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1. Introduction

Cerebral amyloid angiopathies (CAA) can be divided into sporadic and hereditary forms. This
chapter is focused on the genetics of sporadic CAA, but will first consider hereditary forms in
brief.

1.1. Hereditary CAA

Amyloid-β protein (Aβ), the commonest amyloid subunit implicated in sporadic forms of
CAA, is also involved in certain hereditary forms. Several other proteins are also associated
with rare familial diseases in which CAA is a characteristic morphological feature. [1] Missense
mutations within or just outside the Aβ peptide coding region of the APP gene result in
clinicopathological phenotypes of early onset Alzheimer’s disease (AD) and are associated
with a neuropathological phenotype which includes prominent CAA – for example hereditary
cerebral haemorrhage with amyloidosis of Dutch type (HCHWA-D), or with Italian, Arctic,
Iowa, Piedmont and Flemish mutations. Severe Aβ CAA has also been well documented in
cases of familial AD due to mutations in the presenilin (PSEN1 and PSEN2) genes. Familial
CAAs associated with other proteins include BRI2 gene-related dementias (familial British
dementia and familial Danish dementia), cystatin C gene mutations in hereditary cerebral
haemorrhage with amyloidosis of Icelandic type, TTR gene mutations in meningo-vascular
amyloidosis, hereditary prion disease with premature stop codon mutations and mutated
gelsolin gene in familial amyloidosis of Finnish type. [1]

1.2. Sporadic CAA

Sporadic cerebral amyloid angiopathy is characterised by deposition of Aβ in leptomeningeal
and cortical blood vessels. It has a prevalence in population-based autopsy studies of 20-40%
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in non-demented and 50-60% in demented elderly people. [2] Neuropathological case-control
and cross-sectional studies, as well as the increased incidence of intracerebral haemorrhage
(ICH) in patients with Alzheimer’s disease, suggest that CAA causes lobar ICH. [3, 4] CAA is
also associated with increasing age, dementia, lobar brain microbleeds, leukoaraiosis, small
cortical infarcts and superficial siderosis. [3, 5-7]

It is unknown why only a few people with CAA pathology develop an ICH, but it seems likely
to involve biological pathways additional to and distinct from those involved in vascular
amyloid deposition. Cases of CAA with ICH not only have a greater proportion of amyloid-
laden blood vessels, [8] but also more often demonstrate severe CAA with associated vascul‐
opathy. [8-11]

Identifying genetic polymorphisms associated with the presence of histopathologically
confirmed CAA in general, as well as with the severe form of CAA thought to cause vessel
rupture and ICH, should increase our understanding of the mechanisms leading to CAA and
associated diseases, including CAA associated ICH.

Polymorphisms in the apolipoprotein E gene (APOE) [12] are associated with ICH as well as
with other conditions in which CAA may be involved, including subarachnoid haemorrhage,
lobar brain microbleeds, and AD. [7, 13-18] In vitro studies have shown that APOE influences
Aβ conformation, fibril formation and toxicity, [19, 20] while in vivo mouse studies have
confirmed a critical role for apolipoprotein E in Aβ deposition, toxicity and possibly clearance.
[21, 22] It therefore seems likely that APOE influences risk of developing histopathologically
confirmed, sporadic CAA. Other genetic polymorphisms are also likely to contribute to
development of sporadic CAA.

Below we present and summarise the evidence for associations of polymorphisms in APOE
or any other gene with histopathologically confirmed, sporadic CAA in adult humans. We
then go on to consider the evidence for associations of APOE with the severe form of CAA.
The evidence presented is based mainly on our two recently published systematic reviews of
all relevant published studies, both of which incorporated a comprehensive search strategy, a
thorough assessment of study quality, a series of meta-analyses, and an evaluation of the
robustness of any positive findings to small study and other methodological biases. [23, 24]
Figure 1 summarises the strategy used for identifying relevant studies and the numbers of
studies (and study participants) identified.

2. Genetic associations with histopathologically-confirmed, sporadic CAA

While robust, large-scale evidence exists for an association of APOE with ICH attributed to
CAA on the basis of clinical criteria, [15] studies assessing association of APOE with histopa‐
thologically confirmed CAA have had various methodological shortcomings (including small
size), and reported results vary. Our systematic review of genetic associations with histopa‐
thologically confirmed, sporadic CAA sought all studies in which participants had been
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Figure 1. Selection of included studies
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genotyped for any genetic polymorphism and had CAA assessed pathologically (using
autopsy or biopsy). [23] Studies that had assessed genetic associations with CAA-associated
ICH (CAAH) versus CAA-free controls were excluded, because these would not be able to
distinguish a genetic association with the presence of CAA histopathology from an association
with ICH.

2.1. APOE ε2/ε3/ε4 polymorphism and sporadic CAA

We identified 46 studies including 6645 participants with data about the APOE ε2/ε3/ε4
polymorphism and sporadic CAA (Figure 1). [25-70] These studies had used autopsy brains
from clinical autopsy collections, a brain bank or a population-based prospective study.
Participants’ mean age was 70 to 85 years in most studies and about half were male. Almost
90% of participants were of European ancestry while around 10% were from Asian populations
(all Japanese). About 30% of participants had clinical dementia (mainly AD), about 10% were
known not to be demented and dementia status was not specified for the remainder. There
was substantial variation in overall study quality. Genotyping reporting quality [71, 72] was
generally limited and methods for pathological assessment were very variable. Larger studies
tended to be of higher quality. [23]

2.1.1. APOE ε4 and CAA

Meta-analyses were possible of data from just over half of these studies (including just over
half of the participants), and showed a significant association between ε4+ genotypes and
presence of CAA (OR 2.67, 95% CI 2.31 to 3.08), although there was significant heterogeneity
between the studies' results (Figure 2). There were no significant differences between sub‐
groups of studies based on dementia status, ethnicity or overall study quality score (Figures
2 and 3). Six studies (443 participants) made only a qualitative statement, [27, 30, 33, 37, 40,
42] reporting either no significant association or a trend towards association with APOE ε4,
while 16 studies (2682 participants) provided no information about the association. [25, 28, 29,
31, 32, 34-36, 38, 39, 41, 43, 46, 47, 50, 57]

Failsafe N calculations [73] showed that a null study of >137, 000 participants would be re‐
quired to bring the association of ε4+ genotypes with CAA from the meta-analysis to a just
statistically non-significant level. This makes it unlikely that there might plausibly be
enough participants in unpublished, unreported or otherwise unretrieved null studies to
make this significant result non-significant, and suggests that the association of APOE ε4+
genotypes with histopathologcally confirmed, sporadic CAA is real and robust. Meta-analy‐
sis of the association of APOE ε4 allele dose with CAA among 12 studies (1706 participants)
providing quantitative data showed a significant increase in the odds of having CAA with
increasing dose of the ε4 allele (Figure 4). Two further studies (117 participants) provided a
qualitative statement about the association supported this result. [40, 64] Failsafe N calcula‐
tions showed that it would require a null study of >7000 participants to bring the stronger
association with CAA of ε4 homozygous versus heterozygous genotypes to a just non-sig‐
nificant level, suggesting that the finding of a dose-response relationship between APOE ε4
and CAA is real and robust.
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The squares represent study-specific odds ratios (ORs), with their size proportional to their statistical weight by the
generic inverse variance method. Horizontal lines represent 95% confidence intervals (CIs). Diamonds represent
pooled ORs, and their width represents the 95% CI. Higher score represents better study quality.
Reproduced from “Genetics of cerebral amyloid angiopathy: systematic review and meta-analysis” Rannikmäe K, Sa‐
marasekera N, Martīnez-Gonzālez NA, Al-Shahi Salman R, Sudlow C. Journal of Neurology Neurosurgery and Psychia‐
try 2013;84(901-8), with permission from BMJ Publishing Group Ltd.

Figure 2. Meta-analysis of association of APOE ε4+ vs ε4- genotypes with CAA by participants’ dementia status
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2.1.2. APOE ε2 and CAA

Meta-analysis of the association of APOE ε2+ versus ε2- genotypes with CAA among 11 studies
(1640 participants) showed borderline significant decreased odds of CAA with APOE ε2+
genotypes (OR 0.73, 95% CI 0.53 to 1.00, p=0.05). Two studies (213 participants) provided a
qualitative statement; neither reported a significant association. [60, 64]

The squares represent pooled ORs and their width represents the 95% CI. Higher score represents better study quality.
Reproduced from “Genetics of cerebral amyloid angiopathy: systematic review and meta-analysis” Rannikmäe K, Sa‐
marasekera N, Martīnez-Gonzālez NA, Al-Shahi Salman R, Sudlow C. Journal of Neurology Neurosurgery and Psychia‐
try 2013;84(901-8), with permission from BMJ Publishing Group Ltd.

Figure 3. Subgroup analysis based on study quality scores.

Generic inverse variance fixed effects method.  
*Refers to number of participants included in the analysis.  

No.* OR (95% CI)

ε4/x vs εx/x 1538 2.09 (1.69 to 2.58)

ε4/4 vs ε4/x 824 3.26 (2.24 to 4.74)

ε4/4 vs εx/x 1050 6.60 (4.47 to 9.75)

0.1 1 10

Presence of CAA decreased with ε4 allele Presence of CAA increased with ε4 allele 

The squares represent pooled ORs and their width represents the 95% CI.

Figure 4. Meta-analysis of effects of APOE ε4 dose (ε4--/ε4+-/ε4++genotypes) on presence vs absence of CAA
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2.1.3. Summary and discussion

There is, therefore, robust evidence for a highly significant, dose-dependent association
between APOE ε4 and pathologically proven CAA, which does not vary significantly with
dementia status, ethnicity, or study quality. However, there is no clear overall association
between APOE ε2 and histopathologically confirmed CAA. Lack of variation in the effect of
APOE ε4 by study size and the very large failsafe N showed that this association could not
plausibly be explained by publication, reporting or any other small study bias. It is important
to note that the quality of studies included in our systematic review was generally limited
when assessed against current reporting standards. [71, 72] However, there were - reassuringly
- no significant subgroup differences by study quality score.

The prevalence of CAA in Alzheimer’s disease is over 70% but the relationship between CAA
and AD is still poorly understood. Although the diagnostic criteria for dementia and the
participant inclusion criteria varied between the studies in our systematic review (some
excluding cases with severe dementia), the demonstration of a similar association in those with
and without clinical dementia suggests that the association of APOE ε4 with CAA is inde‐
pendent of its known association with dementia (mainly Alzheimer’s disease).

Pathological assessment in the included studies was very variable. Indeed, there is no widely
accepted, standardized histopathological grading system for CAA, [74] and no comparative
studies to determine the most accurate method for assessing CAA (although the suggested
method is a combination of Thioflavin S/T or Congo Red with immunohistochemistry). [75]
CAA assessment location also varied widely, possibly influencing the rate of CAA detection,
since a greater burden of CAA is generally reported in the occipital or parietal lobes, albeit
with a higher frequency of frontal lobe involvement reported in studies from China and Japan.
[74] This is important because genetic associations may differ by CAA location and subtype.
For example, there is preliminary evidence that APOEε4 may be associated with CAA type 1
(where CAA is found in cortical capillaries), and ε2 with CAA type 2 (where amyloid is
deposited in leptomeningeal and cortical vessels with the exception of cortical capillaries). [26]
In addition, since APOE effects on ICH may vary with ethnicity, there may also be ethnic
variation in genetic associations with CAA, but these have not yet been widely enough studied
in non-white populations to assess this reliably. [76]

2.2. Associations between other genetic polymorphisms and sporadic CAA

In our systematic review, few polymorphisms other than APOE had been studied in more than
a few hundred participants or in more than one study and there were not enough data for
meta-analysis (Figure 1, Table 1). [39, 46, 50, 61, 63, 77-95] Thus, there were too few studies and
participants to draw firm conclusions about the effect of other genetic polymorphisms.
However, there were some suggestive positive associations with CAA. First, there was a
consistent trend towards an association with CAA of a single nucleotoide polymorphism (SNP)
in the transforming growth factor-β1 (TGF-β1) gene in two studies (449 participants). [82, 85]
If real, this may occur through an influence of TGF-β1 on Aβ clearance and deposition through
activation of astrocytes and microglia. Second, there were significant associations in one study
(723 participants) of SNPs in the translocase of outer mitochondrial membrane 40 (TOMM40)
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gene with vascular amyloid burden but not with ICH attributed to CAA, [88] which could be
through interaction of TOMM40 with APOE ε2 or through its effects on Aβ mitochondrial
transport. Finally, one study (544 participants) found an association of a SNP in the comple‐
ment component receptor 1 (CR1) gene with both CAA severity and ICH attributed to CAA,
possibly occurring via altered clearance of Aβ peptide. [96] Other studies found no overall
significant associations, although some reported associations in particular subgroups (Table 1).

Gene Location / Polymorphism
No. of
studies

No. of
participants

Summary of results

TGF-β1 rs1800470 2 449

Consistent trend for
positive association

between T allele and
CAA

TOMM40

rs2075650, rs34404554, rs11556505,
rs769449, rs12972156, rs12972970,

rs157582, rs184017, rs157581, rs283815,
rs157580, rs439401, rs34095326,

rs10119

1 723
SNPs associated with

vascular amyloid burden

CR1 gene rs6656401 1 544
Associated with severity

of CAA pathology

LRP1 (low-density
lipoprotein receptor 1)

rs1799986 3 597

No overall significant
associations

(inconsistent trends and
in some cases
associations in

subgroups)

ACT (α1 antichymotrypsin)
signal region of the gene → A/T alleles

that determine the aminoacid alanine or
threonine**

2 235

CYP46 rs754203 2 524

ACE (angiotensin 1
converting enzyme)

intron 16 insertion/deletion of a 287 bp
sequence

2 239

Gene

18 50-380*

PS1 (presenilin-1);BCHE (butyrylcholinesterase);DXS1047 locus;APOE
promoter;A2M (α2 macroglobulin);PON1 (paraoxonase);NEP
(neprilysin);OLR1 (oxidized low-density lipoprotein receptor 1);LRP
(low density lipoprotein receptor related protein);CYP46;
CH25H*1;VEGF (vascular endothelial growth
factor);IL-1A;IL-1B;IL-33;GSTO1-1 (glutathione S-transferase
omega-1);SORL1 (sortilin related receptor);CTSD (cathepsin D); AβPP
and AβPppromoter;

*Range of participant numbers in individual studies **probably rs4943

Adapted by permission from BMJ Publishing Group Limited, from “Genetics of cerebral amyloid angiopathy: systematic
review and meta-analysis” Rannikmäe K, Samarasekera N, Martīnez-Gonzālez NA, Al-Shahi Salman R, Sudlow C. Journal
of Neurology Neurosurgery and Psychiatry 2013;84(901-8)

Table 1. Summary of studies of non-APOE polymorphisms and CAA
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3. APOE allele-specific associations with severe CAA-associated
vasculopathy

The systematic review and series of meta-analyses presented in the previous section confirmed
an association between histopathologically diagnosed CAA and APOE ε4, but not APOE ε2.
However a recent large scale genetic association study found that both ε2 and ε4 containing
genotypes were associated with clinically diagnosed CAA, manifesting as lobar ICH attributed
to CAA. [15] Furthermore, APOE ε2 has been found to predict initial haematoma volume,
haematoma expansion, increased mortality and poor functional outcome after lobar ICH. [17,
97] The currently favoured popular explanation for these findings is, that APOE ε4 enhances
deposition of amyloid-β in cerebral blood vessel walls, while ε2 promotes haemorrhage from
amyloid-laden blood vessels by increasing specific CAA-related vasculopathic changes
(Figure 5). [8, 25, 98]

Popular theory: 

Current state of evidence: 

No CAA Mild/Moderate

CAA 

Severe CAA 

vasculopathy

CAA related

ICH

ε4 ε2 ε2 and ε4   

ε4 ε4? ε2 and ε4  

Adapted from Figure 1 in Acta Neuropathologica 2005;110: 345–359 “Sporadic cerebral amyloid angiopathy: pathol‐
ogy, clinical implications, and possible pathomechanisms”, Johannes Attems, with kind permission from Springer Sci‐
ence and Business Media and Professor Attems.

Figure 5. Proposed theory and current state of evidence about associations between APOE and CAA phenotype

In a further recent systematic review, we reviewed the evidence for this hypothesis. [24] The
main focus of this work was on assessing the potential influence of APOE genotypes on severe
CAA preceding rupture. To avoid selection bias, we excluded studies with participants
selected on the basis of having had a CAA-related ICH, since APOE ε2 and ε4 are already
known to be associated with this phenotype, and severe CAA is commoner in such cases. This
review sought all studies, which had conducted both APOE genotyping and histopathological
assessment for CAA, including assessment for severe CAA with associated vasculopathic
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changes (blood vessel dilatation, microaneurysm formation, fibrinoid degeneration, cracking
and double-barrelling of the vessel wall, and paravascular leakage of blood). The assessment
for this severe form of CAA could have occurred either as part of the Vonsattel grading scale,
[9] which includes such changes in its ‘severe’ category or through specifically reporting on
some or all of the relevant histopathological characteristics. From 1754 publications screened,
we identified six eligible studies, which included 543 eligible participants (Figure 1). [8, 25, 62,
64, 99, 100] Only one of the six studies had previously reported on the association between the
APOE genotype and severe CAA (assessed using Vonsattel scale), finding a significantly
greater frequency of APOE ε2 in severe versus moderate CAA cases. [25] This study and four
others that had rated CAA on the Vonsattel scale, between them including 497 eligible
participants (92% of all 543 potentially eligible participants), [62, 64, 99, 100] were able to share
their unpublished data for collaborative meta-analyses.

The five studies included in the meta-analyses used autopsy brains either from brain tissue
banks or from a population-based prospective study with an autopsy component. There were
57 to 227 eligible participants per study, mean age at death was 78 to 84 years and about half
of all participants were male. Three studies (357 participants) were conducted in predomi‐
nantly white populations in the USA while information on ethnicity was unavailable for two
studies (140 participants). About 50% of participants had clinical dementia (mainly neuropa‐
thologically confirmed AD), about 20% were known not to be demented and in the remaining
30% dementia status was unknown. The quality of genotyping and of pathology assessment
was generally very good when assessed against current reporting standards. [71, 72] As in the
first of our two systematic reviews, methods for pathological assessment were variable,
reflecting a lack of agreed standards for CAA pathology assessment at the time these studies
were conducted. [24]

Among the 353 individuals in these five studies who had CAA present on histopathological
assessment, meta-analyses found a significant association of ε4+ versus ε4- genotypes with
severe versus mild/moderate CAA (OR 2.5, 95% CI 1.4 to 4.5, p=0.002) but no significant
association with severe versus moderate CAA (OR 1.7, 95% CI 0.9 to 3.1, p=0.11) (Figure 6).
There was no significant heterogeneity between individual studies’ results. For ε2+ versus ε2-
genotypes, the associations with severe CAA versus mild/moderate CAA and with severe
versus moderate CAA were non-significant, with wide confidence intervals due to small
numbers of participants, particularly in the ε2+ group, which included 22 individuals, only
seven of whom had severe CAA (Figure 7). There was moderate heterogeneity between
individual studies’ results for severe versus mild/moderate CAA (I2=52%; χ2

3df=6.2; p=0.1) and
minimal heterogeneity for severe versus moderate CAA (I2=11%; χ2

3df=3.4; p=0.3). Results were
similar and conclusions unchanged for the ε4+ and ε2+ genotypes when ε3ε3 genotypes were
used as the comparison group (rather than ε4- or ε2-). Associations with the presence versus
absence of CAA were consistent with results from the previous published systematic review
[23], showing a clearly significant association with ε4+ (ε4+ versus ε4-: OR 4.8, 95% CI 3.0 to
7.6, p<0.00001) but not with ε2+ genotypes (ε2+ versus ε2-: OR 0.38, 95% CI 0.1 to 1.0, p=0.05).
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Results of two studies conducted in one centre were combined for the analyses. [25, 64]
Adapted by permission from BMJ Publishing Group Limited, from “APOE associations with severe CAA-associated vas‐
culpathic changes: collaborative meta-analysis” Rannikmäe K, Kalaria RN, Greenberg SM, Chui HC, Schmitt FA, Samara‐
sekera N, et al. Journal of Neurology Neurosurgery and Psychiatry 2014;85(3):300-5.

Figure 6. Meta-analysis of APOE-ε4 associations with severe CAA
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Adapted by permission from BMJ Publishing Group Limited, from “APOE associations with severe CAA-associated vas‐
culpathic changes: collaborative meta-analysis.” Rannikmäe K, Kalaria RN, Greenberg SM, Chui HC, Schmitt FA, Samar‐
asekera N, et al. Journal of Neurology Neurosurgery and Psychiatry 2014;85(3):300-5.

Figure 7. Meta-analysis of APOE ε2 associations with severe CAA
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Thus, contrary to what has been suggested, [8, 25] a systematic assessment of the relevant
evidence suggests a possible association of APOE ε4 but not of APOE ε2 with progression to
severe CAA (Figure 5). However, this does not exclude a biologically meaningful association
with APOE ε2 since, despite including data from almost all relevant cases from the published
literature, total numbers of individuals included in our meta-analyses were relatively small
and confidence intervals wide, especially for analyses of the effects of APOE ε2. There were
other limitations too. First, methods for histopathological assessment varied between studies,
potentially introducing heterogeneity and reducing the likelihood of detecting a consistent
effect across studies. Second, APOE allele-specific effects on severe CAA may differ according
to the presence or absence of Alzheimer’s disease, particularly for APOE ε2, which has been
associated with a decreased risk of Alzheimer’s dementia. [101] Informative subgroup analysis
to explore potential causes of heterogeneity could not be performed, however, because of the
small overall numbers of participants and because dementia status was unknown for a large
number of participants. Third, while the studies included assessed those severe CAA-
associated vasculopathic changes that are specifically alluded to in the Vonsattel scale, other
vasculopathic changes may also be relevant. Fourth, both APOE allele-specific and other
genetic associations may differ by CAA subtype. The preliminary evidence that APOE ε4 may
be associated with CAA type 1 (where CAA is found in cortical capillaries), and ε2 with CAA
type 2 (where amyloid is deposited in leptomeningeal and cortical vessels with the exception
of cortical capillaries) [26] suggests that CAA types 1 and 2 may represent different patholog‐
ical entities, and – if so-the mechanisms and genetic risk factors for severe CAA and ICH could
also differ. Finally, there may be other genetic influences that interact with APOE ε2 to increase
risk of or protect against severe CAA and ICH.

4. Conclusions

There is strong evidence that APOE ε4 promotes cerebral amyloid angiopathy, and further
evidence to suggest that ε4 may increase the risk of developing severe CAA among those with
CAA. However, there is not convincing evidence to support the theory that APOE ε2 promotes
progression to severe CAA-related vasculopathic changes so leading to vessel rupture and
ICH. Much larger numbers of individuals will need to be included in CAA histopathology
studies if reliable conclusions are to be drawn about the specific effects of APOE ε2, while
bearing in mind that APOE genotype will not be the only genetic influence on CAA. Future
research efforts in this area will also be helped substantially by the development and use of
an internationally-agreed, standardised histopathological grading system for CAA (including
assessment of CAA types 1 and 2), and by the consistent reporting of dementia – and specifi‐
cally Alzheimer’s disease – status [102] among individuals included in CAA histopathology
studies.
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