseases, including SLE and colitis
(Yamaza et al., 2010, Ma et al., 2012, Zhao et al., 2012). Importantly, intravenously administered
SHEDs express Fas-Ligand, which induces T-cell apoptosis, thereby triggering immune
tolerance (Zhao et al., 2012). This elevates the ratio of regulatory T cells (Tregs) to pro-
inflammatory T cells, resulting in anti-inflammatory conditions (Yamaza et al., 2010). We also
found that, in the mouse hypoxic ischemia model, both intracerebral transplantation of SHEDs,
and administration of serum-free conditioned media (CM) derived from SHEDs (SHED-CM),
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generates anti-inflammatory conditions and promotes functional recovery (Yamagata et al.,
2013). Thus, tooth-derived stem cells have strong immunoregulatory properties that promote
tissue regeneration in the injured CNS.

4.2. Regeneration of the injured axon

Both axonal regeneration and the re-formation of appropriate neuronal connections are
required for functional recovery from SCI. However, multiple AGIs block the inherent
regenerative capacities of injured axons (Silver and Miller, 2004, Schwab et al., 2006, Yiu and
He, 2006, Rowland et al., 2008). It is well known that AGIs constitute an intricate molecular
network in the extracellular space of the injured CNS, where they activate a common intra‐
cellular signaling mediator, Rho GTPase, and its effector, Rho-associated kinase (ROCK)
(Maekawa et al., 1999, Winton et al., 2002, Dubreuil et al., 2003, Monnier et al., 2003, Yamashita
and Tohyama, 2003). Activation of the Rho-ROCK cascade induces growth-cone collapse and
axonal repulsion (Hall, 1998). In contrast, inactivation of either Rho by C3 transferase, or ROCK
by the kinase inhibitor Y-27632 down-regulates AGI signaling and promotes functional
recovery after SCI (Lehmann et al., 1999, Dergham et al., 2002, Fournier et al., 2003). Thus, Rho-
ROCK signaling is an important target for SCI treatments; however, few studies have inves‐
tigated the effect of stem-cell transplantation on regulating AGI/Rho-ROCK signaling
cascades.

Importantly, engrafted SHEDs were recently shown to promote the regeneration of two major
types of descending axons (CST and 5-HT) beyond the lesion epicenter, and to concomitantly
inhibit SCI-induced Rho activation. Furthermore, both SHED-CM and DPSC-CM (but not
BMSC-CM) promote neurite extension by primary cerebral granular neurons (CGNs) cultured
on two different AGIs (CSPG and MAG) (Sakai et al., 2012). Thus, tooth-derived stem cells
promote the regeneration of transected axons through the direct inhibition of multiple AGI
signals by paracrine mechanisms.

In addition, the engraftment of DPSCs into avian embryos results in the chemoattraction of
trigeminal ganglion axons via the chemokine CXCL12 and its receptor, CXCR4 (Arthur et al.,
2009). DPSCs and SHEDs express several neurotropic factors that promote neurite extension
(de Almeida et al., 2011, Sakai et al., 2012). Our preliminary analysis showed that these trophic
factors, when applied individually, failed to promote the neurite extension of CGNs cultured
on CSPG-coated dishes; however it is possible that they may promote axonal regeneration in
a synergistic manner.

4.3. Anti-apoptotic activity

Pharmacological blockade of neuron and/or oligodendrocyte apoptosis by a number of agents
promotes functional recovery after SCI. These agents include the following: erythropoietin
(Celik et al., 2002, Gorio et al., 2002), inhibitors of purine receptor P2X7 (OxATP and PPADS)
(Wang et al., 2004), a neutralizing antibody against CD95 (FAS) antigen (Demjen et al., 2004),
and minocycline (Stirling et al., 2004, Teng et al., 2004). Engrafted SHEDs suppress the
apoptosis of neurons and oligodendrocytes, resulting in the remarkable preservation of
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neurofilaments and myelin sheaths in the region surrounding the lesion epicenter (Nosrat et
al., 2001, de Almeida et al., 2011). Intracerebral transplantation of DPSCs from rhesus macaques
promotes proliferation, cell recruitment, and maturation of endogenous stem/progenitor cells
by modulating the local microenvironment (Huang et al., 2008). Notably, SHEDs also strongly
inhibit the apoptosis of astrocytes recruited to the lesion (Sakai et al., 2012).

Classically, reactive, CSPG-generating astrocytes have been considered an obstacle to axonal
regeneration; however, recent genetic studies in mice indicate that the conditional ablation of
astrocytes after SCI results in larger lesions, failure of blood-brain-barrier repair, increased
inflammation and tissue disruption, severe demyelination, and profound cell death of neurons
and oligodendrocytes (Bush et al., 1999, Faulkner et al., 2004, Okada et al., 2006, Herrmann et
al., 2008, Rolls et al., 2009). Thus, the collective evidence demonstrates that, in addition to their
anti-regenerative activity, astrocytes also play an important role in neuro-protection during
the acute phase of SCI. SHEDs can suppress astrocyte apoptosis and minimize secondary
injury, as well as inhibit the AGI activity of CSPG derived from astrocytes. Thus, SHEDs have
the potential to promote functional recovery after SCI through two distinct mechanisms
involving astrocyte regulation.

4.4. Cell-replacement activity

Undifferentiated rat and human pulp stem cells can form neurospheres in vitro (Sasaki et al.,
2008, Wang et al., 2010) and simultaneously express multiple neural stem/progenitor markers
(Gronthos et al., 2002a, Miura et al., 2003, Sakai et al., 2012). In addition, DPSCs can differentiate
in vitro toward functionally active neurons, which express voltage-gated Na+channels, and in
vivo toward neuron-like cells 48 hours after transplantation into the mesencephalon of avian
embryos (Arthur et al., 2008). Furthermore, simultaneous PKC and cAMP activation induces
the differentiation of DPSCs into functionally active neurons (Kiraly et al., 2009). Thus, pulp
stem cells display a capacity for neuronal differentiation both in vivo and in vitro.

Recently, three independent groups reported that pulp stem cells show neuro-regenerative
activity in rodent SCI models. Interestingly, engrafted pulp stem cells promoted significant
functional recovery in all three studies, but exhibited variable capacities for differentiation. In
the first study, DPSCs were transplanted into the compressed mouse SC at day 7 (sub-acute
phase) or day 28 (chronic phase) after injury, and the engrafted DPSCs differentiated into glia
cells expressing S-100 and GFAP (de Almeida et al., 2011). In the second study, undifferentiated
or neural-phenotype induced SHED (iSHED) were transplanted into the contused rat SC at 7
days after injury. Engrafted SHED and iSHED differentiated primarily into MAP2+mature
neurons and GFAP+astrocytes, and to a lesser extent into MBP-and NG2-expressing oligo‐
dendrocytes (Taghipour et al., 2012). In the third study, from our group, undifferentiated
SHEDs were transplanted into the completely transected rat SC immediately after the surgery.
The engrafted SHEDs survived well following SCI: more than 30% of the engrafted SHEDs
survived as a cell mass in the injured SC 8 weeks after transplantation and more than 90% of
the engrafted SHEDs differentiated toward mature oligodendrocytes, expressing APC and
MBP (Sakai et al., 2012).
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Taken together, these experimental data suggest that the microenvironment of the transplant‐
ed stem cells significantly affects their capacity for differentiation. In the acute phase of SCI,
the injured SC contains high levels of pro-inflammatory mediators. Thus these factors may
activate the oligodendrocyte-specific differentiation cascade of pulp stem cells.

5. Conclusion

Recent experimental data from a number of studies reveals that engrafted SHEDs provide a
number of distinct therapeutic benefits for treatment of SCI: (1) the suppression of the early
inflammatory response; (2) inhibition of the SCI-induced apoptosis of neurons, astrocytes, and
oligodendrocytes, which promotes the preservation of neural fibers and myelin sheaths; (3)
regeneration of the transected axon through the direct inhibition of multiple AGI signals
(including CSPG and MAG) by paracrine mechanisms; and (4) cell replacement in the damaged
SC through the SHEDs’ capacity for differentiation towards oligodendrocytes, neurons and
astrocytes. Thus, we propose that tooth-derived stem cells may provide significant therapeutic
benefits for treating SCI through both cell-autonomous and paracrine/trophic regenerative
activities.
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