
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

10

Controlled Use of Subgoals
in Reinforcement Learning

Junichi Murata
Kyushu University

Japan

1. Introduction

Reinforcement learning (Kaelbling et al., 1996; Sutton & Barto, 1998) is a machine learning
technique that automatically acquires a good action policy, i.e. a mapping from the current
state to a good action to take, through trials and errors. A learning agent observes the state
of its environment, chooses an action based on its current policy and executes the action.
Responding to the action, the environment transitions to a new state, and a reword is given
to the agent when applicable. The reward indicates how good or how bad the new state is,
and the agent uses it to improve its policy so that it can obtain more rewards. Since
reinforcement learning (abbreviated as RL hereafter) requires no other information, e.g. a
model of environment, than the perceived states and rewards, it can be applied to a class of
problems where the environment is complex or uncertain. The applications of RL include
control of multi-legged robots (Kimura et al., 2001; Zennir at al., 2003), navigation of mobile
robots (Millan, 1995), elevator hall call assignment (Crites & Barto, 1998; Kamal et al., 2005;
Kamal and Murata, 2008) and board games (Tesauro, 1994). However, the learning agent
must perform a large number of action trials in order to collect sufficient information about
the unknown environment and organize it into a good policy. This takes a long time and
therefore puts a limit on practical application of RL.
A number of techniques have been proposed to make RL faster. Most of them utilize a priori
information on the target problem to compensate shortage of information and thus save the
agent from a large number of trials. Smart and Kaelbling proposed using records of
successful state-action pairs achieved by a human operator or a controller (Smart &
Kaelbling, 2000). In the user-guided reinforcement learning of robots by Wang et al., a user
teaches the robot a good action in real time (Wang et al., 2003). Driessens and Džeroski used
a policy given by the human designer (Driessens & Džeroski, 2004). In all of the above
research, the a priori information is in the form of good actions. Good states, however, are
easier to find than good actions; you only need to find what the environment should be like
but not how the agent can achieve that.
The technique described in this chapter focuses on subgoals as a form of good-state-related a
priori information. A subgoal is a state or a subset of states that must be visited on the way
from the initial state to the final goal state. With subgoals, the original problem can be
divided into a set of small subproblems and this makes the learning faster. Use of subgoals
in RL has been proposed by researchers, and it is closely related to (hierarchical) task
partition and abstraction of actions. Singh used known subgoals to accelerate RL (Singh,

O
p
e
n
 A

c
c
e
s
s
 D

a
ta

b
a
s
e
 w

w
w

.i
-t

e
c
h
o
n
lin

e
.c

o
m

Source: Robotics, Automation and Control, Book edited by: Pavla Pecherková, Miroslav Flídr and Jindřich Duník,
ISBN 978-953-7619-18-3, pp. 494, October 2008, I-Tech, Vienna, Austria

www.intechopen.com

 Robotics, Automation and Control

168

1992). Wiering and Schmidhuber proposed HQ-Learning which learns subgoals to convert a
POMDP (partially observable markov decision process) problem to a sequence of MDP
problems (Wiering & Schmidhuber, 1996). HASSLE by Bakker and Schmidhuber learns
subgoals for efficient RL (Bakker & Schmidhuber, 2004). A method was proposed by
McGovern and Barto for discovering subgoals to create ‘options’ or temporally-extended
actions (McGovern & Barto, 2001), and an improved method by Kretchmar et al. (Kretchmar
et al., 2003). Subgoal information is either given by human designers/operators or acquired
by the agent itself through learning. The idea of automatic acquisition of subgoals by learning
(Wiering & Schmidhuber, 1996; McGovern & Barto, 2001; Kretchmar et al., 2003; Bakker &
Schmidhuber, 2004) is very interesting. This learning itself, however, requires a considerable
amount of time, and therefore is not very fascinating from the overall learning time point of
view. On the other hand, it is not unrealistic that human designers/operators give the agents
their a priori knowledge since there is usually some sort of a priori information available about
the target problems. This kind of a priori information is usually ready before starting learning
and does not require additional learning time. But, instead, there is a possibility that the
humans’ a priori knowledge is not perfect; it may contain errors and/or ambiguity.
In this chapter a technique is proposed that utilizes human-supplied subgoal information to
accelerate RL. The most prominent feature of the proposed technique is that it has a
mechanism to control use of subgoals; it keeps watching the effect of each subgoal on the
action selection, and when it detects redundancy or harmfulness of a subgoal, it gradually
stops using the subgoal. The technique is an extension of the one proposed by the author
previously (Murata et al., 2007). Unlike the previous one, the redundancy and the harmfulness
of subgoals are treated separately and thus finer control of use of subgoals is achieved.
Moreover, after a sufficient number of learning iterations, we can tell which subgoal is useful
and which is harmful by looking at the values of parameters that control use of subgoals.
These features are illustrated by simulation results using grid worlds with doors as example
environments where the learning agent tries to find a path from the start cell to the goal cell.
It is shown that use of exact subgoal information makes RL ten times faster in these rather
simple problems. More acceleration can be expected in more complex problems. When a
wrong subgoal is given and used without proper control, the agent can hardly find the
optimal policy. On the other hand, with the proposed control mechanism enabled, the
wrong subgoal is properly controlled, and its existence does not obstruct acquiring optimal
actions. In this case, the learning is delayed, but the delay is not significant. It is also
confirmed that the values of parameters introduced to control use of subgoals successfully
display harmfulness/usefulness of subgoals. A wrong subgoal is not necessarily harmful; in
some problem settings, it helps the agent find the optimal policy, and this is also properly
reflected in the derived parameter values.
The remaining part of the chapter is organized as follows. In the next section, more
descriptions will be given to the subgoals in RL, and a technique will be proposed to use
them with proper control. In Section 3, several examples will be shown that illustrate the
validity of the proposed method, which is followed by conclusions in Section 4.

2. Controlled use of subgoals in reinforcement learning

2.1 Subgoals in reinforcement learning problems
A subgoal is a state or a subset of states that must be visited on the way from the initial state
to the final goal state. Since we assume subgoal information is provided by humans it

www.intechopen.com

Controlled Use of Subgoals in Reinforcement Learning

169

should be more adequate to define a subgoal here as ‘a state or a subset of states that the
human designer/operator thinks must be visited on the way from the initial state to the final
goal state’, which implies that the subgoals can be erroneous.
A subgoal divides the original problem into two subproblems with itself as the boundary:
one subproblem where the agent is to find a policy that leads the agent/environment from
the initial state to the subgoal state, and the other subproblem from the subgoal to the final
goal state. Each subproblem is smaller than the original problem, and therefore it is easier
for the agent to reach the goal of the subproblem by random actions, which results in a
smaller number of trials to find a good policy. In this way, with subgoals, the original
problem can be divided into a set of small subproblems, and this makes the learning faster.
Imagine, for example, that you have an assistant robot in your office which learns its action
policy by RL. Suppose that you order the robot to deliver a document to your colleague in
an office upstairs. The robot tries to find a path from your office to the colleague’s office by
random wandering. But it will take a very long time to find the office upstairs by chance.
Alternatively, you can give an additional instruction ‘take an elevator’, which means a
subgoal ‘being in an elevator’ is given. With this instruction, the robot will first try to find an
elevator and then try to find a path from the elevator to your colleague’s office. This will be
much easier to accomplish. The instruction ‘take an elevator’ can be valid in other situations
like fetching a document from your colleague’s office. In this sense, subgoals can be general
information that is useful in different but similar problems. However, your robot may go
downstairs even if it successfully arrives at the subgoal ‘being in an elevator’. Or your
building may have two or more elevators. Or even it may happen that you forget that your
colleague has recently moved to an office on your floor. Subgoals can be a good guiding
information but they may contain ambiguity and errors when given by humans.

Fig. 1. Subgoals and their structure

Structure of subgoals can be represented by a directed graph as shown in Fig. 1 where B
denotes the initial state and F the (final) goal state, and Ii, i=1, …, 4 stand for the subgoals.
This figure indicates that, to reach the final goal F, the subgoal I1 must be visited first, next
the subgoal I2, and then either I3 or I4 must be visited. Subgoals I3 and I4 are in parallel
implying either subgoal must be visited, and I1 and I2 are in series indicating the subgoals
must be visited in this order. In the following, terms upstream subgoals and downstream
subgoals will be used. Upstream subgoals of a subgoal Ii are those subgoals closer to the initial
state B than the subgoal Ii in the directed graph, and downstream subgoals of subgoal Ii are
those closer to the final goal state F. In Fig. 1, subgoals I1 is an upstream subgoal of subgoal
I2, and I3 and I4 are downstream subgoals of I2.
Subgoals are presumably good states and the learning agent must be aware of this. Here, the
goodness of a subgoal is represented and conveyed to the agent as a reward. This reward is
not the real reward given by the environment but a virtual reward given by the agent itself.
The received virtual rewards must be used to guide the action selection through value

B I1 I2

I3

I4

F

www.intechopen.com

 Robotics, Automation and Control

170

functions. We have to be careful because the subgoals may contain errors and ambiguity
and also because an already achieved subgoal becomes no longer useful. A wrong or useless
subgoal can mislead the agent in the wrong direction or does not play any significant role in
policy update. If a subgoal turns out to be harmful, we have to stop using it in learning. If a
subgoal is found to be redundant, it is better to cease to use it. Therefore, we need to treat
the real reward and the virtual reward associated with each subgoal separately so that we
can control use of each subgoal independently. Besides, by dealing with harmfulness and
redundancy separately, we can detect harmful subgoals that have been mistakenly included
by human designer/operator.

2.2 Controlled use of subgoals
Let us assume that we have n subgoals I1, …, In. The agent gives a virtual reward ri,t with
respect to subgoal Ii to itself at time t which takes a positive value when state at t is in
subgoal Ii and is equal to zero otherwise. The real reward given by the environment at time t
is denoted by rt. To treat these real and virtual rewards separately, let us define a distinct
action-value function based on each of them as follows:

 ∑
∞

=
++=

0
1 ,),(

k

kt
k

tt rasQ γ (1)

 ,,,1,),(
0

1, nirasQ
k

kti
k

tti A==∑
∞

=
++γ (2)

where st and at are state and action at time t, respectively, and)1,0(∈γ is discount factor.

Before learning, these action-value functions are initialized as zero, and then updated by the
standard Q-learning:

 []),(max),()1(:),(11 asQrasQasQ t
a

ttttt ++ ++−= γαα , (3)

 [] niasQrasQasQ ti
a

tittitti ,,1,),(max),()1(:),(11, A=++−= ++ γαα , (4)

where operator ‘:=’ means substitution and 0>α is learning rate.

Usually, when a subgoal is achieved, the agent can concentrate on seeking the next subgoal
and then the next. For example, in Fig. 1, when subgoal I1 is achieved, the agent only need to
try to find subgoal I2, and when this is also achieved, subgoal I3 or I4 is the next target. In
this way, the target subgoal is switched from one to another. In other words, the original
problem is hierarchically divided into distinct subproblems. However this is relevant only
when the given subgoal information is correct. In the situations of our interest, the subgoal
information is not perfect, and therefore the next subgoal can be a wrong subgoal. If I2 is a
wrong subgoal, it will be better, once I1 is achieved, to seek I3 or I4 than I2. In some cases, the
order of subgoals may be wrong. In Fig. 1., for example, subgoal I2 may be actually the first
subgoal to be achieved before I1. Therefore, we cannot employ the hierarchical problem
partition. We must consider not the next subgoal only but all the subgoals in learning. In
accordance with the above discussion, the actions are selected based on the following

www.intechopen.com

Controlled Use of Subgoals in Reinforcement Learning

171

composite action-value function that consists of the action-value function calculated from
the real rewards and all the action-value functions computed from the virtual rewards:

 ∑
=

+=
n

i
iii

A asQdcasQasQ
1

),,(),(),((5)

where suffix t is dropped for simplicity. Positive coefficients ci and di, i = 1, …, n are
introduced to control use of subgoals. Coefficient ci is used specifically to control use of
subgoal when it is redundant while di is for regulating subgoal when it is harmful. They are
initialized to 1.0, i.e. at the beginning, all the virtual rewards are considered as equally
strongly as the real reward in action selection. Actual action is derived by applying an

appropriate exploratory variation such as ε-greedy and softmax to the action that maximizes

),(asQ A for the current state s. Therefore, learning of),(asQ by equation (3) is an off-policy

learning, and its convergence is assured just like the ordinary Q-learning on the condition
that all state-action pairs are visited infinitely often. However, our interest is not in the

convergence of),(asQ for all state-action pairs but in avoiding visiting unnecessary state-

action pairs by appropriately controlled use of subgoals.
When a subgoal Ii is found to be either redundant or harmful, its corresponding coefficient ci
or di is decreased to reduce its contribution to the action selection.
A subgoal Ii is redundant in state s when the optimal action in state s towards this subgoal Ii
is identical to the optimal action towards the final goal F or towards another subgoal Ij,

iRj∈ , where Ri is the set of suffixes of subgoals that are reachable from subgoal Ii in the

directed graph. In other words, subgoal Ii is redundant if, without help of the subgoal, the
agent can find the optimal action that leads to the final goal or a downstream subgoal of

subgoal Ii which is closer to the final goal and thus more important. Let us define),(
~

asQ as

a sum of),(asQ and those),(asQ j associated with the downstream subgoals of subgoal Ii,

 .),(),(),(
~ ∑

∈

+=
iRj

jjji asQdcasQasQ (6)

Then the optimal action in state s towards the downstream subgoals and the final goal is
given by

),,(
~

maxarg)(*~ asQsa i
a

i = (7)

and the optimal action towards subgoal Ii in state s by

).,(maxarg)(* asQsa i
a

i = (8)

The relationship between subgoals and action-value functions is illustrated in Fig. 2. If

),(asQi or),(
~

asQi is zero or negative for any a, it means that sufficient positive real rewards

or sufficient virtual rewards associated with Ij, iRj∈ have not been received yet and that

the optimal actions given by equations (7) and (8) are meaningless. So, we need the following
preconditions in order to judge redundancy or harmfulness of a subgoal in state s:

 0),(
~

,and0),(, >∃>∃ asQaasQa ii . (9)

www.intechopen.com

 Robotics, Automation and Control

172

Now, we can say that subgoal Ii is redundant in state s when the following holds:

).(*~)(* sasa ii = (10)

When subgoal Ii is found to be redundant in state s, its associated coefficient ci is reduced by

a factor)1,0(∈β :

 .: ii cc β= (11)

Coefficient ci is not set to zero at once because we have found that subgoal Ii is redundant in
this particular state s but it may be useful in other states. Note that another coefficient di is

kept unchanged in this case. Although the composite action-value function),(asQ A used

for the action selection includes the terms related upstream subgoals of subgoal Ii, we do not
consider them in reducing ci. The upstream subgoals are less important than subgoal Ii.
Preconditions (9) mean that subgoal Ii has already been achieved in the past trials. Then, if
subgoal Ii and any of the less important subgoals play the same role in action selection, i.e.
either of them is redundant, then it is the coefficient associated with that less important
upstream subgoal that must be decreased. Therefore the redundancy of subgoal Ii is checked
only against its downstream subgoals.

Fig. 2. Relationship between subgoals and action-value functions

A subgoal Ii is harmful in state s if the optimal action towards this subgoal is different from

the optimal action towards the final goal or towards another subgoal Ij, iRj∈ , i.e. the action

towards subgoal Ii contradicts with the action towards the final goal or a downstream
subgoal. This situation arises when the subgoal is wrong or the agent attempts to go back to
the subgoal seeking more virtual reward given there although it has already passed the

subgoal. Using)(* sai and)(*~ sai above, we can say a subgoal Ii is harmful in state s if

),(*~)(* sasa ii ≠ (12)

and the preconditions (9) are satisfied. When a subgoal is judged to be harmful in state s, its
associated coefficient di is reduced so that the subgoal does less harm in action selection. In
this case coefficient ci remains unchanged. Let us derive a value of di that does not cause the

conflict (12). Such value of di, denoted by o
id , must be a value such that the action selected

by maximizing),(
~

),(asQasQdc ii
o
ii + does not differ from the action selected by),(

~
asQi only.

So, the following must hold for state s,

 []).,(
~

maxarg),(
~

),(maxarg asQasQasQdc i
a

ii

o

ii
a

=+ (13)

B Ii Ij In F Ii+1

iQ 1+iQ jQ nQ Q

iQ
~

www.intechopen.com

Controlled Use of Subgoals in Reinforcement Learning

173

Considering equation (7), the above equation (13) holds when

))(*~,(
~

))(*~,(),(
~

),(sasQsasQdcasQasQdc iiii
o
iiii

o
ii +≤+ (14)

is satisfied for all a. Then, by straightforward calculation, the value of o
id that assures the

above inequality (14) is derived as

 { }))(*~,(),()(,
))(*~,(),(

),(
~

))(*~,(
~

1
min

)(
sasQasQasA

sasQasQ

asQsasQ

c
d iiii

iii

iii

i
sAa

o

i
i

>=
−

−
=

∈
. (15)

In equation (15) we restrict actions to those belonging to set Ai(s). This is because for actions

which satisfy inequality))(*~,(),(sasQasQ iii ≤ , inequality (14) naturally holds for any di since

0>iidc and))(*~,(
~

),(
~

sasQasQ iii ≤ from the definition of)(*~ sai in equation (7). Now di is

slightly reduced so that it approaches o
id by a fraction of iδ :

 o
iiiii ddd δδ +−=)1(: , (16)

where iδ is a small positive constant. There is a possibility that the original value of di is

already smaller than o
id . In that case, di is not updated. Coefficient di is not reduced to o

id at

once. We have observed a conflict among the subgoal Ii and a downstream subgoal (or the
final goal itself), and it seems that we need to reduce the coefficient di for subgoal Ii to solve
the conflict. The observed conflict is genuine on the condition that the action-value functions

Qi, Qj, iRj∈ and Q used to detect the conflict are sufficiently correct (in other words they

are well updated). Therefore, in the early stage of learning, the observed conflict can be non-
authentic. Even if the conflict is genuine, there is a situation where di is not to be reduced.
Usually a downstream subgoal of subgoal Ii is more important than Ii, and therefore the
conflict must be resolved by changing the coefficient associated with the subgoal Ii.
However, when the downstream subgoals are wrong, reducing the coefficient associated
with the subgoal Ii is irrelevant. These possibilities of non-genuine conflict and/or wrong
downstream subgoals demand a cautious reduction of di as in equation (16). Moreover, to

suppress possible misleading by wrong downstream subgoals, parameter iδ is set smaller

for upstream subgoals because a subgoal located closer to the initial state has a more
number of downstream subgoals and therefore is likely to suffer from more undesirable
effect caused by wrong subgoals.

Because update of di depends on downstream coefficients cj and dj, iRj∈ contained in iQ
~

,

the update is done starting with the last subgoal namely the subgoal closest to the final goal
to the first subgoal that is the closest to the initial state.
The overall procedure is described in Fig. 3. Action-values Q and Qi are updated for st and
at, and then it is checked if these updates have made the subgoal Ii redundant or harmful.
Here the action-values for other state-action pairs remain unchanged, and thus it suffices
that the preconditions (9) are checked for st and at only.
Each of coefficients ci, i= 1, …, n represents non-redundancy of its associated subgoal, while
di reflects harmlessness of the subgoal. All of coefficients ci eventually tend to zero as the
learning progresses since the agent does not need to rely on any subgoal once it has found

www.intechopen.com

 Robotics, Automation and Control

174

an optimal policy that leads the agent and environment to the final goal. On the other hand,
the value of di depends on the property of its associated subgoal; di remains large if its
corresponding subgoal is not harmful while di associated with a harmful subgoal decreases
to zero. Therefore, by inspecting the value of each di when the learning is complete, we can
find which subgoal is harmful and which is not.

Fig. 3. Learning procedure

3. Examples

The proposed technique is tested on several example problems where an agent finds a path
from the start cell to the goal cell in grid worlds. The grid worlds have several doors each of
which requires a fitting key for the agent to go through it as shown in Fig. 4. The agent must
pick up a key to reach the goal. Therefore having a key, or more precisely having just picked
up a key, is a subgoal. The state consists of the agent’s position (x-y coordinates) and which
key the agent has. The agent can move to an adjacent cell in one of four directions (north,
south, east and west) at each time step. When the agent arrives at a cell where a key exists, it
picks up the key. Key 1 opens door 1, and key 2 is the key to door 2. The agent receives a
reward 1.0 at the goal cell F and also a virtual reward 1.0 at the subgoals. When it selects a
move to a wall or to the boundary, a negative reward −1.0 is given and the agent stays where it
was. An episode ends when the agent reaches the goal cell or 200 time steps have passed.

www.intechopen.com

Controlled Use of Subgoals in Reinforcement Learning

175

Fig. 4. Grid world 1

Fig. 5. Subgoal structure of grid world 1

3.1 Effect of use of correct subgoals
The subgoals in the example depicted in Fig. 4 can be represented by a directed graph

shown in Fig.5. In RL, the first arrival at the goal state must be accomplished by random

actions because the agent has no useful policy yet. Since the agent has to collect two keys to

go through the two doors in this example, it takes a large number of episodes to arrive at the

final goal by random actions only. Here we are going to see how much acceleration of RL

we will have by introducing correct subgoals.

Q-learning is performed with and without taking the subgoals into consideration. The

parameters used are as follows: discount factor γ=0.9, learning rate α=0.05, β in equation (11)

is 0.99, and decreasing rates iδ of coefficient di is 0.005 for subgoal I1 and 0.01 for I2. Softmax

action selection is used with ‘temperature parameter’ being 0.1.

The numbers of episodes required for the agent to reach the goal for the first time by greedy

action based on the learnt QA (i.e. the action that maximizes QA) and the numbers of

episodes necessary to find an optimal (shortest) path to the goal are listed in Table 1. These

are averages over five runs with different pseudo random number sequences. The table

indicates that consideration of the correct subgoals makes the learning more than ten times

faster in this small environment, which verifies the validity of introducing correct subgoals

to accelerate RL. Also more acceleration can be expected for larger or more complex

environments.

Number of episodes

First arrival at the goal Finding an optimal path

Without subgoals 11861.0 13295.8

With subgoals 1063.2 1068.0

Table 1. Numbers of episodes required before achieving the goal (grid world 1)

www.intechopen.com

 Robotics, Automation and Control

176

3.2 Effect of controlled use of subgoals
Now let us turn our attention to how the control of use of subgoals by coefficients ci and di
works. Here we consider another grid world shown in Fig. 6 where key 1 is the only correct
key to the door and key 2 does not open the door. We apply the proposed method to this
problem considering each of subgoal structures shown in Fig. 7. In this figure, subgoal
structure (a) is the exact one, subgoal structure (b) has a wrong subgoal only, subgoal
structures (c) and (d) have correct and wrong subgoals in series and subgoal structure (e)
has correct and wrong subgoals in parallel. The same values are used as in the previous

subsection for the parameters other than
i

δ . For a single subgoal in (a) and (b)
1
δ is set to

0.01, for series subgoals in (c) and (d)
1
δ =0.005 and

2
δ =0.01 are used, and for the parallel

subgoals in (e) 0.01 is used for both
1
δ and

2
δ .

Fig. 6. Grid world 2 with a correct key and a wrong key

Fig. 7. Possible subgoal structures for grid world 2

www.intechopen.com

Controlled Use of Subgoals in Reinforcement Learning

177

The numbers of episodes before the first arrival at the goal and before finding an optimal
path are shown in Table 2 together with the values of coefficients di after learning and the
ratio of di for the correct subgoal (dcorrect) to di for the wrong subgoal (dwrong) where available.
All of these are averages over five runs with different pseudo random number sequences.

Number of episodes Coefficients di after learning
Subgoals used in

learning
First

arrival at
the goal

Finding an
optimal

path

For correct
subgoal
(dcorrect)

For wrong
subgoal
(dwrong)

dcorrect
/dwrong

None 99.4 103.2 - - -

Correct 76.2 79.0 2.61×10−1 - -

Wrong 139.0 206.8 - 9.79×10−5 -

Correct & wrong
in series

116.6 180.0 3.48×10−1 3.52×10−5 1.30×107

Wrong & correct
in series

87.4 97.8 4.15×10−2 7.06×10−3 1.37×105

Correct & wrong
in parallel

116.8 163.4 9.85×10−2 2.21×10−4 1.03×108

Table 2. Numbers of episodes required before achieving the goal (grid world 2)

With the exact subgoal information given, the agent can reach the goal and find the optimal

path faster than the case without considering any subgoal. When a wrong subgoal is

provided in place of / in addition to the correct subgoal, the learning is delayed. However,

the agent can find the optimal path anyway, which means that introducing a wrong subgoal

does not cause a critical damage and that the proposed subgoal control by coefficients ci and

di works well. Finding the optimal path naturally takes more episodes than finding any path

to the goal. The difference between them is large in the cases where wrong subgoal

information is provided. This is because the coefficient associated with the wrong subgoal

does not decay fast enough in those cases. The preconditions (9) for reducing the coefficient

demand that the subgoal in question as well as at least one of its downstream subgoals have

been already visited. Naturally the subgoals closer to the initial state in the state space (not

in the subgoal structure graph) are more likely to be visited by random actions than those

far from the initial state. In this grid world, the correct key 1 is located closer to the start cell

than the wrong key 2 is, and therefore the correct subgoal decays faster and the wrong

subgoal survives longer, which causes more delay in the learning.

Coefficients di are used to reduce the effect of harmful subgoals. Therefore, by looking at
their values in Table 2, we can find which subgoal has been judged to be harmful and which
has not. Each of the coefficients di for the correct subgoals takes a value around 0.1 while

each of those for the wrong subgoals is around 10−4. Each ratio in the table is larger than 105.
Thus the coefficients di surely reflect whether their associated subgoals are harmful or not.
In Table 2, the coefficient for the wrong subgoal in the case of ‘wrong and correct subgoals

in series’ is 7.06×10−3 and is not very small compared with the value of 4.15×10−2 for the
correct subgoal. This has been caused by just one large coefficient value that appeared in
one of the five runs. Even in this run, the learning is successfully accomplished just like in
other runs. If we exclude this single value from average calculation, the average coefficient

value for this subgoal is around 10−6.

www.intechopen.com

 Robotics, Automation and Control

178

To confirm the effect of subgoal control, learning is performed with the coefficient control

disabled, i.e. both of ci and di are fixed to 1.0 throughout the learning. In the case that the

correct subgoal is given, the result is the same as that derived with the coefficient control.

However, in other four cases where a wrong subgoal is given, the optimal path has not been

found within 200000 episodes except for just one run in the five runs. Therefore, simply

giving virtual rewards to subgoals does not work well when some wrong subgoals are

included. When either ci or di is fixed to 1.0 and the other is updated in the course of

learning, similar results to those derived by updating both coefficients are obtained, but the

learning is delayed when wrong subgoal information is provided. In composite action-value

function QA used in action selection, each action-value function Qi associated with subgoal Ii

is multiplied by a product of ci and di. The product decreases as the learning proceeds, but

its speed is slow when either ci or di is fixed. A large product of ci and di makes the ‘attractive

force’ of its corresponding subgoal strong, and the agent cannot perform a bold exploration

to go beyond the subgoal and find a better policy. Then harmfulness of a subgoal cannot be

detected since the agent believes that visiting that subgoal is a part of the optimal path and

does not have another path to compare with in order to detect a conflict. Therefore,

coefficient ci must be reduced when its associated subgoal is judged to be redundant to help

agent to explore the environment and find a better policy. The above results and observation

verifies that the proper control of use of subgoals is essential.

3.3 Effect of subgoals on problems with different properties
In the results shown in Table 2, the learning is not accelerated much even if the exact
subgoal structure is given, and the results with wrong subgoal are not too bad. Those results
of course depend on the problems to be solved. Table 3 shows the results for a problem
where the positions of key 1 and key 2 are exchanged in grid world 2. Also the results for
grid world 3 depicted in Fig. 8 are listed in Table 4. Here the correct and the wrong keys are
located in the opposite directions from the start cell. The same parameter values are used in
both examples as those used in the original grid world 2. The values in the tables are again
averages over five runs with different pseudo random number sequences.

Number of episodes Coefficients di after learning
Subgoals used in

learning
First

arrival at
the goal

Finding an
optimal

path

For correct
subgoal
(dcorrect)

For wrong
subgoal
(dwrong)

dcorrect /dwrong

None 323.8 343.6 - - -

Correct 117.4 121.2 3.82×10−3 - -

Wrong 196.8 198.4 - 2.23×10−2 -

Correct & wrong
in series

188.2 189.6 6.84×10−3 9.42×10−3 2.53×101

Wrong & correct
in series

117.2 126.8 4.37×10−5 3.80×10−1 9.47×10-4

Correct & wrong
in parallel

100.0 100.6 2.08×10−2 9.57×10−3 5.14

Table 3. Numbers of episodes required before achieving the goal (grid world 2 with keys
exchanged)

www.intechopen.com

Controlled Use of Subgoals in Reinforcement Learning

179

Fig. 8. Grid world 3 with two keys in opposite directions

By exchanging the two keys in grid world 2, the problem becomes more difficult than the
original because the correct key is now far from the start cell. So, without subgoals, the
learning takes more episodes, and introduction of subgoals is more significant than before
as shown in Table 3. The wrong key is located on the way from the start cell to the correct
key, and although picking up the wrong key itself has no useful meaning, the wrong
subgoal guides the agent in the right direction towards the correct subgoal (correct key).
Therefore the wrong subgoal information in this grid world is wrong but not harmful; it is
even helpful in accelerating the learning as shown in Table 3. Also, since it is not harmful,
coefficients di corresponding to the wrong subgoals remain large after the learning.

Number of episodes Coefficients di after learning
Subgoals used in

learning
First

arrival at
the goal

Finding an
optimal

path

For correct
subgoal
(dcorrect)

For wrong
subgoal
(dwrong)

dcorrect /dwrong

None 153.8 155.8 - - -

Correct 95.8 99.6 4.80×10−2 - -

Wrong 150.4 309.8 - 1.08×10−4 -

Correct & wrong
in series

170.2 346.8 1.84×10−3 9.83×10−5 7.32×101

Wrong & correct
in series

107.2 109.0 2.01×10−3 1.22×10−4 4.98×101

Correct & wrong
in parallel

106.4 226.0 6.04×10−3 4.75×10−4 1.05×106

Table 4. Numbers of episodes required before achieving the goal (grid world 3)

In contrast, the wrong key in grid world 3 lies in the opposite direction from the correct key.
So, this wrong subgoal has worse effect on the learning speed as shown in Table 4. Here the
coefficients di for the wrong subgoals are smaller than those for the correct subgoals.
For grid worlds 2 and 3, the actual subgoal structure is that shown in Fig. 7. (a). To
investigate the performance of the proposed method on problems with parallel subgoals,
key 2 in grid world 2 is changed to a key 1. So the environment now has two correct keys,
and the actual subgoal structure is just like Fig. 7. (e) but both the keys are correct. Five
different subgoal structures are considered here: ‘near subgoal’, ‘far subgoal’, ‘near and far

www.intechopen.com

 Robotics, Automation and Control

180

subgoals in series’, ‘far and near subgoals in series’ and ‘near and far subgoals in parallel’
where ‘near subgoal’ denotes the subgoal state ‘picking up key near the start cell’, and ‘far
subgoal’ refers to the subgoal ‘picking up the key far from the start cell’. Note that there is
no wrong subgoal in this grid world. The results shown in Table 5 are similar to those
already derived. Introduction of subgoal(s) makes the goal achievement faster, but in some
subgoal settings, finding the optimal path is slow. The subgoal structure ‘near and far
subgoals in parallel’ is the exact one, but this gives the worst performance in finding the
optimal path in the table. In this problem, both the keys correspond to correct subgoals, but
one (near the start cell) is more preferable than the other, and the less-preferable subgoal
survives longer in this setting as described in Section 3.2. This delays the learning.

Number of episodes
Coefficients di after

learning
Subgoals used in

learning
First

arrival at
the goal

Finding an
optimal

path

For near
subgoal

For far
subgoal

None 106.0 109.6 - -

Near 76.2 79.0 2.62×10−1 -

Far 136.2 203.8 - 2.96×10−3

Near & far in series 126.6 205.2 4.06×10−1 1.15×10−5

Far & near in series 84.6 95.0 2.78×10−2 7.06×10−3

Near & far in parallel 116.4 169.6 7.95×10−2 2.21×10−4

Table 5. Numbers of episodes required before achieving the goal (grid world 2 with two
correct keys)

Introduction of subgoals usually makes goal achievement (not necessarily by an optimal
path) faster. But, a wrong or less-preferable subgoal sometimes makes finding the optimal
path slower than the case without any subgoals considered, especially when it occupies a
position far from the initial state. However, the wrong subgoals do not cause critically
harmful effect such as impractically long delay and inability of finding the goal at all thanks
to the proposed mechanism of subgoal control. Also we can find the harmful subgoals by
inspecting the coefficient values used for subgoal control. This verifies the validity of the
proposed controlled use of subgoals in reinforcement learning.

4. Conclusions

In order to make reinforcement learning faster, use of subgoals is proposed with appropriate
control of each subgoal independently since errors and ambiguity are inevitable in subgoal
information provided by humans. The method is applied to grid world examples and the
results show that use of subgoals is very effective in accelerating RL and that, thanks to the
proposed control mechanism, errors and ambiguity in subgoal information do not cause
critical damage on the learning performance. Also it has been verified that the proposed
subgoal control technique can detect harmful subgoals.
In reinforcement learning, it is very important to balance exploitation, i.e. making good use of
information acquired by learning so far in action selection, with exploration, namely trying
different actions seeking better actions or policy than those already derived by learning. In
other words, a balance is important between what is already learnt and what is to be leant

www.intechopen.com

Controlled Use of Subgoals in Reinforcement Learning

181

yet. In this chapter, we have introduced subgoals as a form of a priori information. Now we
must compromise among leant information, information yet to be learnt and a priori
information. This is accomplished, in the proposed technique, by choosing proper values for

β and iδ that control use of a priori information through coefficients ci and di as well as an

appropriate choice of exploration parameter such as ‘temperature parameter’ used in
softmax that regulates exploration versus exploitation. A good choice of parameters may
need further investigations. However, this will be done using additional a priori information
such as confidence of the human designer/operator in his/her subgoal information. Also a
possible extension of the method is to combine it with a subgoal learning technique.

5. Acknowledgements

The author would like to acknowledge the support for part of the research by the Japan
Society for the Promotion of Science, Grant-in-Aid for Scientific Research (C), 16560354,
2004-2006.

6. References

Bakker, B. & Schmidhuber, J. (2004). Hierarchical Reinforcement Learning with Subpolicies
Specializing for Learned Subgoals, Proc. 2nd IASTED Int. Conf. Neural Networks and
Computational Intelligence, pp. 125-130.

Crites, R.H. & Barto, A.G. (1998). Elevator Group Control Using Multiple Reinforcement
Learning Agents, Machine Learning, Vol. 33, pp. 235-262.

Driessens, K. & Džeroski, S. (2004). Integrating Guidance into Relational Reinforcement
Learning, Machine Learning, Vol. 57, pp. 271-304.

Kaelbling, L.P.; Litman, M.L. & Moor, A.W. (1996). Reinforcement Learning: A survey, J. of
Artificial Intelligence Research, Vol. 4, pp. 237-285.

Kamal, M.A.S.; Murata, J. & Hirasawa, K. (2005). Elevator Group Control Using Multiagent
Task-Oriented Reinforcement Learning, IEEJ Trans. EIS, Vol. 125, pp. 1140-1146.

Kamal, M.A.S. & Murata, J. (2008). Reinforcement learning for problems with symmetrical
restricted states, Robotics and Autonomous Systems, to appear.

Kimura, H.; Yamashita, T. & Kobayashi, S. (2001), Reinforcement Learning of Walking
Behavior for a Four-Legged Robot, Proc. 40th IEEE Conf. Decision and Control, pp.
411-416.

Kretchmar, R.M.; Feil, T. & Bansal, R. (2003). Improved Automatic Discovery of Subgoals for
Options in Hierarchical Reinforcement Learning, J. Computer Science & Technology,
Vol. 3, pp. 9-14.

McGovern, A. & Barto, A.G. (2001). Automatic Discovery of Subgoals in Reinforcement
Learning using Diverse Density, Proc. 18th Int. Conf. Machine Learning, pp. 361-368.

Millan, J.D. (1995). Reinforcement learning of goal-directed obstacle-avoiding reaction
strategies in an autonomous mobile robot, Robotics and Autonomous Systems, Vol. 15,
pp. 275-299.

Murata , J.; Ota, K. & Abe, Y. (2007). Introduction and Control of Subgoals in Reinforcement
Learning, Proc. IASTED Conf. Artificial Intelligence and Applications, pp. 329-334.

Singh, S. (1992). The Efficient Learning of Multiple Task Sequences, In: Advances in Neural
Information Processing Systems 4, pp. 251-258, Morgan Kauffman, San Mateo, USA.

www.intechopen.com

 Robotics, Automation and Control

182

Smart, W.D. & Kaelbling, L.P. (2000). Practical Reinforcement Learning in Continuous
Spaces, Proc. 17th Int. Conf. Machine Learning, pp. 903-910.

Sutton, R.S. & Barto, A.G. (1998). Reinforcement Learning, An Introduction, A Bradford Book,
The MIT Press, Cambridge, USA.

Tesauro, G.J. (1994). TD-gammon, a self-teaching backgammon program, archives master-
level play, Neural Computation, Vol. 6, pp. 215–219.

Wang, Y.; Huber, M.; Papudesi, V.N. & Cook, D.J. (2003). User-Guided Reinforcement
Learning of Robot Assistive Tasks for an Intelligent Environment, Proc. 2003
IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 424-429.

Wiering, M. & Schmidhuber, J. (1996). HQ-Learning: Discovering Markovian Subgoals for
Non-Markovian Reinforcement Learning, Tech. Rep. IDSIA-95-96.

Zennir, Y.; Couturier, P. & Temps, M.B. (2003). Distributed Reinforcement Learnig of a Six-
Legged Robot to Walk, Proc. 4th Int. Conf. Control and Automation, pp. 896-900.

www.intechopen.com

Robotics Automation and Control

Edited by Pavla Pecherkova, Miroslav Flidr and Jindrich Dunik

ISBN 978-953-7619-18-3

Hard cover, 494 pages

Publisher InTech

Published online 01, October, 2008

Published in print edition October, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book was conceived as a gathering place of new ideas from academia, industry, research and practice in

the fields of robotics, automation and control. The aim of the book was to point out interactions among various

fields of interests in spite of diversity and narrow specializations which prevail in the current research. The

common denominator of all included chapters appears to be a synergy of various specializations. This synergy

yields deeper understanding of the treated problems. Each new approach applied to a particular problem can

enrich and inspire improvements of already established approaches to the problem.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Junichi Murata (2008). Controlled Use of Subgoals in Reinforcement Learning, Robotics Automation and

Control, Pavla Pecherkova, Miroslav Flidr and Jindrich Dunik (Ed.), ISBN: 978-953-7619-18-3, InTech,

Available from:

http://www.intechopen.com/books/robotics_automation_and_control/controlled_use_of_subgoals_in_reinforce

ment_learning

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

