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Dependability of Autonomous Mobile Systems 

Jan Rüdiger, AchimWagner and Essam Badreddin 
Automation Laboratory, Dept. Mathematics & Computer Science,  

University of Heidelberg Mannheim,  
Germany 

1. Introduction 

Computer systems pervade more and more our everyday life. They are found in 
workstations, mobile devices and in nearly every device - from consumer products such as 
coffee-machines to safety critical automotive systems such as cars, industrial production-
lines etc. Due to increasing complexity, the controllability of such systems is a serious 
problem,while impacts and consequences on our daily life are continuously increasing. 
Therefore, non-functional system properties like dependability became a crucial factor 
within the computerized product design process. Although common unformal ideas in 
terms of dependability exist, a formal definition for dependability is still missing. One 
reason may be the historical growth of the definition of the term dependability, which has 
been added incrementally by a number of attributes. In the 40ies of the last century, the first 
computer based on vacuum tube technology with huge failure probabilities (in the ENIAC 
computer tubes failed every 7 minutes) were constructed, reliability became an issue. Due to 
increased interaction with the systems later on in the 60ies availability became even more 
important. Related to the requirements of controlling safety critical plants like nuclear 
power stations or space crafts the safety property of computer systems where getting into 
the focus during the 70ies. Internet connectivity, data bases and mobile services were the 
reason why security, integrity and maintainability have been added to the dependability 
concept. The state-of-the-art assessment of dependability is based on a binary fault model, 
which describes components on an operable – not operable basis and a logical error 
propagation using fault trees, event tress or binary block diagrams (Vesely et al., 1981). 
Modern approaches like Markov-Chain models (Flammini, 2006) or Stochastic Petri Nets 
(Filippini & Bondavalli, 2004) capture the time dependent probability of a combination of 
error states within a system. However, they are not able to detect the origin of an error 
resulting from the system dynamics. For instance, a light bulb mostly crashes during the 
switching on phase and not during stationary operation. This error scenario cannot be 
reflected by pure probabilistic modelling. 
A further disadvantage of pure probabilistic models is that they are more or less decoupled 

from the original behaviour of the system. Thus, finding a valid fault model which starts 

from the functional model of the system is up to the design engineer. However, even a fault 

probability equal to zero does not guarantee, that systems operate according to what users 

expect because the requirements on the dynamic system behaviour are not modelled. 

Dependability is more than a collection of attributes related to a probabilistic – but static – 

error description. O
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This is particularly important when dealing with autonomous or semi-autonomous systems. 

With an increasing degree of autonomy and safety requirements, requirements for 

dependability increase. Hence, being able to measure and compare the dependability of a 

system becomes more and more vital. Since autonomous mobile systems are often described 

by their behaviour, it is straightforward to also define the dependability of such systems in a 

behavioural context. To show the link between conventional approaches and to allow the 

usage existing tools, the proposed dependability model is supplemented by the majority of 

the dependability attributes described above. The proposed approach of a behaviour based 

definition for dependability described in this chapter is focused on autonomous mobile 

systems. Nevertheless, the ideas behind it are more general. 

2. Basics of dependable systems 

According to (Candea, 2003) a general notion of what dependability is usually understood is 
summarizes as follows: 
 

turn your homework in on time, if you say you’ll do something then do it, 
 don’t endanger other etc. 

 

Computer controlled systems, in our case autonomousmobile systems, do, however, not 
understand these vague concepts. When it comes to machines we need amore precise 
understanding and definition of dependability. If system dependability must be expressed 
and measured in numbers, a formal definition is even more important. This definition must 
be mostly system-independent in order to have the opportunity to compare the 
dependability between different systems. Finally, this definition must agree with the general 
notion of dependability. 
This chapter gives a broad overview of what is usually understood under the term 
dependability and discusses the sometimes different definitions of dependability used 
throughout literature. Based on the aforementioned and in combination with a behavioural 
system description, a dependability definition for autonomous mobile systems is proposed. 
Non-functional properties reflect the overall quality of a system. Beside performance, 

robustness, usability etc., dependability is getting amore important non-functional system 

requirement. The general, qualitative, definitions for dependability used so far in literature 

are presented and discussed in the following. The most frequently cited definitions of 

dependability are the ones introduced by Carter and Laprie which are presented here 

together with others in chronological order. 

Carter (Carter, 1982): A system is dependable if it is trustworthy enough that reliance 
can be placed on the service it delivers. 
Laprie (Laprie, 1992): Dependability is that property of a computing system which 
allows reliance to be justifiably placed on the service it delivers. 
Badreddin (Badreddin, 1999): Dependability in general is the capability of a system to 
successfully and safely fulfill its mission. 
Dubrova (Dubrova, 2006): Dependability is the ability of a system to deliver its 
intended level of service to its users. 

All four definitions have in common that they define dependability on the service a system 
delivers and the reliance that can be placed on that service. The service a system delivers is 
the behaviour perceived by the user, which can also be called the mission of the system. 
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Only few further definitions, following the idea of the definitions presented above exist. 
Among them, the dependability definition of the International Electrotechnical Commission 
(IEC) (“IEC 60050, IEV 191-02-03: Dependability and quality of service - Part 1: Common 
terms“ see IEC, 1990)1, the definition from the IFIP 10.4 Working Group on Dependable 
Computing and Fault Tolerance (see International Federation for Information Processing, ) 
and the definition from the Department of Defence (see Department of Defence, 1970). 
These classical definitions of dependability do, however, offer two major drawbacks: 
1. They do not define a directly applicable and repeatable way to compute the 

dependability of a system.2 
2. The dynamics of the system are not directly taken into account when investigating the 

dependability of the system. Using the information gained from the mathematical 
system model, for example, seems obvious when investing the dependability of that 
system. Neglecting the dynamics of a system means ignoring all information coming 
from that model. Furthermore the dynamics of a system is crucial for fault scenarios not 
only in the case of autonomous mobile systems. 

In this chapter a theoretical framework is proposed, that does not only describe a 
dependability definition and dependability means in relation to the dynamics of a system but 
also presents a repeatable and system-independent way of how to measure dependability. 
Dependability is mainly understood as an integrated concept that additionally consists of 
different attributes (see also Figure 1). According to (Avizienis et al., 2004b; Avizienis et al., 
2004a; Randell, 2000) dependability consists of the following attributes: 

• Availability readiness for correct service, 

• Reliability continuity of correct service, 

• Safety absence of catastrophic consequences for both user(s) and environment, 

• Confidentiality absence of unauthorized disclosure of information, 

• Integrity absence of improper system state alteration and 

• Maintanability ability to undergo modifications and repairs. 
For further information as to the impact of these attributes on the dependability of the 
complete system, please refer to (Avizienis et al., 2004a) and (Dubrova, 2006). 
Further definitions with slightly different attributes exist in the literature (see i.e. Candea, 
2003; Dewsbury et al., 2003). The main idea, i.e. dependability consists of different attributes, 
is still of value and will be part of the definition proposed below. 
The authors would like to express, however, that more than a static aggregation of attributes 
is needed for the description of the dependability of an autonomous mobile system. These 
attributes are always related to a static model, even if error propagation is dynamic. The 
proposal for dependability measurement also includes the attribute approach as a special 
case for being compatible with the qualitative dependability definitions. 
Unfortunately a few of the attributes have different, not necessarily similar, definitions. Still 
missing is a formal and comprehensive definition for a few attributes. 
As for autonomous mobile systems, not all attributes are of equal importance. For a 
discussion about the set of attributes important for autonomous mobile systems the reader is 
referred to (Rüdiger et al., 2007b). 

                                                 
1 This definition of dependability is often referred to as ISO 1992 or IEC 50(191) 
2 According to IEC norm the definition is ,,used only for general descriptions in non-
quantitative terms” 
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Figure 1. The Dependability Tree 

3. Framework for a theory of dynamical systems 

In order to develop a formal definition for the dependability of autonomous mobile systems, 
first of all the following terms 

• service, 

• system, 

• and reliance 
mentioned in the non-formal definitions need a mathematical description. Therefore, a 
formal, mathematical, theory that is capable of describing these terms is needed. 
There are different techniques to describe a system mathematicely, that is modeling a system. 
Among them, the state-space approach can be mentioned, where a system is modelled by a set 
of input, output and state variables related by first order equations (time domain), and, for 
example, the frequency domain approach. Another approach is the Behavioural Modelling 
approach (see Willems, 1991) where a system is modelled only by describing its behaviour. 
Since the service a system delivers is the behaviour as it is perceived by the user, the later 
modelling technique was used and is shortly introduced in the following. Additionally, the 
behaviour based approach is quite common in the field of autonomous mobile robots. This 
goes back to 1980 where Rodney Brook introduced his subsumption architecture (see 
Brooks, 1986). Finally, the behavioural modeling approach offers the opportunity to modell 
the complete system including both environment and user. 
Willems (Willems, 1991) defines a system in a universum U . The elements of U are called 
outcomes of the system. A mathematical model of a system from a behavioural or black-box 
point of view claims that certain outcomes are possible, while others are not. The model thus 
defines a specific subset B ⊂U . This subset is called the behaviour of the system. 
Subsequently, a (deterministic) mathematical model of a system is defined as: 

Definition 3.1 A mathematical model is a pair (U , B ) with the universum U - its elements are 

called outcomes - and B the behaviour. 

Given the above definition of a mathematical model, a dynamical system is a set of trajectories 

describing the system behaviour during the time instants of interest in its signal space W . 
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In contrast to the state space representation, like x$ = f ○ x, a dynamical system is defined as: 

Definition 3.2 A dynamical system Σ is a triple Σ = (T ,W , B ) with T ⊆ R the time axis, W  

the signal space, and B  ⊆ TW the behaviour. 

In the above definition a dynamical system is described by a period of time T , the signal 

space W and a set of time trajectories B . The behaviour of a dynamic system is described 

by a subset B  of all possible time trajectories T  ⇒ W . For a trajectory (an event) w : T  → 

W  the following applies: 

• w ∈ B  the model allows the trajectory w 

• w ∉ B  the model forbids the trajectory w 

The reader is referred to (Willems, 1991) for examples of this modeling technique. 

4. Behaviour-based dependability of autonomous mobile systems 

As stated earlier, the service a system delivers is the behaviour as it is perceived by the user. 
A framework for a mathematical system description according to its behaviour was 
introduced in the last section. 
So far the system and its service, from the dependability definition, can be mathematical 
described. What remains is a fundamental definition of the service a system should deliver and 
an additional description of the reliance, in terms of the service offered, in the given 
framework. Finally the attributes of dependability as discussed in section 2 need to be 
defined in the framework (see also Rüdiger et al., 2007a). 

4.1 Behaviour and mission of autonomous mobile systems 
As afore mentioned, the behaviour of a system is the set of all possible time trajectories of its 
external states (see section 3). Due to limitations, either deliberately, caused by a fault in the 

system, or changes in the environment, this set B  could be slightly changed or reduced to a 

set of behaviours actually available to the system. Although it will probably be only a subset 
of the behaviours of the original system. This set, which may vary over time, will be defined 
as follows: 

Definition 4.1 Let Σ = (T ,W , B ) be a dynamical system then B  ⊆ TW  is called the set of 

available behaviours wi(t) : T  → W , i = 1...n to the system at time t. 

Again, the set B is a set of time trajectories within the original signal space W . For the set 

B  it must not necessarily apply B  ⊂ B  since it can also contain trajectories as a result of a 

fault in the system or a change in the environment not previously modelled. The set B  may 
also vary over time. 

Additionally, the set Bmust not cover all trajectories from the set B since due to 

implementation reasons not all possible trajectories must be available to the system. 
Autonomous mobile systems are usually build as general purpose machines that handle 
different tasks. In the following, these tasks will also be called missions. For estimating the 
dependability of an autonomous mobile system it is, however, not important to handle all 
kinds of missions dependable, but only the mission in terms of the service the system should 
deliver or what the system is intended to do. Such missions are be defined as: 

Definition 4.2 (Mission) Let Σ = (T ,W , B ) be a time-invariant dynamical system. We say 

the mission wm of this system is the map wm : T  → W  with wm ∈ B . 
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Note that even if an autonomous mobile system is usually build for the handling of different 
tasks, the actual mission the system has to accomplish is defined as only one special 
behaviour from the set B . 

Thus, the mission, here defined, is just a special trajectory or, more precisely, a special 

behaviour in B . Weak controllability (see Hermann, 1977) is assumed since it does not make 

any sense to define a mission to a system which by definition is not able to accomplish it. 
If the system is capable of fullfilling its mission wm is defined as follows: 

Definition 4.3 A mission wm ∈ B  for a given dynamical system Σ= ( T ,W , B ) with the 

behaviours B is said to be accomplishable by this system if for all w1 ∈ B  there exists a t ∈ T , t ≥ 

0, a behaviour w ∈ B , w : T ∩ [0, t] → W and a behaviour w2 ∈ B such that w’∈ B , with w’ : 

T→ W defined by: 

 
and 

 
Based on the definition of controllability according (Willems, 1991) a mission wm is 
accomplishable if the system can be steered from any past trajectory (light green trajectory 
in Fig. 2) to the beginning of the mission trajectory wm (black trajectory in Fig. 2) and can 
then be steered along the mission trajectory (red and blue trajectories in Fig. 2). 
 

 

Figure 2. A mission (black line) is accomplished by steering the system to the mission 
trajectory by behaviour w1 and subsequently by steering along the mission trajectory with 
behaviours w2 and w3 

4.2 Behaviour based attributes of dependability 
Before continuing with the definition of dependability for autonomous mobile systems, the 
basic attributes of dependability must be defined in a behavioural context. Only the main 
important attributes for dependability of autonomous mobile systems are introduced. Please 
refer to (Rüdiger et al., 2007a) for an advanced description and (Rüdiger et al., 2007b) for the 
subset of attributes needed for measuring the dependability of autonomous mobile systems. 

4.2.1 Reliability 
A common (see e.g. Dubrova, 2006) unformal definition for reliability is: 
 

Reliability R|t is the probability that the system will operate correctly in a specified 
operating environment in the interval [0, t], given that it worked at time 0. 
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An autonomous system is, thus, said to be reliable if the system state does not leave the set 

of admissible trajectories B . The reliability of a system can be defined as: 

Definition 4.4 Let Σ = ( T ,W , B ), T = Z  or R , be a time-invariant dynamical system. The 

system is said to be reliable in the period [0, t] if for all 0 ≤ t1 ≤ t the system state is w(t1) ∈ B . 

Correspondingly, the reliability of the system is the probability that the system is reliable. 

4.2.2 Availability 
Availability is typically important for real-time systems where a short interruption can be 
tolerated if the deadline is not missed. 

Availability A|t is the probability that a system is operational at the instant of time t. 

In contrast to reliability the availability is defined at a time instant t while the reliability is 
defined in a time interval. 

Definition 4.5 Let Σ = ( T ,W , B ), T  = Z or R , be a time-invariant dynamical system. The 

system is said to be available at time t if w(t) ∈B . Correspondingly, the availability of the system is 

the probability that the system is available. 

4.2.3 Safety 
From the reliability point of view, all failures are equal. In case of safety, those failures are 
further divided into fail-safe and fail-unsafe ones. Safety is reliability with respect to failures 
that may cause catastrophic consequences. Therefore safety is unformaly defined as (see e.g. 
Dubrova, 2006): 
 

Safety S(t) of a system is the probability that the system will either perform its function 
correctly or will discontinue its operation in a fail-safe manner. 

 

For the formal definition of safety an area S  is introduced, as in (Badreddin & Abdel-Geliel, 
2004), which leads to catastrophic consequences when left. In the latter case it is, however, 
assumed that this Dynamic Safety Margin is fully contained in the stability region while S  is 
defined to be around B . This margin is, like B , highly system specific, but can be set equal 

to B  in the case of restrictive systems. 
 

 

Figure 3. Safety: The system trajectory w leaves the set of admissible trajectories B but is still 

considered to be safe since it remains inside S  
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Definition 4.6 Let Σ = ( T ,W , B ), T  = Z or R , be a time-invariant dynamical system with a 

safe area S ⊇ B . The system is said to be safe if for all t ∈ T the system state w(t) ∈ S . 

This definition is consistent with the idea that a safe system is either operable or not 
operable but in a safe state. 

4.3 Behaviour based dependability 
Having defined the behaviour of a system and the mission, which corresponds to the service 
the system should deliver, the dependability of the system can be defined as: 

Definition 4.7 A time-invariant dynamical system Σ= (T ,W , B ) with behaviours B  and a 

mission wm ∈ B  is said to be (gradually) dependable in the period T ∈T  if, for all t ∈ T, mission 
wm  can be (gradually) accomplished. 

5. Behaviour based dependability measure 

The basic idea behind the dependability measure proposed in the last section is to define the 
dependability based on the behaviour of the system. For this purpose, a desired behaviour, 
which was called mission wm(t), was defined for a system and the dependability measure 
was proposed to be depending on the total of deviation between the actual system 
behaviour w(t) and the desired behaviour wm(t). In order to be able to actually measure the 
dependability this definition must, however, be more sophisticated. 

5.1 Requirements for a dependability measure 
Before proposing a function for measuring the dependability the characteristics this 
dependability function should posses are introduced. In the following, the function for the 

dependability will be called D . 

• D (t) should be a continuous time-dependent function 

• D (t) should be positive, strictly monotone decreasing 

• D (t) should be normalized between 0 and 1, where 1 means dependable and 0 means 
not dependable 

• D (t) should be a dimensionless quantity 
The dependability must be measured during and after the mission, hence the dependability 

measure D (t) must be a time dependant function. 
The normalization and the non-dimensionalization is obvious in order to achieve a system 
and unit independent measure. The limitation to the domain between 0 and 1 was chosen so 
that dependability measure is comperable between different system and application 
domains. 

D (t) should be strictly monotonic decreasing since a system is less dependable, i.e. un-
dependability is more likely to occur, the longer a system runs. 

5.2 Definition of dependability measure 
The system trajectory w(t) is the evolution of the system state. The distance between this 

trajectory and the mission wm(t), together with the distance to the safety area S  will be the 
main idea of the measure for dependability. 
After the system Σ has completed its mission, the overall mission deviation Dm of system 
and its mission wm is proposed as the sum of all deviations 2(w(t),wm(t)). In the following, 
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the functional 2(w(t),wm(t)) will be abbreviated as 2(t). Thus, the overall mission deviation 
can be defined as: 

 
(1) 

Where 2(t) is an appropriate measure of the deviation between mission trajectory wm and 
system trajectory w and consequently a combination of different distance measurements, 

including the distance to the safety area S . The term max ( ( )2) represents the maximum 
deviation during this particular mission. Those distance measurements will be discussed in 
detail in the following. 
More important than knowing the system dependability after completion of the mission is 
knowing the dependability during the mission. At time, t the time dependent overall mission 
deviation D(t) can be measured by means of 

 
(2) 

Note that the integration limits for the second integral changed from (1) to (2). 

In order to calculate D (t) during the mission an estimation for max (2()) must be used. 
This value depends on the distance function 2(t) used and will be discussed together with 
the calculation of 2(t) in the following. 
Furthermore, 

 

in (1) and (2) assures that the function for the time dependent overall deviation D is a 
positive function. 
The problem with this function for D(t), is that, besides that it is unnormalized, D(t) is equal 
to zero if there is no deviation between the desired trajectory wm(t) and the actual system 
trajectory w(t). Hence, in this case, the dependability derived from this function would be 
zero. 

5.3 Non-dimensionalization and normalization 
Nondimensionalization is a technique for partial or full removal of units from a 
mathematical equation by a suitable substitution of variables. Normalization bounds the 
domain of a mathematical function to a given range of values. 
Function v with its codomain [omin..omax] can be normalized to a function v’ with its co-
domain [nmin..nmax] by the following formula: 

 
(3) 

For the time dependent overall mission deviation (2) the value for omin is: 

 omin = 0 (4) 
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The dependability function, as stated in the introduction to this chapter, should have a co-
domain of [0..1], consequently the values for nmin and nmax should be: 

 nmin = 0 (5) 
and 

 nmax = 1 (6) 

With these values the normalization function is reduced to: 

 
(7) 

The value omax for the unnormalized dependability D can be set to 

 
(8) 

If at least one 2(t) > 0 for t ∈ [0..tm] the normalized dependability D (t) can be computed 
from (2) with (7) and (8) to: 

 

(9) 

Nevertheless, the problems with this function are: 

1. It only exists if at least one 2(t) > 0 for t ∈ [0..tm]. In other words, it only exists if at least 
a small deviation between the desired behaviour wm and the actual behaviour w 
occurred. 

2. It is subject to the calculation of 2(t). Thereby max (2()) cannot be estimated in 
advance and dependability cannot be computed during the mission. 

To finally overcome both problems, a system-independent way for computing 2(t), which is 
additionally normalized between [0 . . . 1], is proposed. 
Having this, max(2()) can be estimated equal to 1 and 

 
(10)

can be estimated to 

 

This finally leads to the desired system independent, normalized function D (t) of 

dependability. D can now be computed from (9) to: 
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(11)

If a systemindependent way to compute 2(t) between [0 . . . 1] exists this function for the 

dependability posses all required properties stated at the beginning of this chapter. 

5.4 Computing 
2
( )tε  

For computing the elements of 2(t) it is not only important to address the distance between 

the system state and the mission trajectory but also to address the different dimensions of 

dependability such as reliability, availability, etc. For a behavioural definition of these 

attributes please refer to (Rüdiger et al., 2007a). Furthermore, the distance of the system state 

to the safe area S also needs to be taken into account. 

Thus, 2(t) usually consists of different elements reflecting the different attributes of 

dependability for this special system. From (2) and (9) it follows that if 2(t) is a combination 

of different measures 2

1
( )tε  . . . 2

( )
n
tε , D  (t) is calculated 

 

(12)

                                  

(13)

setting again max(
2
( )

i
tε ) = 1, for i = 1 . . . n, this can be reduced to: 

 

(14)

As stated in the previous section, 2
( )

i
tε  must be normalized and between be [0 . . . 1]. The 

corresponding function of (t) must be chosen in such a way that 0 means dependable, i.e. 

the system state w(t) follows exactly the mission trajectory wm(t), and 1 means not 

dependable. 

In order to compute the different 
2
( )

i
tε  a special distance measure is proposed derived from 

the euclidian distance measure between two points x = (x1 . . . xn) and y = (y1 . . . yn) 

 
(15)

This measure is, however, not normalized and not necessarily between 0 . . . 1. In order to 

achieve the remaining two points, too, the following distance measure is proposed derived 

from (15): 

 
(16)
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In (16) wm(t) is the desired (mission) behaviour and w(t) the actual behaviour of the system. 

The parameter wdev describes how severely a deviation from the mission trajectory influences 

the system’s dependability. It must be chosen greater than zero and have the same 

dimension as w(t). The lower wdev is chosen the more a deviation from the desired behaviour 

is rated (see Fig. 4). The proposed distance measure is therefore dimensionless and 

normalized between [0 and 1]. 
 

 

Figure 4. Example of the distance function to compute the different i(t) with wm = 2 (dotted 
green line) and wdev = 1 (blue), wdev = 0.8 (green), and wdev = 0.4 (light green) 

As the euclidian distance measure, the proposed distance measure 2(t) defines a metric over 

the space W  since it satisfies all conditions for a metric which are: 

1. 2(x,x) = 0, identical points have a distance of zero 
2. 2(x,y) = 0 if and only if x = y, identity of indiscernible 
3. 2(x,y) = d(y, x), symmetry 
4. 2(x,y) ≤ 2(x,z) + 2(z,y), triangle inequality 
With the aid of this distance measure, the different attributes of dependability can be 

defined. For 2
( )

i
tε  the corresponding euclidian distance measure di(t) is used as a basis. 

5.5 Mission deviation 
2
( )

m
tε  

The mission deviation describes the normalized difference between the mission trajectory 

and the system state at time t. For this purpose the afore discussed distance measure is 

directly used with the euclidian distance dm between the mission trajectroy and the system 

state. When evaluating the dependability 2
( )

m
tε  is used in most of the dependability 

measure. The mission deviation 2
( )

m
tε  is defined as 

 
(17)

Again, wm(t) is the desired mission trajectory and w(t) is the actual behaviour of the system 
as described in (16). See Fig. 5 for examples of dm(t). 
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Figure 5. Mission trajectory wm(t) (blue) and system trajectory w(t) (red) with examples for 
dm(t) at different timesteps. 

5.6 Safety 
2
( )

s
tε  

Beside the mission deviation 
2
( )

m
tε  is safety 

2
( )

s
tε  one of the most important elements of 

2(t). As proposed in Section 4.2.3 a safety area S  is introduced which when left will lead to 

catastrophic consequences. The minimum euclidian distance between a system trajectory 

w(t) and the border of the safety area S  at time t will be taken as a basis for the measure of 
2
( )

s
tε . This distance is called dS(w(t)) and will be abbreviated as follows 

dS(t) for the minimum distance between the actual system states w(t) and the border of the 
safety area and 

dSm(t) for the minimum distance between the mission trajectory wm(t) and the border of the 
safety are at time t. 

Obviously 2
( )

s
tε  should be 1 when dS(t) = 0, equivalent to the distance between the system 

state and the safety area being zero. 

To be able to adequately cover cases where the mission trajectory wm(t) itself could be close 

to the border of the safety area S , not the absolute distance between the actual system 

trajectory and the border of the safety area dS(t) is taken but the relative distance between 

the minimum distance of the actual systemtrajectory and the safety area dS(t) and the 

minimum distance of the mission trajectory wm(t) to the border of the safety area dSm is taken 

to compute 2
( )

s
tε . Consequently, 2

( )
s
tε  is proposed as: 

 
(18)

Both, dS(t) and dSm(t), are greater or equal to 0. The equation for 2
( )

s
tε  is only defined for 

dSm(t) ≠ 0. See Fig. 6 for examples for dS(t). 
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Figure 6. Mission trajectory wm(t) (blue) and system trajectory w(t) (red) with examples for 
dSm the distance between the mission trajectory wm(t) and the boarder of the safety area S  
(read lines). 

5.7 Timely mission accomplishment 
2
( )

T
tε  

For a number of systems it is not only important that the system adequately follows the 
mission trajectory but that the system follows the mission trajectory at a given time. A good 
example for such systems is a heard-lung machine where it is not sufficient that the system 
gives the right pulses, they must be performed at given timesteps. Another important 
example, especially in the field of controlling autonomous mobile real-time systems, is the 
class of periodic behaviours, i.e. velocity control or collision avoidance. In the latter 
example, the exact time execution of a given behaviour is more important then the exact 
execution of the behaviour itself. 

The calculation of 2
( )

T
tε  is of course only possible if wm(t) is uniquely invertible. For periodic 

functions, often used on autonomous mobile systems, the uniquely invertible requirement 
of w(t) can be simplified to a peacewise uniquely invertible requirement. 

Let w’m(w) : T  → TW be the inverse function of wm(t) then 2
( )

T
tε  is proposed as: 

 
(19)

As in (16) and (17) the parameter tdev describes how severe a deviation from the mission 

trajectory influences the dependability of the system. See Fig 7 for an example of 2
( )

T
tε  

5.8 Reliability 
2
( )

R
tε  

As stated in section 2, reliability R|t describes the probability according to which the system 

will operate correctly in a specified operating environment in an interval [0, t]. For 2
( )

R
tε  this 

means that 1 − R|t describes the probability that the system will fail in the interval [0...t]. 

Setting t = tm the latter probability can be directly used and thus 2
( )

R
tε  is proposed as: 

 (20)
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Figure 7. Mission trajectory wm(t) (blue) and system trajectory w(t) (red) with examples for dT (t) 

5.9 Availability 
2
( )

A
tε  

In contrast to reliability, availability is defined at a time instant t while reliability is defined 
in a time interval. The availability A|t describes the probability that a system is operational 

at the instant of time t. As for the reliability, this means for 2
( )

A
tε  that 1−A|t describes the 

probability that the system is not operable at time instant t. This probability can be directly 

used when computing 2
( )

A
tε . Thus 2

( )
A
tε  is proposed as: 

 (21)

This definition satisfies two statements about availability mentioned in section 2: 
1. If a system cannot be repaired, its availability equals its reliability 

2. The integral over the mission time of 
2
( )

A
tε  in the dependability function equal the 

average availability, also called interval or mission availability as introduced in section 2. 

5.10 Additional 
2

( )
X
tε  

According to the system and its mission, additional measures for 2(t) might be needed to 
take into account further special requirements with respect to dependability. 

As stated earlier, it is important that those 2
( )

X
tε  are dimensionaless and are normalized 

between 0 and 1, where 0 means dependable and 1 means not dependable. 

6. Examples for measuring the dependability 

To present the adaptability of the dependability definition proposed above, the following 
two examples may serve as a demonstration. 

6.1 Example 1: autonomous transport system 
To clarify the behaviour based dependability measurement, an autonomous mobile system 
with only one position degree of freedom is used. The system is an autonomous 
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transportation system build to autonomously reach different positions which could be, for 
example, stopping points on a track. For the dependability measurement only the position 
on the track is considered in the first example. The velocity and acceleration of the 
autonomous transportation system will be initially disregarded in this example. 

6.1.1 Behaviour based system description 
For the dependability measurement proposed in the last section, the system will be 
modelled as described in Section 3. Since the system only has one position degree of 
freedom it can only move forward and backward on the track, the signal space of the system 
is W  = R . The time of interest for this system is T  = R +. 

For the description of the behaviour B , the train model is needed. A simple train model 

with rolling friction derived from Newtons Law is used for that purpose. According to 
Newtons-Law, the sum of forces acting on an object is equal to the mass of that object, 
multiplied by its acceleration. The mass of the train is assumed to be M. The forces acting on 
the train are, on the one hand, the driving force Fa and, on the other hand the friction force  
Fr = μFn (μ represents the coefficient of rolling friction, Fn the force parallel to the planes 
normal). It is assumed that the train only moves in a plane, thus there is no inclination, etc. 
Consequently, the force parallel to the normal of the plane Fn can be set equal to the force of 
gravity Fn = Fg = Mg, with g being the acceleration due to gravity. A diagram of the system 
with the forces used in this model is shown in Fig. 8. The system can thus be described 
according to the following equations. 

 (22)

     (23)

                  
(24)

 

 

Figure 8. Example of an autonomous transportation system with the forces used to model 
the system. Fa driving force, Fr  friction and Fg gravitation force. 

According to the behavioural based approach set forth in section 3, the autonomous mobile 
transportation system can be described as follows. 

Universe W  = R  

Time T  = R + 
Behaviour  

The corresponding Matlab Simulink Model is shown in Fig. 9. The position and the velocity 
of the system are controlled by simple PI-controllers (see Fig. 10 and 11). Of all possible 
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Figure 9. Matlan Simulink model of an autonomous transportation system. M is the mass of 
the system, μ the friction coefficient and g the acceleration due to gravity 

 

Figure 10. Velocity loop of an autonomous transportation system. The system velocity is 
controlled by a simple PI controller. 

 

Figure 11. Position loop of an autonomous transportation system. The position of the system 
is controlled by a simple PI controller 

system behaviours from the set B  only a subset B  ⊂ B  is available according to the mass 
and the maximum possible driving force of the system. In this example it is further assumed 
that the system is able to completely follow the given velocities and accelerations. 
 

6.1.2 Behaviour based dependability measurement 
The mission of the above modelled autonomous transportation system is to reach 
consecutively different positions on the track. The mission time in this example is set to 2400 
time units. 
The system should thus accomplish a desired behaviour wm(t) with its given behaviours  
B ⊂B . The set of desired behaviours for this example is generated with a Matlab Simulink 
model. For this purpose, the signal builder block is used (see Fig 12) to define different 
desired positions on the track. The reference signal is fed to the real train system to simulate 
the actual behaviour (Model in Fig. 8) and also to the reference train system (Reference 
Model in Fig. 8) to generate the desired behaviour. With the aid of the generated behaviour 
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in the reference model, this will be taken as the desired behaviour wm(t) or mission of the 
autonomous transportation system and used for the computation of the system’s 
dependability. This model shows an example of the different opportunities to measure the 
dependability of such systems. 
At first, it is assumed that the position of the autonomous transportation system can be 
measured adequately. Consequently it is assumed that the measurement of the position 
itself does not produce additional errors. 
Up till now only system internal errors or deviations were considered as deviations between 
the reference model and the real system. It is also possible that changes in the model or the 
environment, as implicitly considered in this case, may occur. Unexpected wearout of 
wheels, resulting from e.g. a smaller wheel radius can produce errors, and as such lead to a 
deviation from the desired behaviour, if the position of the train is only measured on the 
basis of the wheel rotations. 
 

 

Figure 12. A Matlab signal builder block is used together with a reference and the real 
system in order to generate the actual and desired behaviour of the system. 

When generating the desired behaviour in this example it is assumed that the system is 
functioning properly. Thus, the reference model reflects the system adequately. Noise in the 
sensors, for example, is not explicitly modelled. Of course, this could have been also 
introduced in the model for a better computation of the desired behaviour. 
In the first example, two different simulations are carried out. 
1. To simulate an additive error, a constant value is added to the position measurement. 

This error could be due to  faulty initialization, slippage etc, but could also because of 
an error in the model of such autonomous transportation system. 

2. To demonstrate as to what extend noise in sensors or measurement uncertainty affect 
the dependability of a system, noise is added to the measurement of the position. 

The results of the two simulations are shown in Fig. 13. The dotted red line in each case 
represents the desired behaviour, thus the mission trajectory wm. The actual system 
behaviour is shown as blue line. The measured dependability for this example is shown as a 
dashed green line. 

6.2 Example 2: Small train 
Since the autonomous transportation system is built for the transport of people and as such 
represents a safety critical system, system safety is also considered in the second example. 
In the second example, besides the position of the system, the velocity is considered when 
calculating dependability. In addition to the above mentioned two simulations, two other 
scenarios were added for the computing of dependability. 
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    (a) Aboslut Value added to the position               (b) Noise added to the position 

Figure 13. Simulation Resutls for Example 1. 

 

Figure 14. Simulation Results for example 2 with Position and Speed used for the 
dependability calculation 

1. In order to enhance the dependability calculation, a desired and actual behaviour of the 
velocity was added. For the simulation of parameter errors, which are multiplicative, 
the velocity of the real system is multiplied by a constant value. 

2. A safety area, as proposed, was added for the velocity. Consequently, the relative 

distance 2
( )

s
tε  is also used when computing system’s dependability. 
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For each of these two scenarios, again, both simulations allready used in the first examples 
where performed. The results of the individual four simulations are shown in Fig. 14 and 15. 
As in the last figure, the dotted red lines represents the desired behaviour for either the 
velocity or the position. The actual system behaviour in terms of velocity and position is 
shown as blue line. The measured dependability for the examples is shown as dashed green 
line. 
 

 

Figure 15. Simulation Results for example 2 with Position and Speed used for the 
dependability calculation. Additionally a safety area for the velocity is added. 

7. Conclusion 

There exist numerous non-formal definitions for dependability (see Carter, 1982; Laprie, 
1992; Badreddin, 1999; Dubrova, 2006; Avizienis et al., 2004a just to name a few). When 
applying those non-formal definitions to a specific system the resulting dependability 
measure usually is only valid for this specific system and only in rare cases transferable to a 
family of equal systems. Small changes in the system or environment, however, render those 
measurements usually useless when it comes to measuring or even comparing the 
dependability of different systems. 
Autonomous mobile robots are often described by their behaviour. This aspect was utilized 
in this chapter for the definition of dependability in a behavioural context in order to obtain 
an easy to apply and computable formula for the dependability of systems. Since this 
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formula for dependability is solely based on the behaviour and the mission of a system it 
can be easily compared with other systems having different missions. 
The definition for dependability proposed in this chapter is straight forward, easily 
applicable and well suited for dependability comparison of different systems. 
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