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1. Introduction

Electrochemical methods and processes have been applied for many years in environmental
applications such as water/wastewater treatment, recovery of metals, electroplating and
qualitative/quantitative analysis in various aqueous media. Among these processes, electro‐
coagulation (EC) has gained many interest due to providing simple, reliable and cost effective
operation for the treatment of wastewaters without and need for additional chemicals, and
thus the secondary pollution. EC is declared an environment-friendly technique since the
‘electron’ is the main reagent and does not require addition of the reagents/chemicals. This
will minimize the sludge generation to a great extent and eventually eliminate some of the
harmful chemicals used as coagulants in the conventional effluent treatment methods. EC
process can effectively destabilize small colloidal particles and generates lower quantity of
sludge compared to other processes [1]. This technique uses a direct current (DC) source
between metal electrodes immersed in polluted water [2]. In this method, soluble metal
electrodes (such as iron and aluminium mostly) form metal hydroxides when subjected to a
suitable current. The metal hydroxides act as coagulants and lead to the removal of various
contaminants [3]. The pros and cons of the EC are tabulated in Table 1

EC is an efficient technique since adsorption of hydroxide on mineral surfaces are a 100 times
greater on ‘in situ’ rather than on preprecipitated hydroxides when metal hydroxides are used
as coagulant [3]. Besides, the ‘electron’ is the main reagent and does not require addition of
the reagents/chemicals, which will minimize the sludge generation to a great extent and
eventually eliminate some of the harmful chemicals used as coagulants in the conventional
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effluent treatment methods. EC process can effectively destabilize small colloidal particles and
generates lower quantity of sludge compared to other processes [1]. EC has been successfully
applied to the treatment of a lot of wastewaters including either organic or inorganic pollutants
as well as drinking waters due to its benefits: environmental compatibility, versatility, energy
efficiency, safety, selectivity, amenability to automation, and cost effectiveness. Additionally,
electrochemical based systems allow controlled and rapid reactions, smaller systems become
viable and, instead of using chemicals and micro-organisms, the systems employ only electrons
to facilitate water treatment [3, 5]. However, the main drawback of conventional EC (DC-EC)
is inevitable formation of an impermeable oxide film on the cathode, which results in lower
removal performance of pollutants and higher operating costs (due to higher energy con‐
sumption) [3, 6].

In the EC process, an electric field is applied to the medium for a short time, and the treated
dispersion transferred to an integrated clarifier system where the water–contaminant mixture
separates into a floating layer, a mineral-rich sediment, and clear water. The aggregated mass
settles down due to gravitational force. The clear water can be extracted by conventional
methods [4]. Generally, DC power supply is traditionally employed to generate an electric
field and ion transportation between the immersed sacrificial electrodes in the EC reactor.
However, the major threat of the EC process using DC is that an impermeable oxide film may
be formed on the cathode during the electrolysis. This leads a “cathode passivation”, which
decreases the ionic transfer between the anode and cathode directly, hindering the metal
dissolution and indirectly preventing metal hydroxide formation. Electrolytic dissolution of
anode and electrolytic deposition of cathode in the EC cell employing DC power supply are
schematically shown in Fig. 1. The DC-EC technology is inherent with the formation of an
impermeable oxide layer on the cathode as well as deterioration of the anode due to oxidation.
These limitations of the DC-EC process have been minimized to some extent by the addition
of parallel plate sacrificial electrodes in the cell configuration. However, many have preferred
the use of alternating current (AC) power supply in EC process [4, 7]. According to the
reference [4], the AC cyclic energization is believed to retard the normal mechanisms of
electrode attack that are experienced in DC-EC system, and thus, ensure reasonable electrode
life. In addition to that, since the AC electric fields in an AC-EC separator do not cause
electrophoretic transport of the charged particles due to the frequent change of polarity, it can
induce dipole–dipole interactions in a system containing nonspherical charged species. As a
result, the AC electric fields may also disrupt the stability of balanced dipolar structures
existing in such a system. This is, however, not possible in a DC-EC separator using DC electric
fields.

To prevent the main disadvantage of the EC, cathode passivation, AC can be preferred as
power supply or anode and cathode can be replaced periodically with each other in DC mode.
However, the latter option is not feasible for continuous operations in practical. The alternating
pulse current (APC) method was proposed with experimental results in detail for the first time
by Mao et al. [8] by using AC power. However, the rectangular wave produced by “a time
relay from already existing DC power supply” was declared by Eyvaz et al. [9] for the first
time in EC applications.
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Figure 1. Schematic representation of electrode surface change during the EC treatment using DC supply (t0–t3 are
treatment times of continuous process in order).

Mao et al. [8] proposed a novel current feed style in electrocoagulation aiming at preventing
the cathode passivation by using AC in synthetic oily wastewater. They investigated the effects
of APC on the aluminium electrodes’ surfaces by scanning electron microscope (SEM) and X-
ray photoelectron spectroscopy (XPS), not observing passivation of Al, also achieving uniform
dissolution of anode and cathode. Similar to APC, periodic reversal current feed was obtained
by a simple time relay device integrated with a DC power supply by Eyvaz et al. [9]. They used
this system to prevent electrode passivation of aluminium electrodes in EC of textile dye
solutions. Their results indicated that APC was found superior to DC and higher removal
efficiencies in shorter operation times and longer fill-and-draw periods could be gained by
APC. Removal efficiencies increased in APC system after optimum operation time belongs to
DC system as well. In another research containing the comparison of AC and DC, Vasudevan
et al. [10] reported that under the identical experimental conditions, similar cadmium removal
efficiencies (97.5% and 96.2%) were achieved. However, the benefits of reducing energy
consumption were two fold with AC (0.665 and 1.236 kWh/m3 for AC and DC, respectively).

According to the research of Keshmirizadeh et al. [11], equal removal efficiencies were
obtained in direct current and alternating pulse current. In the APC mode, the water recovery
was very significant, measuring as high as 0.92 m3/m3 wastewater. For DC mode, the water
recovery was less than 0.5 m3/m3 of wastewater.The APC mode was found to be more efficient
than the DC mode with a lower anode over-voltage, slower anode polarization and passivity,
and lower tank voltage. The operating time was 3–25% less when APC mode was used, based
on initial Cr(VI) concentration of 50–1000 mg/L, respectively. Because of the reduction in
operating time, less energy was consumed, which made the APC mode more cost effective.
Application of APC eliminated uneven wear (dissolution) of electrodes; typically, the anode
material dissolved and electroreduction products stuck to the cathodes when DC mode was
used. When the APC mode was employed, electrocoagulation produced a highly dense or
compact sludge at the reactor bottom, resembling dense clay soil layers. It also produced more
clear supernatant. The APC mode minimized waste and increased sludge stability.

More recently, periodic electrode reversal methode (PREC) in EC was optimized by response
surface methodology (RSM) for color removal of synthetic Methyl Orange wastewater by Pi
et al. [12]. Color removals of 97 % with PREC and 82 % with conventional EC were gained in
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the optimal RSM conditions. It is concluded that EC with PREC can effectively retard cathodic
passivation by resulted in lower energy and electrode material consumptions.

Although many researches on treatment of synthetic or real industrial wastewaters with EC
are available, very few researches have been carried out on the economical applicability of AC
electrocoagulation. Therefore, in this chapter, the effects of power supply type (DC or AC) on
EC performance were investigated both technically and economically. An adjustable time relay
plugged into the DC power supply was employed to obtain APC to avoid additional AC power
supply cost. Winery wastewater was selected as the model electrolyte solution due to its high
strength pollutant capacity and APC, an (almost) new method, was applied to the winery
wastewaters for the first time with this study.

2. Brief description of electrocoagulation

EC is a complicated process involving many chemicals and physical phenomena that use
consumable electrodes to supply ions into the wastewater stream. In an EC process the
coagulating ions are produced ‘in situ’ and it involves three successive stages: (i) formation of
coagulants by electrolytic oxidation of the ‘sacrificial electrode’,(ii) destabilization of the
contaminants, particulate suspension, and breaking of emulsions and (iii) aggregation of the
destabilized phases to form flocs. The destabilization mechanism of the contaminants,
particulate suspension, and breaking of emulsions have been described in broad steps and
may be summarized as: (1) Compression of the diffuse double layer around the charged species
by the interactions of ions generated by oxidation of the sacrificial anode, (2) Charge neutral‐
ization of the ionic species present in wastewater by counter ions produced by the electroche‐
mi-cal dissolution of the sacrificial anode. These counter ions reduce the electrostatic
interparticle repulsion to the extent that the van der Waals attraction predominates, thus
causing coagulation. A zero net charge results in the process. (3) Floc formation; the floc formed
as a result of coagulation creates a sludge blanket that entraps and bridges colloidal particles
still remaining in the aqueous medium. The solid oxides, hydroxides and oxyhydroxides
provide active surfaces for the adsorption of the polluting species. EC has been successfully
employed in removing metals, suspended particles, clay minerals, organic dyes, and oil &
grease from a variety of industrial effluents [3]. A brief literature review of EC efficiency on
the treatment of different waters/wastewaters is presented in Table 2.

In this process, a potential is applied to the metal anodes, typically fabricated from either iron
or aluminium, which causes two separate reactions: (1) Fe/Al is dissolved from the anode
generating corresponding metal ions, which almost immediately hydrolyze to polymeric iron
or aluminium hydroxide. These polymeric hydroxides are excellent coagulating agents. The
consumable (sacrificial) metal anodes are used to continuously produce polymeric hydroxides
in the vicinity of the anode. Coagulation occurs when these metal cations combine with the
negative particles carried toward the anode by electrophoretic motion. Contaminants present
in the wastewater stream are treated either by chemical reactions and precipitation or physical
and chemical attachment to colloidal materials being generated by the electrode erosion. They
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are then removed by electro-flotation, or sedimentation and filtration. Thus, rather than adding
coagulating chemicals as in conventional coagulation process, these coagulating agents are
generated in situ. (2) Water is also electrolyzed in a parallel reaction, producing small bubbles
of oxygen at the anode and hydrogen at the cathode. These bubbles attract the flocculated
particles and, through natural buoyancy, float the flocculated pollutants to the surface [3]. The
most important reactions are summarised in Fig. 2.

Figure 2. Schematic representation of typical reactions during the EC treatment using DC supply [13].

The (EC) process involves generation of coagulants in situ by dissolving sacrificial anodes such
as aluminium or iron upon application of a DC. When iron electrode is used as anodes upon
oxidation in an electrolytic system, it produces iron hydroxide, Fe(OH)n where n=2 or 3 [14,
15]. The major disadvantage of EC compared to chemical coagulation (usually ferric or
aluminium chloride/sulfate) is that high conductivity water is required. This fact is especially
relevant for drinking water treatment, as conductivity can not be enhanced by salts due to total
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dissolved solids (TDSs) limitations in drinking water [16]. Two mechanisms for the production
of metal hydroxide have been proposed when iron electrodes are used [17, 18]:

Mechanism I:

2+ -Anode: 2Fe 2Fe + 4e® (1)

( ) ( )
2+ +

2 2 3 s
2Fe + 5H O + 1/2O 2Fe OH + 4H® (2)

( )
- -

2 2 gCathode: 4H O + 2e 4OH + 2H® (3)

( ) ( ) ( )2 2 2 g3 s
Overall reaction: 2Fe + 5H O + 1/2O 2Fe OH + 4H® (4)

Mechanism II:

2+ -Anode: Fe Fe + 2e® (5)

( ) ( )
2+ -

2 s
Fe + 2OH Fe OH® (6)

- -
2 2Cathode: 2H O + 2e H + 2OH® (7)

( ) ( ) ( )2 2 g2 s
Overall reaction: Fe + 2H O Fe OH + H® (8)

When aluminium electrodes in the EC process are used as an anode and a cathode, the main
reactions are at the anode as follows [19-22]:

3+ -Anode:Al Al + 3e® (9)

-
(2 g)22H O O + 4H+ + 4e® (10)

( )
- -

2 2 g Cathode:3H O + 3e 3OH + 3/2 H® (11)

( )-42 ( )2 g2Al + 6H O + 2OH- 2Al OH + 3 H® (12)
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+
3

Overall reaction:Al + 3H O Al OH + 3H® (13)

The performance of the EC process depends on many operational parameters such as pH of
the solution, applied current to the reactor, conductivity of the (water/wastewater) solution,
electrolysis time as well as electrode spesifications such as arrangement of electrode, electrode
shape, distance between the electrodes, etc. Main operational parameters influencing the EC
efficiency is schematically given in Fig. 3. The effects of each parameters in details can be found
elsewhere in the literature. However, in this study, effects of six of the parameters such as pH
of the winery wastewater (by adjusting the pH with acid or base), arrangement of the sacrificial
electrodes (parallel or serial connection to power supply), electrolysis time (duration of
applying voltage to the wastewater), current density (applied current to the unit area of active
electrode surface) and especially power supply type (by changing the polarity of the anodes
and cathodes) were investigated.

Figure 3. Schematic display of the various operating parameters influencing the EC process performance.

2.1. Brief description of alternating pulse current electrocoagulation

Usually, DC is used in EC systems. In this case, an impermeable oxide layer may form on the
cathode material as well as corrosion formation on the anode material due to oxidation. This
prevents the effective current transfer between the anode and cathode, so the performance of
EC reactor declines. These disadvantages of DC have been diminished by the addition of
parallel plate sacrificial electrodes in the EC unit configuration. However, many have preferred
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the use of AC in EC unit [7]. It is believed that the cyclic energization between the anode–
cathode in AC system delays the cathode passivation and anode deterioration that are
experienced in DC system, and thus, ensure reasonable electrode life [4]. A hypothesis for the
lower electrode consumption with AC is that since DC only flows in one direction, there may
be irregular wear on the plates due to the onslaught of the current and subsequent oxidation
occurring in the same preferential points of the electrode. In the case of AC, the cyclical
energization retards the normal mechanisms of attack on an electrode and makes this attack
more uniform, thus ensures longer electrode life [23].

There are a few studies in which (AC) has been tested although typically DC has been used in
EC systems. Vasudevan et al. [24] studied the removal of fluoride from water with DC and AC
EC systems. They observed similar removal efficiencies with both technologies. However,
energy consumption was slightly lower with AC technology. Eyvaz et al. [9] used APC in their
study. APC enhanced removal efficiency compared to DC current. Pollutant removal decreases
over the course of time with DC systems, possibly due to passivation of electrodes, whereas
in an APC system this was not observed. Polarity reversal has also been suggested by other
authors to reduce passivation of electrodes [25].

Schematic display of current waves of AC and APC systems are given in Fig. 4. An adjustable
time relay plugged into the DC power supply was employed to obtain APC (It also represents
AC in our study). According to EC unit with time relay system, turn on and turn off modes
switch to positive pole to negative pole or reversion to it. For example, when the time relay is
turned on in an EC reactor including two electrodes namely 1 (anode) and 2 (cathode),
electrode 1 is then converted to cathode while electrode 2 is becoming anode. When the time
relay is turned off, only DC system is in circuit, electrode 1 becomes anode this time. Current
wave in real AC is shown as sine wave in Fig. 4.

Figure 4. Schematic display of current waves of AC and APC systems.
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3. Winery industry, winery wastewaters and treatment methods

Wine production  processes  generate  organic  and inorganic  pollutions  mostly  associated
with  solid  wastes  and  liquid  effluents.  The  liquid  effluents  usually  referred  as  “winery
wastewater” are mainly originated inwashing operations during grape harvesting, press‐
ing and first fermentation phases of wine processing [26-29]. Winery wastewater is produced
in significant volumes around the world [30-32]. Each winery is also unique in wastewa‐
ter generation, highly variable, 0.8 to 14 L per litre of wine [33-35] and is characterized by
high contents of  organic material  and nutrients,  high acidity and large variations in the
seasonal flow production [36, 37] and is generated mainly as the result of cleaning practices
in  winery,  such as  washing operations  during crushing and pressing grapes,  rinsing of
fermentations tanks, barrels washing, bottling and purges from the cooling process. As a
consequence  of  the  working  period  and  the  winemaking  technologies,  volumes  and
pollution loads  greatly  vary  over  the  year  [35].  The  organic  matter  might  reach during
vintage periods up to >30,000 mg/L chemical oxygen demand (COD), and the high sodium
adsorption ratio (SAR>15) make such water inadequate to be disposed to common sewage
systems [37,38].

Although different varieties of grapes and strains of yeasts result in different types of wine
and consequently winery wastewaters with different characteristics, in general, the typical raw
winery wastewater presents a pH between 3 and 4, COD ranges from 320 to 296,119 mg O2/L
and BOD5 values around 125–130,000 mg O2/L [32, 39]. The main organic compounds present
in this kind of wastewaters are soluble sugars (fructose and glucose), organic acids (tartaric,
lactic and acetic), alcohols (glycerol and ethanol) and high-molecular-weight compounds, such
as polyphenols, tannins and lignin [39, 40].

Wine distillery wastewater, the product of the distillation of ethanol, wine and waste biological
material, produces large volumes of liquid that involves unacceptable environmental risks
[41-47]. The disposal of the untreated waste from the wine sector causing salination and
eutrophication of water resources; waterlogging and anaerobiosis and loss of soil structure
with increased vulnerability to erosion [33, 35].

Several winery wastewater treatments are available, and among them biological treatment
methods have been recognized as a reasonable alternative way for a significant degradation
of wastewater with high organic content, however, the presence of recalcitrant compounds for
the microorganisms frequently makes impossible the complete treatment of a winery waste‐
water [27, 29]. The winery wastewater treatment technologies can be sorted as natural
evaporation in ponds, evaporation–condensation with or without combustion, direct disper‐
sion on soil as a fertilizer and intensification of the natural evaporation capacity of the ponds
by means of sprinklers and panels as physicochemical methods; aerobic or anaerobic treat‐
ment, trickling filters, lagoons as biological methods [30, 47-49]. These methods classified as
schematically in Fig. 5.
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Table 1. Advantages and drawbacks of the EC process.

COD and BOD of the winery wastewater can be removed significantly by biological treatment.
However, the color of the wastewater remains dark brown as that before the treatment because
of the non-biodegradable colored compounds such as melanoidins that can be degraded only
6–7% by biological treatment [47, 49-51]. EC process produces coagulants such as iron or
aluminium (Al) hydroxides having a considerable sorption capacity by anodic dissolution and
also pollutants are removed simultaneously by deposition on cathode electrode or by flotation
due to the hydrogen gas produced at the cathode [47, 52-55]. Because the wastewater is not
enriched with anions, the sludge produced in EC process is more compact than the sludge
generated by chemical coagulation [47, 55]. Besides this, EC process has many advantages like
simple equipment, easy operation, a shortened reactive retention time and less sludge amount
when compared chemical coagulation [2, 47].

In recent years EC technique has been applied to the wastewaters generated from food industry
such as distillery and fermentation [1, 49, 51, 56-58], dairy [59-61], potato chips manufacturing
[21], pasta and cookie process [62], poultry slaughterhouse [63-65], and yeast [20, 66]. Although
in literature, there are a lot of studies including various treatment methods shown in Fig. 5,
there have been very few research [46, 47, 67] conducted about technical and economic analysis
of EC process on winery industry wastewaters. Therefore, the purpose of this work is to
examine the treatment performance of EC process employing Fe and Al electrodes on winery
wastewater when investigating the APC on the overall EC efficiency.
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Figure 5. Schematic representation of various methods used in the treatment of winery wastewaters, *: ASB: Anaero‐
bic sludge beds, FB: Fluidized beds, CR: Contact reactor, SBR: Sequencing batch reactor, UASBR: Upflow anaerobic
sludge blanket reactor, HD: Hybrid digesters.

Pollutants
Electrode

material

Operational

parameters

investigated

Summary of the work Ref.

Winery

Aluminium,

iron, stainless

steel

Initial pH, current

density and

electrolysis time

• When Fe electrodes were used under optimal conditions,

the removal efficiencies of COD, color, and turbidity were

calculated as 46.6, 80.3, and 92.3%, respectively. They were

found as 48.5% for COD, 97.2% for color and 98.6% for

turbidity, when Al electrodes were used.

• A new approach combining electrochemical methods with

ultrasound in the strong electromagnetic field resulted in

significantly better removal efficiencies for majority of the

measured parameters compared to the biological methods,

advanced oxidation processes or electrocoagulation.

[47],

[67]

Paper-pulp mill Aluminium, iron

Initial pH,

temperature, current

density, treatment

time.

• Temperature has negative effect on the removal efficiency.

• Al–Al has a high efficiency in the color removal and Fe–Fe

is effective in the COD and Phenol removal.

• Pimaric-type acids were removed with higher efficiency

than abietic-type resin acids.

• EC had no significant effect on bacterial toxicity despite a

high removal efficiency of resin acids and copper.

• The sludge aptitude to settling is better with Fe electrodes

than with Al electrodes.

[68-70]

Textile effluents,

dyes

Aluminium,

iron, stainless

steel

Initial pH, current

density, anode-

cathode polarization

• Anode–cathode polarization reduces the reaction for

removing TOC and dye from aqueous solutions.

[9], [71],

[72]
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Pollutants
Electrode

material

Operational

parameters

investigated

Summary of the work Ref.

period, power supply

type, electrode

material, electrode

connection mode.

• EC employing SS electrodes was more economical;

consumed less material and produced less sludge, and pH of

the medium was more stabilized than EC with Fe electrodes.

Boron removal Aluminium, iron

Initial pH, current

density, initial boron

concentration,

treatment time,

temperature

• 98 % removal of boron from produced water was

achieved.

• Adsorption is chemisorption and endothermic.

• The effect of water purification for higher boron

concentrationsin the solution is better than for low ones.

• For the iron and aluminium electrodes, pH = 6 is the most

suitable value, and the aluminium anode is the best one for

the boron removal.

• The highest current density gave the quickest treatment

for boron removal from synthetically prepared waters

containing boron equivalent industrial wastewaters.

[73-75]

Landfill leachate
Aluminium,

iron

Electrode material,

current density,

initial pH, operating

time, Cl-

concentration

• Aluminum supplies more COD removal (56%) than iron

electrode (35%) at the end of the 30 min operating time.

• Coagulation and EC treatment mainly affected

hydrophobic molecules and after treatment 30% of the

initial BDOC quantity was removed.

• Electrolysis (and as a consequence EC) increased the

amount of hydrophilic organic compounds of lower

apparent molecular weight.

• Under conditions of iron electrode, 4.96 mA/cm2 current

density, 2319 mg/L Cl- concentration, 90 min electrolysis

time and unchanged the raw pH (6.4-7.3), the removal

efficiencies of COD, NH3-N, TP, BOD5 and turbidity are 49.8,

38.6, 82.2, 84.4 and 69.7%, respectively.

[76-78]

Drinking water

Aluminium,

iron, stainless

steel

Anode metal type,

NOM source, initial

NOM concentration,

co-occurring solutes,

initial fluoride

concentration,

electrode

connection type.

• Between the three metals tested, iron was the least costly

and most available material, it presented greater DOC

removal, it showed no passivation layer and linear voltage

ramp, and residual metal met guideline values.

• Removal of fluoride was better for bipolar connection than

for monopolar connection.

• The operating costs for monopolar and bipolar

connections were 0.38 and 0.62 US$/m3, respectively, for

the initial fluoride concentration of 10 mg/L.

[16],

[79],

[80]
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Pollutants
Electrode

material

Operational

parameters

investigated

Summary of the work Ref.

• The residual arsenic concentration was maintained below

the limiting value recommended during a period of 16 h of

continuous mode operation for EC-MF system.

Olive mill
Aluminium,

iron

Electrolysis time,

current

density, chloride

concentration, initial

pH,

settling time,

electrode material

and polarization,

amount of hydrogen

peroxide,

addition of

coagulant-aid

• EC can remove more than 70% of COD, polyphe-nols and

dark color.

• EC treatment makes good solid matter and turbidity

removal efficiency, 71% and 75%, respectively.

• EC in the absence of coagulant aid and oxidant is not too

efficient for the treatment of this type of wastewater.

[81-83]

Oily

wastewaters

Aluminium,

iron, steel

electrode

connection mode,

current

density, initial oil

concentration, pH,

NaCl dosage

• The best performance was obtained using mild steel MP

electrode system.

• EC process operated under the optimal conditions involves

a total cost of 0.46 US$ per cubic meter of treated oily bilge

water.

• The oil removal efficiency showed its best values at high

current density values, high initial oil concentration with an

emulsion of pH around 7.

• Sacrifice anode like Fe found to be more effective than Al

for the removal of sulfide species and organic matters.

[55],

[84],

[85]

Poultry

slaughterhouse,

manure

Aluminium, iron
Stirring speed,

current density,

• It has been possible to decrease COD of poultry

slaughterhouse wastewater about 2170 mg/L to a less than

300 mg/L in a matter of 30 min. under stirring speed of 150

rpm, initial pH 3 and a current density of 1.0 mA/cm2

conditions.

• Aluminum electrode performed better in reducing the

COD, with a removal efficiency as 93% in 25 at low initial

pH, such as 3, and current density of 150 A/m2 .On the other

hand, iron electrode was more successful in removing oil-

grease with 98% efficiency, irrespective of the initial pH.

From economic point of view, iron electrode is clearly

preferable; the total operating cost is between 0.3 and 0.4

$/m3 , which is nearly half that of aluminum electrode.

[63],

[64],

[76]
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Pollutants
Electrode

material

Operational

parameters

investigated

Summary of the work Ref.

• Under the optimal conditions, about 90% of COD and

92% of residual color could be effectively removed from the

UASB effluent with the further contribution of the EC

technology used as a post-treatment unit.

Electroplating/

metal

Aluminium,

iron

Electrode material,

current density,

wastewater pH,

conductivity,

initial metal

concentration

• The Fe–Fe and Fe–Al electrode combinations were more

effective for the removal of Cu, Cr and Ni from metal plating

wastewater.

• At the current density of 25 mA/cm2 with a total energy

consumption of 49 kWh/m3 , more than 96% removal value

was achieved for all studied metals except Mn which was

72.6%.

[86-88]

Table 2. cont. A brief literature review of EC efficiency on the treatment of different waters/wastewaters containing
various organic/inorganic pollutants.

4. Materials and methods

4.1. Materials

4.1.1. Winery wastewater used in this study

The wastewater used in this work was taken from an equalization tank of a wine factory located
in the city of Tekirdağ (in TURKEY), producing approximately 350 m3 of wastewater daily.
The characteristics of the wastewater are presented in Table 3.

Parameter Value

pH 5.2

COD, mg/L 20,400 ± 1,100

BOD5, mg/L 11,120 ± 1,055

TOC, mg/L 4,230 ± 940

TSS, mg/L 1,045 ± 85

Turbidity, NTU 1,600 ± 510

Color, Pt-Co 5,300 ± 100

Conductivity, µS/cm 2,800 ± 93

Table 3. Characteristics of the winery wastewater used in this study
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4.1.2. EC setup and electrode connection modes

EC reactor was made from plexiglas reactor with dimensions of 130 × 130 × 120 mm and
operated in batch mode. Al and Fe electrodes with effective area of 143 cm2 were used and the
distance between the electrodes was 20 mm. Electrodes were connected to a digital DC power
supply (Maksimel, Ankara, Turkey) in various electrode connection modes of which details
are given below. A time relay (Siemens Sirius, Germany) was used with DC power supply to
change polarity of the electrodes when performing APC experiments.

4.1.3. Monopolar electrodes in parallel connections (MP-P)

To improve the performances of an EC it may be necessary to interchange the polarity of the
electrode intermittently. However, a two-electrode EC cell is not suitable for wastewater
treatment, because for a workable rate of metal dissolution the use of electrodes with large
surface area is required. Performance improvement has been achieved by using EC cells with
monopolar electrodes either in parallel or series connections [3]. In the MP-P system, anodes
and cathodes are in parallel connection, the current is divided between all the electrodes in
relation to the resistance of the individual cells. Hence, a lower potential difference is required
in parallel connection, when compared with serial connections. MP-P connection mode is
given in Fig. 6.

4.1.4. Monopolar electrodes in serial connections (MP-S)

In the MP-S system, each pair of sacrificial electrodes is internally connected with each other,
because the cell voltages sum up, a higher potential difference is required for a given current.
MP-S connection mode is given in Fig. 7.

4.1.5. Bipolar electrodes in serial connections (BP-S)

In the BP-S system, there is no electrical connection between inner electrodes, only the outer
electrodes are connected to the power supply. Outer electrodes are monopolar and inner ones
are bipolar. This connection mode has simple setup with and has less maintenance cost during
operation. BP-S connection mode is given in Fig. 8.

4.1.6. Time relay device

An adjustable time relay (3RP1525-1BW30 Siemens Sirius Time Relay 20>240VAc/Dc) plugged
into the DC power supply was employed to obtain APC. It represents AC in our study.
According to EC unit with time relay system, turn on and turn off modes switch to positive
pole to negative pole or reversion to it. For example, when the time relay is turned on in an
EC reactor including two electrodes namely 1 (anode) and 2 (cathode), electrode 1 is then
converted to cathode while electrode 2 is becoming anode. When the time relay is turned off,
only DC system is in circuit, electrode 1 becomes anode this time.
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Figure 6. EC reactor with MP-P electrodes [89].
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Figure 7. EC reactor with MP-S electrodes [89].
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Figure 8. EC reactor with BP-S electrodes [89].

4.2. Methods

All experiments were performed at constant temperature of 25˚C. In each run, 1,500 mL of
winery wastewater was placed into the reactor. Magnetic stirring (250 rpm, Velp Are) was
applied to provide a homogenous solution in the reactor. Conductivity was 2.800 µS/cm that
was the conductivity of the wastewater itself where no supported electrolyte was added. The
current and pH were adjusted to the desired value before the process. After each run, electrode
surfaces were removed by dipping for 1 min in a solution prepared by mixing 100 cm3 of HCl
solution (36.5%) and 200 cm3 of hexamethylenetetramine aqueous solution (2.80%) [71] and
washed thoroughly with demineralized water to remove any solid residues on the surfaces,
dried and re-weighted. The solution was filtered through a filter paper (Whatman 40 ashless-
NJ, USA) after each run and then analyzed. The solid residue was dried until constant weight
was obtained for the calculation of sludge amounts. The experiments were performed in three
replications used to compute the mean value and standard deviations. Therefore large
amounts of data were collected; analyzed and figured for pH, current density and time
experiments; only on effects of COD removal efficiencies; so, all of the graphics could not be
presented here due to the limited space in the chapter. Electrode and energy consumptions,
sludge formations and operating costs are given in Tables. Economic data used for the
evaluation of the total operating costs dye given for the first quarter of 2013, Turkey market,
in Table 4.
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Item with warranty period Cost

Power supply and installing, $, 5 years 10,000

EC tank and installing, $, 10 years 500

Maintenance and depreciation, $/m3 0.005

Electricity, $ /kWh 0.17

Labor costs, $/m3 0.1

Aluminium electrode, $/kg 0.5

Iron electrode, $/kg 0.5

Chemicals (acid, salt, etc.), $/m3 0.04

Slıudge disposal cost, $/kg 0.012

Table 4. Economic factors used in the total operating cost calculations.

Measurements of COD and total suspended solids (TSS) were performed according to the
procedure of Standard Methods (2005). The pH and conductivity of solutions were measured
using a multi meter (Hach Lange HQ40d-Düsseldorf, Germany). An UV spectrophotometer
(HACH Co., model DR5000-Düsseldorf, Germany) was employed to measure color and
turbidity of the wastewater. The initial pH was adjusted to a desired value using NaOH
(Merck-Darmstadt, Germany) or H2SO4 (Merck-Darmstadt, Germany).

Pollutant removal efficiencies are calculated as follows:

% Removal  efficiency =
C0 - C

C0
×100 (14)

where C is COD, color or turbidity value of treated aqueous solution (mg/L, Pt-Co or NTU)
and C0 is the initial relating concentrations (mg/L, Pt-Co or NTU).

5.Results and discussions

5.1. Determining the optimum experimental parameters to comparison DC & APC systems

5.1.1. Effects of initial pH

The EC process is highly dependent on the initial pH of the solution [3]. In aluminium case,
precipitation mechanism of monomeric and polymeric Al(OH)3 species at pH 4.0–6.5 and
adsorption mechanism of Al(OH)3 and polymeric Al(OH)3 species at pH > 6.5 are effective on
the removal of pollutants. However, in the iron case, good removal efficiency can be achieved
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on floc formation at pH 6–8 [89-91]. Five pH values (4, 5, 6, 7, 8, and 9) were selected to
investigate the optimal pH at which maximum removal efficiencies, minimum electrode and
energy consumptions were observed for three electrode connection systems as well as both of
the electrode material, Fe and Al. The effects of pH have been investigated at constant current
density of 40 mA/cm2 and 60 min of operating time. Because there were a lot of parameters
(such as pH, current density, operating time, electrode material, electrode arrangement, and
current type) of which effects were investigated on the great number of process outputs (such
as COD, turbidity and color removals; energy and electrode consumptions; sludge amount,
and total operating cost), large amounts of data were collected, therefore, only some of them
are given as figures; as for the others, they are presented in tables. However, effects of APC
are analyzed and discussed in much more details in the following sections. The effects of initial
pH on COD removal are featured in Fig. 9. In both cases of different electrode materials, no
great differences are observed between connection modes. As seen from the figure, the highest
COD removal efficiencies were observed at pH 5 for Al electrode and at pH 7 for Fe electrode,
where also maximum turbidity and color removals as well as minimum energy and electrode
consumptions with minimum sludge formations (Table 5) were achieved. According to the
Fig. 9, COD removal efficiency increased when pH increased from 4 to 5 and then it decreased
at higher pH values, until pH 9. In similar trend, Fe electrode shows maximum performance
for COD removal at pH 7, (maxium turbidity and color removals were also obtained at these
pHs: 5 and 7, as seen in Table 5). It was concluded that colloid particles were destabilized by
the metal ions produced by anodic dissolution and these ions reacted with organic pollutions
by adsorption or co-precipitation while they were precipitating in the form of hydroxides at
these pH values [54, 71]. According to Table 5 where the optimum pHs are presented for both
electrodes, Fe and Al electrodes show similar performances with all connection modes on the
removal of color and turbidity. Additionally, almost equal amounts of sludge revealed.
However, MP-S and BP-S systems exhibit high consumptions as the consequence of the serial
connection requiring higher potential. When electrode consumptions are compared, more
electrode material is consumed in iron case than that of aluminium. The lowest total operating
cost was gained with MP-P mode as expected.

5.1.2. Effects of current density

Current density is the most important parameter for controlling the reaction rate within the
reactor in all electrochemical processes. It is well known that the magnitude of current density
determines the amount of Al or Fe ions released from the electrodes and the formation rate of
Me(OH)n (coagulant production rate) [92, 93] and adjusts the rate and size of the bubble
production, and hence affects the growth of flocs [3, 94, 95]. In this research, all the experiments
were applied under pHs 5 and 7 for Al and Fe electrodes, respectively with 60 min of elec‐
trolysis time to examine current density effects. Fig. 10 depicts the current density effects on
COD removal. The removal percentages reach maximum at 40-50 mA/cm2 and stay constant
or decrease at higher current densities. Increment in current density raised the formation of
hydroxide flocs and promote the removal efficiency by coagulation but meanwhile it causes
an increase in energy consumption. However, after a certain value of current density, cathode
passivation occurred and dissolution of anode material stopped or reduced and also floc
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formation and removal efficiencies decreased. The turbidity and color removal efficiencies
were also came in sight the same trend with current density as COD removal efficiency.
Because the lower current density with higher removal efficiencies is preferable, depending
on the results, 40 mA/cm2 was chosen as the approppriate current density value for the
following time experiments. The other results belong to this value are shown in Table 6.
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Figure 9. Effects of initial pH on removal efficiencies for Fe and Al electrodes with different electrode arrangements
(current density of 40 mA/cm2; operating time of 60 min).

Al Fe

Parameter MP-P MP-S BP-S MP-P MP-S BP-S

Initial pH 5 5 5 7 7 7

Current density, mA/cm2 40 40 40 40 40 40

Operating time, min 60 60 60 60 60 60

Initial voltage, V 28 84 85 28 84 85

Final voltage, V 29 85 87 29 85 87

Initial COD, mg/L 20,400 20,400 20,400 20,400 20,400 20,400

Initial color, Pt-Co 5,300 5,300 5,300 5,300 5,300 5,300

Initial turbidity, NTU 1,600 1,600 1,600 1,600 1,600 1,600

COD removal, % 39 39.1 40.3 41 37.6 43.1

Color removal, % 70 69.1 71 73.2 69.1 73.2

Turbidity removal, % 86.3 85.2 82.1 81 80.6 81

Energy consumption, kWh/kg COD 6.83 20.19 19.93 6.49 20.99 18.64

Energy consumption, KWh/m3 36.20 107.34 109.25 36.20 107.34 109.25
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Al Fe

Energy cost, $/kg COD 1.16 2.35 3.39 1.16 3.57 3.17

Energy cost, $/m3 6.15 18.25 18.57 6.15 18.25 18.57

Faraday (charge loading), coulomb/m3 47.40 47.40 47.40 47.40 47.40 47.40

Electrode consumption, kg Al or Fe/m3 0.40 0.45 0.45 0.88 0.89 0.87

Electrode cost, $/m3 0.20 0.23 0.23 0.44 0.45 0.43

Sludge formation, kg/m3 9.86 9.93 10.17 10.73 10.06 11.16

Sludge formation, kg/kg COD removed 1.86 1.87 1.87 1.92 1.97 1.90

Sludge disposal cost, $/kg 0.12 0.12 0.13 0.13 0.12 0.13

Operating cost, $/kg COD removed 0.83 2.35 2.32 0.82 2.47 2.19

Total operating cost, $/m3 6.62 18.74 19.07 6.86 18.96 19.28

Table 5. Optimum results obtained from pH experiments.

5.1.3. Effects of operating time

Operating time is another important factor in EC process, which is necessary to provide
sufficient current applied to the electrodes where the metal ions generated by the dissolution
to form metal hydroxide species. Therefore reasonable electrolysis times should be applied in
the EC reactor. To investigate the effects of operating time on the EC, optimum parameters
obtained from the former pH and current density experiments were used: pHs 5 and 7 for Al
and Fe, respectively; 40 mA/cm2 of current density. Influence of the operating time on COD
removal and the other results at the appropriate electrolysis time are presented in Fig. 11 and
Table 7 respectively.
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Figure 10. Effects of current density on removal efficiencies for Fe and Al electrodes with different electrode arrange‐
ments (initial pH of 5 for Al and 7 for Fe; operating time of 60 min).
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Al Fe

Parameter MP-P MP-S BP-S MP-P MP-S BP-S

Initial pH 5 5 5 7 7 7

Current density, mA/cm2 40 40 40 40 40 40

Operating time, min 60 60 60 60 60 60

Initial voltage, V 28 84 85 28 84 85

Final voltage, V 29 85 87 29 85 87

Initial COD, mg/L 20,400 20,400 20,400 20,400 20,400 20,400

Initial color, Pt-Co 5,300 5,300 5,300 5,300 5,300 5,300

Initial turbidity, NTU 1,600 1,600 1,600 1,600 1,600 1,600

COD removal, % 39 39.1 40.3 41 37.6 43.1

Color removal, % 70 69.1 71 73.2 69.1 73.2

Turbidity removal, % 86.3 85.2 82.1 81 80.6 81

Energy consumption, kWh/kg COD 6.83 20.19 19.93 6.49 20.99 18.64

Energy consumption, KWh/m3 36.20 107.34 109.25 36.20 107.34 109.25

Energy cost, $/kg COD 1.16 2.35 3.39 1.16 3.57 3.17

Energy cost, $/m3 6.15 18.25 18.57 6.15 18.25 18.57

Faraday (charge loading), coulomb/m3 47.40 47.40 47.40 47.40 47.40 47.40

Electrode consumption, kg Al or Fe/m3 0.40 0.45 0.45 0.88 0.89 0.87

Electrode cost, $/m3 0.20 0.23 0.23 0.44 0.45 0.43

Sludge formation, kg/m3 9.86 9.93 10.17 10.73 10.06 11.16

Sludge formation, kg/kg COD removed 1.86 1.87 1.87 1.92 1.97 1.90

Sludge disposal cost, $/kg 0.12 0.12 0.13 0.13 0.12 0.13

Operating cost, $/kg COD removed 0.83 2.35 2.32 0.82 2.47 2.19

Total operating cost, $/m3 6.62 18.74 19.07 6.86 18.96 19.28

Table 6. Optimum results obtained from current density experiments.

As seen from Fig.11, COD removal efficiencies of both electrodes in three connection modes

increases until a certain operating time value, then, remain steady or decrease. Here, two

explanation may be done: Firstly, for an electrolysis time beyond the optimum electrolysis
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time, the pollutant removal efficiency does not increase as sufficient numbers of flocs are
available for the removal of the pollutant [1], secondly, removal efficiency does not increase,
on the contrary, it decreases due to the anodic passivation and cathodic polarization which
can impede the performance of EC [9, 96]. This situation is also valid in the case of the current
density experiments. The optimum operating times (chosen as 90 and 105 min for Fe and Al,
respectively), at which the maximum pollutant removals and minimum energy/electrode
consumptions were gained, is presented with experimental results in Table 7. Because the
removal efficiencies in the Table are close to each other, MP-P connection mode with minimum
total operating cost is preferred for the follow-up experiments of the comparison of DC and
APC.
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Figure 11. Effects of operating time on removal efficiencies for Fe and Al electrodes with different electrode arrange‐
ments (initial pH of 5 for Al and 7 for Fe; current density of 40 mA/cm2).

Al Fe

Parameter MP-P MP-S BP-S MP-P MP-S BP-S

Initial pH 5 5 5 7 7 7

Current density, mA/cm2 40 40 40 40 40 40

Operating time, min 105 105 105 90 90 90

Initial voltage, V 28 84 85 28 84 86

Final voltage, V 29 85 88 29 85 90
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Al Fe

Initial COD, mg/L 20,400 20,400 20,400 20,400 20,400 20,400

Initial color, Pt-Co 5,300 5,300 5,300 5,300 5,300 5,300

Initial turbidity, NTU 1,600 1,600 1,600 1,600 1,600 1,600

COD removal, % 55.1 57 59 52.4 46.7 49.9

Color removal, % 96.3 92.1 94.7 81.4 76.7 81.1

Turbidity removal, % 97.7 97 95.4 90.8 88.2 91.5

Energy consumption, kWh/kg COD 8.45 24.23 23.97 7.62 25.35 24.71

Energy consumption, KWh/m3 63.36 187.85 192.29 54.30 161.01 167.68

Energy cost, $/kg COD 1.44 4.12 4.07 1.30 4.31 4.20

Energy cost, $/m3 10.77 31.93 32.69 9.23 27.37 28.51

Faraday (charge loading), coulomb/m3 82.94 82.94 82.94 71.10 71.10 71.10

Electrode consumption, kg Al or Fe/m3 0.75 0.75 0.77 1.33 1.30 1.30

Electrode cost, $/m3 0.37 0.37 0.39 0.66 0.65 0.65

Sludge formation, kg/m3 13.49 13.87 14.31 13.52 12.33 12.98

Sludge formation, kg/kg COD removed 1.80 1.79 1.78 1.90 1.94 1.91

Sludge disposal cost, $/kg 0.16 0.17 0.17 0.16 0.15 0.16

Operating cost, $/kg COD removed 1.02 2.81 2.77 0.95 2.97 2.89

Total operating cost, $/m3 11.45 32.62 33.39 10.20 28.31 29.46

Table 7. Optimum results obtained from operating time experiments.

5.2. Comparison of DC & APC systems

As encountered as a problem, cathode passivation, in the current density and operating time
experiments, it may be described schematically as given in Fig. 12 similar to the results given
in Table 8. To compare DC and APC system, MP-P connection mode selected for both electrode
material. Current density and operating time experiments were repeated with time relay
integrated with DC power supply to generate polarization between anodes and cathodes at
certain intervals. Time relay was set to 300 Hz-1 [9] meaning anode–cathode polarization period
of 10 min. The results are depicted in Figs. 13 and 14 for current density and operating time,
respectively. As seen in the figures, removal efficiencies are not stopped or decreased at or
after a certain current density or time value, moreover, at the same values APC sounds superior
to DC. To make a local comparison between APC and DC, the results of APC are presented at
optimum experimental conditions that formerly determined for DC system employed Fe or
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Al electrodes in MP-P connection mode in Table 8. Moreover, few reports in literature about

power supply effects on EC process are presented with overall results in Table 9.

Al Fe

Parameter DC APC DC APC

Initial pH 5 5 7 7

Current density, mA/cm2 40 40 40 40

Operating time, min 105 105 90 90

Initial voltage, V 28 28 28 28

Final voltage, V 29 29 29 29

Initial COD, mg/L 20,400 20,400 20,400 20,400

Initial color, Pt-Co 5,300 5,300 5,300 5,300

Initial turbidity, NTU 1,600 1,600 1,600 1,600

COD removal, % 55.1 77 52.4 75

Color removal, % 96.3 99 81.4 99

Turbidity removal, % 97.7 99 90.8 99

Energy consumption, kWh/kg COD 8.45 6.05 7.62 5.32

Energy consumption, KWh/m3 63.36 63.36 54.30 54.30

Energy cost, $/kg COD 1.44 1.03 1.30 0.91

Energy cost, $/m3 10.77 10.77 9.23 9.23

Faraday (charge loading), coulomb/m3 82.94 82.94 71.10 71.10

Electrode consumption, kg Al or Fe/m3 0.75 0.85 1.33 1.36

Electrode cost, $/m3 0.37 0.43 0.66 0.68

Sludge formation, kg/m3 13.49 18.10 13.52 18.16

Sludge formation, kg/kg COD removed 1.80 1.72 1.90 1.78

Sludge disposal cost, $/kg 0.16 0.22 0.16 0.22

Operating cost, $/kg COD removed 1.02 0.74 0.95 0.67

Total operating cost, $/m3 11.45 11.55 10.20 10.27

Table 8. Comparison of DC and APC at the same experimental conditions.
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electrode polarization  

by using AC or APC 

Figure 12. (a) General trend of pollutant removal efficiency changing with respect to current density and operating
time in EC using DC power supply (one-way current), (b) Improved removal efficiency behaviour with respect to cur‐
rent density and operating time in EC using AC power supply or APC (two-way current).
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Figure 13. Comparison of DC and APC for two electrode materials in view of COD removal performances at different
current densities.
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Figure 14. Comparison of DC and APC for two electrode materials in view of COD removal performances at different
operating times.
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Pollutants
Electrode

material

Operational parameters

investigated
Summary of the work Ref.

Cr (VI)
Aluminium,

iron

Initial pH, current density,

reaction time, initial Cr (IV)

concentrations, solution

conductivity, electrical

energy consumption, type

of circuit

The APC mode was found to be more efficient than the

DC mode with a lower anode over-voltage, slower

anode polarization and passivity, and lower tank

voltage.

The operating time is 3–25% less when APC mode is

used.

The APC mode minimizes waste and increases sludge

stability.

In the APC mode, the “water recovery” was very

significant, measuring as high as 0.92 m3/m3

wastewater. For DC mode, the water recovery was less

than 0.5 m3/m3 of wastewater.

[11]

Cadmium Aluminium

Initial pH, current density,

initial Cd concentrations,

effect of coexisting ions

The optimized removal efficiency of 97.5% and 96.2%

was achieved for AC and DC source at a current density

of 0.2 A/dm2 and pH of 7.0 using aluminum alloy as

anode and cathode.

For both AC and DC electrolysis the adsorption of

cadmium preferably fitting Langmuir adsorption

isotherm better than Freundlich isotherm.

[10]

Cadmium Zinc

Initial cadmium ion

concentration, initial pH,

current density and

temperature.

The optimum removal efficiency of cadmium is 97.8%

and 96.9% with the energy consumption of 0.665 and

1.236 kWh/m3 was achieved for AC and DC source at a

current density of 0.2 A/dm2 and pH of 7.0

For both AC and DC electrolysis the adsorption of

cadmium preferably fitting Langmuir adsorption

isotherm.

[97]

Synthetic

Methyl Orange

wastewater

Aluminium

Initial pH, initial MO

concentration, solution

conductivity

Electrocoagulation with periodic electrode reversal

(PREC) can effectively retard cathodic polarization and

anodic passivation.

Decolorization of MO wastewater is described well by a

first-order reaction equation. The rate constant was

fitted to be 0.183 min−1 for PREC, an increase of 20%

compared to the EC.

[12]

Dianix Yellow

CC, Procion

Yellow dyes

Aluminium

Initial pH, current density,

operating time, frequency

of anode-cathode

polarization.

Higher removal efficiencies of TOC and dye can be

acquired in shorter operation times by using APC system.

Removal efficiencies increase in APC system after

optimum operation time belongs to DC system as well.

[9]

Table 9. A brief literature review of some studies on power supply effects on EC performance
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4. Conclusions

The EC technique has gained a remarkable attention in the wastewater treatment applications
due to its benefits including environmental compatibility, versatility, energy efficiency, safety,
selectivity, amenability to automation, and cost effectiveness. The EC process contains an in-
situ generation of metal hydroxide ions by electrolytic oxidation of the sacrificial anode. These
metal hydroxide ions act as coagulant and remove the pollutants from the solution by
sedimentation. Majority of the studies reported in the literature have traditionally used DC in
the EC process. However, the traditional process also has the serious disadvantages of cathodic
passivation which can impede the electrolytic process in a continuous operation. The use of
DC leads to the corrosion formation on the anode due to oxidation. An oxidation layer also
form on the cathode reducing the flow of current between the cathode and the anode and
thereby lowering the pollutant removal efficiency and highering the operational cost. There‐
fore, in this research an almost new method, APC electrocoagulation was used to overcome
the cathode passivation. A real high strength industrial wastewater, winery wastewater, was
selected as the model electrolytic solution. In the EC reactor, aluminium and iron were used
as sacrificial electrodes separately in three different connection modes namely, monopolar –
parallel,,monopolar-serial, and bipolar serial connections. DC was obtained from a DC power
supply operated at galvanostatic mode while APC was obtained by a time relay device
integrated with the DC power supply. COD, color, and turbidity removal efficiencies were
considered when DC and APC were compared technically. Furthermore, various cost items
were used to calculate the total operation cost of both DC and APC systems by means of
pollutant removals. A comprehensive literature survey from numerous references is also
stated on EC and power supply effects. According to the experimental results, the following
conclusions may be exposed:

• Higher removal efficiencies can be acquired in both same and shorter operation times by
using APC system. In the same operating time, conditions, APC provide 40% more COD
removal than DC. Similarly, APC reach 30 % more faster to DC’ s COD removal perform‐
ance. Thus, it can be said that anode–cathode polarization reduces the reaction time which
is necessary for metal hydroxides removing the pollutants.

• COD, turbidity and color removal efficiencies increase until a certain current density and
operation time and then they decrease so long as DC system goes on working. It may be
due to the cathode passivization arisen from accumulation of contaminants on the cathode
material. Therefore, electrode surfaces are needed to be cleaned and then put into use again.
However, removal efficiencies increase in APC system after optimum operation time
belongs to DC system as well. Thus, APC system can prolong the electrode life in each batch
round of EC process.

• ACP can be easily obtained by a simple time relay device from the existing DC power supply
and can be used in EC applications.

• ACP provides regular polarization to each electrode in the EC reactor, so, the sacrificial
electrodes could be consumed in reasonable similar times.
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• Fill-and-draw periods of reactor could be easily increased for batch EC processes by using
time relay to eliminate cathode passivization. An increasing in fill-and-draw periods is
important to decrease operating costs for batch processes.

• According to the results of the study, color and turbidity can be removed successfully from
winery wastewaters but remained COD concentration is still too high for discharge. So, EC
process should be applied with other treatment technologies such as anaerobic treatment
that can remove the high COD concentrations.

Based on the promising results achieved in this research, different electrode materials can be
used together by changing the anode-cathode polarization; ACP system can be also evaluated
for different wastewater types or electrolytic solutions in further researches.
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