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Italy 

1. Introduction  

As awareness of cultural heritage raised, much effort was devoted, in the last decade, to 
improve accessibility and preservation of cultural assets. At present, several methods are 
available that generally make use of laser scanners and cameras to construct 3D photo-
realistic models of different-sized items, ranging from small objects, like statues, up to large 
buildings and archaeological sites. These methods provide effective technological solutions 
for cultural heritage preservation, while guaranteeing, at the same time, their accessibility to 
as much people as possible. Nevertheless, the generation of models may turn into a time-
consuming procedure if data acquisition and processing is done by hand, since, in order for 
models to be sufficiently accurate, an extremely painstaking work is required.  
Contributions to implement automated model building techniques and remote access 

systems for cultural heritage applications may derive from experience in the mobile robotics 

field. Recently, several research projects have attempted to develop mobile robotic agents in 

museums (Burgard et al., 1999; Thrun et al., 2000; Trahanias et al., 2005), with different tasks, 

such as to supply remote access to distant users, accommodate and guide people in the 

museum, survey those areas where access is not permitted. Equipped with sensors, like 

cameras and laser rangefinders, mobile platforms provide a variety of viewpoints and may 

supply the user with dedicated tours of the exhibition and personalized tele-presence, which 

result in greater interaction capabilities than fixed or even remotely controllable cameras 

(Trahanias et al., 2005). Generally, in order for a mobile robot to perform its tasks, the 

knowledge of a map of the environment is needed. Hence, a number of methods for efficient 

environment modeling, based on information from onboard robot sensors, have been also 

developed. Yet, relatively little work has been done to extend these techniques to cultural 

heritage applications, such as modeling of historical and archaeological sites. 

In this chapter, we describe our research concerning the development of methods for 
environment exploration and modelling by a multisensor mobile platform, in the context of 
cultural heritage access and preservation. Our goal is to have a system able to navigate in 
the environment and acquire sensorial data, in order to either construct global or local 
models of the site, or send information to a remote console.  
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Fig. 1. The robotic mobile platform in the configuration used in the polygonal environment. 

Usually, when exploring an unknown environment for the first time, a mobile robot is 

remotely controlled by a joystick or other tele-operation devices. Recently, a novel scenario 

is receiving considerable attention, which relates to the possibility of teaching the robot its 

environment by human interaction. This concept, introduced in (Topp & Christensen, 2005), 

is known as Human Augmented Mapping (HAM). Pursuing this trend, we propose a novel 

laser-based leg detection and tracking algorithm (Milella et al., 2007) that enables a mobile 

platform to follow a human user in a tour of the environment, in order to explore the 

surroundings, acquire sensorial data for map building, and learn particular regions or 

locations specified by the user. 

We present two case studies. The first one deals with the problem of modelling a polygonal 

environment, such as a museum. The second case study is concerned with the use of a 

mobile robot for exploration and mapping of a pre-historical underground cave in Southern 

Italy, named “Grotta dei Cervi”, rich in ancient wall paintings of historical and artistic 

relevance.  

The mobile robot employed to carry out this research is shown in Fig.1. It consists of a 

Pioneer-P3AT by ActivMedia Robotics, equipped with a SICK LMS 200 laser range finder, 

sixteen forward and rear sonar sensors, encoders, gyroscope, and a monocular pan-tilt-zoom 

camera. The laser range finder is mounted at a height of about 30cm from the floor and is 

able to sense objects at a distance of up to 80m with a resolution of 0.5°. Sonar sensors can 

detect obstacles up to 7m away. Its four tractor wheels can scale a 45° gradient and sills of 

9cm. The robot case contains four motors, a local processor, and the batteries. For 

experimentation in the cave, a 1m high aluminium support was added to the platform to 

carry the illumination system and the camera (see Fig. 2). Such a configuration allowed us to 

acquire the wall paintings from an appropriate perspective, since they are mainly located 

approximately between 1m and 2m above the ground. ARIA C++ libraries by ActivMedia 

Robotics were used for communication between sensors and the robot controller. 
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Fig. 2. The mobile robotic platform in the configuration used in the cave. 

The results of the experimental sessions realized in both case studies show that the proposed 
methods are feasible and accurate. They allow us to produce detailed 2D and 3D 
representations that can be usefully employed to support the study of relevant historical 
treasures, guaranteeing, at the same time, their safety. 
The remainder of this chapter is organized as follows. After a review of the literature related 
to this work in Section 2, the people following method for Human Augmented Mapping 
(HAM) is described in Section 3. Section 4 illustrates our approach to polygonal 
environment modelling. Section 5 describes the study conducted in the pre-historical cave. 
Finally, Section 6 draws some conclusions.  

2. Related works  

Several works in literature have shown mobile robots to be useful in environment modelling 
tasks, since, equipped with sensors, such as cameras and laser rangefinders, they can 
acquire and process sensorial data while navigating in the environment, with minimum 
human intervention. In (Biber et al., 2004), a 3D modeling method using data from a laser 
range finder and an omnidirectional camera mounted on a mobile robot is proposed. The 
method consists of manual, semi-automatic, and automatic parts. Data collection and sensor 
calibration is carried out manually by teleoperating the robot; wall extraction is done semi-
automatically with a user interface; the rest of the processing is fully automatic. In (Nevado 
et al., 2004), 3D models of the inside of buildings are obtained by using points measured by 
a laser scanner on-board a mobile robot. The most likely orientation of the surface normal is 
first calculated at every point by considering also the neighbouring regions to avoid 
measurement noise. Similar planes are merged and each point is projected onto the planes 
they belong to. Finally, the contours of the points in the corresponding planes are obtained 
by a triangulation procedure producing a simple representation of the environment. In this 
case, the lack of video information limits the final 3D model to a topological representation 
of the environment without texture. In (Leiva et al., 2001), a 3D model of the environment is 
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built combining sonar and video information. First, sonar sensors and odometers are used to 
estimate the distance of the robot from the objects in the environment. Odometric errors are 
corrected when image data is suitable. Then, a 2D probabilistic map of the environment is 
divided into segments which become planes in 3D. Finally, the texture from snapshots is 
assigned to each plane. A rough 3D representation of the environment is obtained, as the 
aim of the authors is to construct a basic 3D model by an easy and fast method using cheap 
sensors. Simultaneous Localization and Mapping (SLAM) approaches for concurrent robot 
localization and modelling of unknown environments can also be found in (Gutmann & 
Konolige, 1999; Se et al., 2002; Grisetti & Iocchi, 2004; Thrun et al., 2004; Ip & Rad, 2004; 
Stachniss et al., 2005; Wolf & Sukhatme, 2005).  
Despite this high number of model building methods using mobile robots, a few authors 
have explicitly suggested the use of mobile robotics techniques for applications in the 
domain of cultural heritage, and realized field tests. Examples can be found in (Allen et al., 
2001; Allen et al., 2003; Hirzinger et al., 2005). Specifically, in (Hirzinger et al., 2005), 
methods for 3D modelling in robotic environments are applied to digitization of cultural 
heritage from small to large scale objects. In (Allen et al., 2001; Allen et al., 2003), instead, the 
use of a mobile robot is proposed to build models of urban environments and historic sites.  
In our work, we employ a multisensor mobile platform for data acquisition and processing 
in the context of cultural heritage, and present the results of two practical implementations 
of the approach, one in a typical indoor polygonal environment and the other in a pre-
historical cave. In both cases, the constructed environment model is employed not only for 
in site navigation of the robot, but also for remote access to cultural assets. For the polygonal 
environment, our work is related to (Biber et al., 2004); however, we employ a monocular 
camera and processing is completely automatic. Furthermore, we suggest the use of a 
Human Augmented Mapping (HAM) (Topp & Christensen, 2005) approach to perform laser 
and video data acquisition, in place of usual robot teleoperation. First, an accurate 2D map 
of the environment is generated, based on a SLAM algorithm using laser data (Gutmann & 
Schlegel, 1996). Starting from this map, the wireframe model of the environment is 
constructed. Then, images are processed to extract the texture to be added to the wireframe 
in order to obtain the complete 3D model. For exploration and mapping of the cave, instead, 
we present an integration of two different algorithms. Specifically, the robot constructs the 
2D map of the environment using laser data, and then builds the 3D model of some zones of 
particular interest using computer vision techniques. The combination of these two 
approaches makes it possible to obtain a complete knowledge of the environment in an 
automatic way. The proposed solution allows the access to the cave without damaging it, 
thus providing an effective system to monitor and preserve its relevant treasures.  

3. People-following for Human Augmented Mapping (HAM) 

There are several works in literature that concentrate on either people-tracking or following 
for interaction. They rely on the use of laser range finders or vision or both. 
(Kleinehagenbrock et al., 2002) integrate vision and laser range data to track a human user, 
based on a multi-modal anchoring technique. The legs of the user are extracted from laser 
range data, while his face is from camera images. In (Fod et al., 2002) a laser-based method 
for real-time tracking of multiple objects is presented, as a step towards the wider objective 
of identifying people and their activities. Range measurements are grouped into entities for 
an abstract representation of objects. A Kalman Filter is, then, associated to each object to 
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address occlusion and sensor noise problems. (Feyrer & Zell, 2000) present a system that 
detects and pursues people by using both vision and laser data. Color information is used to 
extract faces in images, whereas convex intervals are extracted in laser scans to detect 
human legs. In (Pineau et al., 2003) efficient particle filter techniques are used to detect and 
track people. 
In our work, only laser data are employed for detecting people, based on typical human leg 
shape and motion characteristics. Due to safety reasons, laser range sensors have to be 
attached near the bottom of the mobile robot; hence, laser information is merely available in 
a horizontal plane at leg height. In this case, legs constitute, therefore, the only part of the 
human body that can be used for laser-based people-tracking.  
The objective of the proposed approach is to develop a Human Augmented Mapping 
(HAM) system, that is, to implement a human-robot interaction approach to mapping. The 
people detection and following method consists of two main modules: 

• the Leg Detection and Tracking (LDT) module: this module allows the robot to detect 
and track people using range data based on typical shape and motion characteristics of 
human legs; 

• the People-Following (PF) module: this module enables the mobile platform to 
navigate safely in a real indoor environment while following a human user. During the 
tour the robot can acquire data for environment mapping tasks.  

Details about both modules are provided in the remainder of this section, along with the 
results of some tests performed in a real context. 
 

 
(a) 

       
                                                   (b)                          (c) 

Fig. 3. (a) The robot detecting a leg-shaped object; (b) geometrical representation of a scan 
interval; (c) geometrical representation of two subsequent scan points. 

3.1 Leg-detection and tracking  
The Leg Detection and Tracking (LDT) method allows to detect and track legs, based on 
typical human leg shape and motion characteristics. The algorithm starts by acquiring a raw 

www.intechopen.com



 Robotics, Automation and Control 

 

128 

scan covering a 180° field of view. Laser data are analyzed to look for scan intervals with 
significant differences in depth at their edges (Feyrer & Zell, 2000). Specifically, let us denote 

 ],...,,...,,[
21 nk ssssS =  (1) 

a raw scan, being sk, for k = 1, 2,…n, the laser readings ordered according to the rotation 
sense of the laser beam (counterclockwise sense in Fig. 3(a)). A scan interval, delimited by 
scan points Pj and Pm (see Fig. 3(b)), i.e.  

 ],...,,,,[
21 miiijjm sssssS ++=  (2) 

with SS jm ∈ , is selected, if it satisfies the conditions  

 
jjj ss τ>−−1
 (3) 

 
iii ss τ≤− +1
     for mij <<  (4) 

 mmm ss τ>−+1  (5) 

The thresholds τi, for j ≤i ≤ m, are dynamically computed at each step based on the following 
considerations. Let us denote Pi and Pi+1 two subsequent point scan readings (see Fig. 3(c)). 
Since the rotational resolution ϑ  of the laser beam is small (approximately 0.5°), it yields  

 ϑii sh ≅  (6) 

and 

 ϑϑ sin≅  (7) 

so that we have  

 ϑsinii sh ≅  (8) 

If Pi and Pi+1 belong to a continuous region, then a small difference between the 
corresponding readings will be observed, which is 

 
iii hss <<− +1
 (9) 

Conversely, a discontinuity between Pi and Pi+1  will generate the condition 

 
iii hss >>− +1
 (10) 

The value of hi can be, therefore, usefully employed to define a threshold iτ , establishing 

whether Pi and Pi+1 lie on a continuous surface or belong to different objects. 
Specifically, the threshold τi can be expressed as 

 
ii h⋅= βτ  (11) 

where 1>β  is an empirically determined coefficient that takes into account laser noise effects.  
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Once a set of scan intervals has been selected, a criterion to differentiate between human 
legs and other similar objects, such as legs of chairs and tables and protruding door frames, 
must be defined. To achieve this aim, first, the width of each pattern is calculated as the 
Euclidean distance between its end-points and is compared with the typical diameter of a 
human leg (0.1m to 0.25m). Then, a Region of Interest (ROI) is fixed in the vicinity of each 
candidate pattern. A leg-shaped region detected within each ROI at the next scan reading is 
classified as a human leg if the displacement of the pattern relative to its previous position 
has occurred with a velocity compatible to a typical human leg velocity (0.2m/s to 1m/s). 
Note that if the robot is moving and thus so is the scanner, the effect of ego-motion must 
first be accounted for. This can be done employing the information provided by the on-
board odometers or by the laser scanner. 

3.2 People-following 
The people following algorithm consists of the following steps: 
1. detect human legs using the LDT module; 
2. choose the closest moving person within a certain distance and angular position relative 

to the robot; 
3. keep track and follow the target person until he/she stops or disappears from the scene. 
A control loop is employed, which sets speed and turn rate of the robot, based on the 
distance from the person and from other objects present in the environment. An obstacle 
avoidance routine that uses sonar information is also implemented.  
As will be shown below, the People Following (PF) module can be effectively employed in 
the context of Human Augmented Mapping (HAM). 

3.3 Some tests 
In order to test both the performance of the people detection and tracking algorithm and the 

effectiveness of the people-following method, some tests were performed in our institute. 

Specifically, three different test scenarios were analysed: 1) robot still, one person present; 2) 

robot still, two people present; 3) robot following one person for Human Augmented 

Mapping (HAM). Each experimental setup is discussed in the rest of this subsection. 
 

 

Fig. 4. The trajectory of a person moving in the area surveyed by the robot. 
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Fig. 5. The trajectories of two people crossing the area surveyed by the robot. 

1. Robot still, one person - In this case, the robot is not moving. Only one person is 
present and crosses the field of interest at varying speed. Fig. 4 shows the trajectory of 
the target within the inspected area (i.e. the semi circumference marked by the dashed 
line) obtained by the tracking system during one experiment. Black dots represent laser 
scan readings. The target was classified at all times as a moving person. 

2. Robot still, two people - Two people cross the scene surveyed by the robot which is not 
moving. Assuming that the motion direction of each person does not vary significantly, 
the system is able to keep track of the two trajectories separately, as is shown in Fig. 5. 

 

 
 

 

Fig. 6. Two image sequences taken during the pursuit of a person. 

3. Robot following one person for Human Augmented Mapping (HAM) – In this case, 
the robot follows the user in a tour of the environment, maintaining a safety distance 
from him. The user is identified as the closest person in a range of 1m. Fig. 6 shows two 
short image sequences taken during the experiments. While following the user, the 
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robot is able to acquire laser data that allows to concurrently reconstruct its trajectory 
and build a 2D map of the environment. The simultaneous localization and mapping 
process is shown in Fig. 7 for two different tests. In this figure, the continuous lines 
indicate the robot path, while small arcs represent the user’s legs and black points the 
reconstructed map.  

       

Fig. 7. Two people following experiments for Human Augmented Mapping (HAM). 

In the next section, details about the 2D mapping approach will be provided. It will be also 
shown how, assuming the environment to be polygonal and adding visual information, the 
2D map can be used to recover a full 3D model of the environment.  

4. Modelling a polygonal environment  

In this section, we illustrate our approach to build the 3D model of a polygonal 
environment, such as a museum, based on laser and video data acquired by a mobile 
platform. Experiments were carried out in a corridor of our institute. This does not lose 
generality, since an office environment is very similar to a museum one. First, data 
acquisition was performed taking the robot on a tour of the environment, and a 2D map was 
constructed using a laser-based Simultaneous Localization and Mapping (SLAM) algorithm. 
Then, a 3D wireframe model was generated, adding vertical planes to the contour defined 
by the planar map. Finally, the 3D model was completed, applying the texture recovered 
from the acquired images to the wireframe model. Note that the camera was mounted on 
board the robot above the laser range finder, and its optical axis was oriented 90° to the right 
with respect to the forward direction of the robot in order to acquire images of the lateral 
walls. 

4.1 2D Map of a polygonal environment 
The construction of a map of the environment is a basic step both for robot navigation and 
accurate knowledge of the environment. The robot can use the map to localize itself as well 
as to recognize places already explored. This turns the problem of building a map into a 
problem of on-line Simultaneous Localization and Mapping (SLAM). 
In this work, the Combined Scan Matcher (CSM) method proposed in (Gutmann & Schlegel, 
1996) is applied to construct a laser-based 2D map and simultaneously estimate the robot 
trajectory. This approach integrates the IDC algorithm by Lu and Milios (Lu & Milios, 1997) 
with the method proposed by Cox (Cox, 1991). Fig. 8 shows the point map, with overlaid the 
robot trajectory, obtained applying the CSM algorithm followed by a statistical filtering for 
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noise removal. This map is composed of 112 frames scanned by the laser and covering an 
area of approximately 20×2m2. The next step is to fit the points with line segments. The 
result of the line fitting procedure is a map to which a gap removing algorithm has been 
applied. The final map is shown in Fig. 9. Each couple of consecutive line segments are 
intersected to obtain the corners in the map. These points will be useful for building the 3D 
model of the environment. 

 

Fig. 8. Planar point map. The path of the vehicle is also drawn. 

 

Fig. 9. Final planar map characterized by line segments. 

4.2 Building the 3D Model of a polygonal environment 
Once the planar map of the polygonal environment has been obtained, a 3D model can be 
constructed. The first step is to build the wireframe of the 3D model. The wireframe is 
generated by adding one vertical plane to each line segment in the 2D map. This operation is 
possible since the explored environment is polygonal. Each segment in the 2D map refers to 
the contour of walls, cupboards, doors, and other objects with a polygonal shape. Fig. 10 
shows the resulting wireframe.  
 

 

Fig. 10. Wireframe model. 

The next step to obtain the complete 3D model is the addition of texture to improve the 
visual appearance of the model. The texture is obtained by using the images acquired by the 
camera, on-board the vehicle, during the acquisition phase. Note that images were taken at a 
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fixed horizontal translation distance from each other and the positions of the vehicle, from 
which the images were acquired, are known. The process for adding the texture can be 
divided into the following fundamental steps: 1) generation of the entire image covering the 
whole contour of the environment, i.e. image registration or mosaicking; 2) correct 
positioning of the registered image to the wireframe. 
1. Image registration. The fundamental step in image mosaicking is to find 

correspondences between different views, and estimate the homographies between the 
reference image and all other images. Each pair of consecutive images is processed as 
follows: feature extraction; feature matching; selection of correct matches; final image 
generation. Specifically, the Harris corner detector is, first, applied to extract corners. 
Fig. 11 shows the extracted corners on two adjacent images. A simple cross-correlation 
algorithm is applied to find matches. False matches are then removed using RANSAC 
(Hartley & Zisserman, 2003). Fig. 12 shows the correct correspondences after applying 
the RANSAC algorithm.  

 

   

Fig. 11. Corner points extracted by the Harris operator on two adjacent images. 

 

Fig. 12. Correct correspondences of the extracted corners after the application of RANSAC 
algorithm. 

Successively, homographies are estimated by solving overdetermined systems (number of 
points > 4) using the linear-least squares method. By using the homographies, it is 
possible to estimate the horizontal translation between two consecutive images and then 
the images can be aligned correctly. The resulting image, of 38981×480pixel2, is obtained 
aligning 123 images of 640×480pixel2. Fig. 13 shows a portion of the registered image.  
The described procedure works properly when images present sufficient texture. In our 
experiment, regions with pictures on the walls have enough texture. Problems arise, 
instead, in homogenous areas corresponding to walls, doors, etc. In these cases, feature 

www.intechopen.com



 Robotics, Automation and Control 

 

134 

extraction is difficult and, therefore, homographies cannot be estimated automatically. 
To solve this problem, the horizontal translations estimated between textured images 
are used. They are correlated to the known translation distances, performed by the 
robot during the acquisition phase and estimated by using the odometers. The median 
of the translations, estimated by using RANSAC and homographies, among textured 
images is then used to align those images without texture.  

 

 

Fig. 13. Portion of the mosaic image. 

2. Adding texture to the wireframe. The final step in building the 3D model is to add the 

texture, defined by the mosaic image, to the wireframe model. To achieve this aim, the 

idea is to match correctly the corners of the wireframe model to those in the mosaic 

image. The corners in the wireframe model are easily detected since they are known on 

the 2D map. The detection of the corners in the mosaic image needs some additional 

elaborations. For the sake of simplicity, processing is done on the single images forming 

the mosaic. First, the Sobel operator is applied to extract edges. Then, the vertical lines 

in the images are determined by using the Hough Transform (Hough, 1962). Vertical 

lines can be relative to door edges, picture edges, cupboard edges and so on. Only the 

ones relative to the corners of the environment are useful for the correct mapping of the 

texture on the wireframe. The knowledge of the robot positions corrected by using the 

scan-matching algorithm and the knowledge of the field of view of the camera allow us 

to find which corner falls in which image. In this way, it is possible to connect each 

corner to each image acquired during the acquisition phase. The result of the described 

procedure is the 3D model complete with texture shown in Fig. 14. For a more detailed 

illustration, Fig. 15 shows some portions of the same model from different points of 

view. The Virtual Reality Modelling Language (VRML) was used to obtain the model.  

 

 

Fig. 14. Textured 3D model. 
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Fig. 15. Portions of the 3D model. 

5. Reconstruction of a pre-historical cave 

In the south of Italy, along the Adriatic coast, a cave, named “Grotta dei Cervi”, holds a pre-
historical treasure remarkable for its complexity, and artistic and historical relevance. The 
cave has on its walls a huge collection of paintings of hunting scenes, stags, men, and small 
animal groups, realized with red ochre and bat guano, dated to the Middle Neolithic period 
(see Fig. 16). The access to the cave is restricted to a few authorized people. Care must be 
taken to guarantee their safety and to prevent polluting elements from being introduced in 
this particular and valuable environment. The application of a technological solution seems 
to be the best way to allow remote access to the archaeological site, thus satisfying the need 
for cave preservation and safety. 
 

 

Fig. 16. Some paintings present on the walls of the cave. 
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In this section, we describe the study conducted in the cave, using a mobile robot able to 
navigate throughout the cave and acquire useful data by means of its on-board sensors. This 
solution reduces the risk of damaging the cave, as it does not require the installation of 
invasive infrastructures. The only hand-drawn map of the cave available up to now is 
illustrated in Fig. 17. The cave is formed by a series of narrow and twisting corridors. The 
area inspected by the robot is the corridor highlighted in the figure. First, a planar map of 
the corridor was constructed; then, the 3D model of particularly interesting areas, rich in 
paintings, was generated. Details for each phase are provided in the rest of this section.  
 

 

Fig. 17. The handmade map of the cave “Grotta dei Cervi”. The highlighted area represents 
the corridor explored by the mobile robot. 

5.1 2D map of the cave 
Generally, the high accuracy of laser data allows to build accurate planar maps especially 
when the robot moves in a plane. The cave environment, instead, presents a rough terrain 
characterized by depressions and bumps (see Fig. 2). In this case, laser data, that supply 
planar information, must be integrated with data from an inclinometer in order to obtain 
accurate information about the scanned environment. 
Fig. 18(a) shows the robot path and laser data during the scanning procedure. This map is 
composed of 189 frames scanned by the laser and covering an area of approximately 
15x40m2. The CSM algorithm was applied to reconstruct both the robot trajectory and the 
map of the corridor. Fig. 18(b) shows the point map obtained after the application of the 
CSM algorithm and noise removal. Four zones are also indicated. They are of particular 
interest for the presence of pre-historical paintings. In order to detect these zones, four 
artificial, non-invasive landmarks, distinguishable on the map by the laser, have been placed 
near those areas. Using these landmarks the robot can plan the path to these regions 
enabling the acquisition of images from the onboard camera of the pre-historical paintings, 
and the subsequent construction of a 3D model of the observed area. 
The robot positions estimated on the map after the CSM application were compared to those 
provided by the odometers. The estimated errors on the x, y, and θ components of the robot 
pose are plotted in Fig. 19(a), (b), and (c) respectively. The errors on the x, y coordinates are 
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(a)     (b) 

Fig. 18 (a) Laser readings and odometer data after the scanning procedure. The odometer 
data are represented by little arrows. (b) 2D map of the explored corridor of the cave after 
the application of the scan-matching algorithm. Four zones rich in interesting paintings are 
also highlighted. 

  
(a)    (b) 

 
(c) 

Fig. 19. Estimated errors on (a) x, (b) y, and (c) θ components of the robot pose. 
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expressed in millimetres, whereas the error on the robot orientation θ is expressed in angle 

degrees. As it can be noticed, errors are considerable because of the wheel slipping on the 

rough terrain causing high inaccuracy in odometer position estimates. Nevertheless, the 

CSM algorithm is able to correct them producing an accurate map. The map obtained using 

the laser scanner supplies new and useful, although still approximate, information about the 

structure of the cave: such information was not available before our visit. It is important to 

note that the structure of the cave, supplied by the map, is very important for the knowledge 

and the study of the archaeological site, as it describes the morphology of the whole 

environment placing each painting inside its context and facilitating a better understanding 

of its role and meaning. Furthermore, the planar map is useful for robot navigation inside 

the cave. 

5.2 Building the 3D model of particular areas 
Reconstructing 3D models using computer vision techniques generally requires to extract 
the features (points, lines, target objects) and match them (Aggarwal & Vemuri, 1986; Biber 
et al., 2004; Gramegna et al., 2005). Moreover, it is important to determine the 
correspondence between features in different images, since the accuracy of the resulting 
model depends directly on the accuracy of the feature correspondence. The method 
described here uses as the only geometrical constraint the correspondence between corners 
in different images. A complex 3D scene is reconstructed using a set of three images 
acquired from three different viewpoints of the same scene. The only requirement is that 
images must be acquired by the same camera with a fixed focal length.  
After image acquisition, feature points that correspond to high curvature points (corners), 

are extracted in each image using the Harris corner detector (Sequeira et al., 1999). The 

maximum number of corners to be extracted in each image is fixed a priori. A matching 

procedure is then applied to each couple of images. A classical correlation technique is first 

used to establish the matching candidates between two images by determining a correlation 

score for each couple of points. If the correlation score is higher than a given threshold, the 

related couple of points is considered as a candidate match. 

In order to verify the candidate matches, a parameter counts the number of similar 
candidate matches found in the neighbourhood of each candidate matched point. The sum 
of these parameters for all candidate matches defines an energy function. The minimization 
of the energy function through a relaxation technique solves the ambiguity problem (Zhang 
et al., 1994). After the determination of the corner correspondence for each couple of images, 
the set of correct matches for all the three images is determined.  
 

 

Fig. 20. Three images of an area of the wall rich in paintings. White crosses represent the 
correct point matches. 
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Fig. 20 shows three images with the matched points. Knowing the corresponding corners it 
is possible to determine the Fundamental Matrix and the intrinsic parameters of the camera 
(Hartley, 1997). At this point, all the necessary data to reconstruct the 3D scene are known. 
The 3D model is reconstructed through the application of the polygonal mesh technique. 
The 3D model of the scene was made by using the VRML. Fig. 21 shows the 3D model of the 
scene acquired in the cave. 
 

 

Fig. 21. 3D model of an area of the cave. 

6. Conclusions 

In order to promote preservation of cultural heritage though guaranteeing accessibility to as 
much people as possible, novel technological solutions need to be researched. Methods from 
the mobile robotics field supply effective contributions to the development of environment 
modelling techniques that can be potentially used to either support the study of historically 
and artistically relevant assets or provide remote access to museums and archaeological 
sites, thus satisfying the need for cultural heritage conservation and accessibility.  
In this chapter, we presented the results of our research in the field of cultural heritage, 
concerning the use of a multisensor mobile platform for data acquisition and processing. 
First, we described a laser-based people-following approach that enables a mobile robot to 
keep track of and pursue a human user in a tour of the environment. During the tour, the 
robot can acquire sensorial data to be used for environment modelling. This generates what 
is usually referred to as Human Augmented Mapping (HAM). Then, we presented the 
results of two case studies. The first one was related to the problem of constructing a model 
of a polygonal environment, such as a museum. Data acquisition was performed using a 
mobile robot, equipped with a 2D laser rangefinder and a CCD camera. Specifically, laser 
information was employed to simultaneously reconstruct the robot trajectory and build a 
planar map of the environment. From this map, a wireframe model was recovered. Finally, 
images were used to generate the texture to be added to the wireframe. Experimental results 
obtained for tests performed in our institute demonstrated the effectiveness of the proposed 
methods.  
The second case study presented in the chapter focused on the application of a technological 
solution for remote access and mapping of a pre-historical cave in Southern Italy, named 
“Grotta dei Cervi”. A multisensor mobile robot platform was used to explore the cave and 
send useful information to a remote console. Based on sensor data, the two-dimensional 
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map of the site was reconstructed, along with the 3D model of zones of particular interest. 
Despite the structural complexity of the site, the proposed technological solution proved to 
be effective for making the archaeological cave available without damaging it. It was shown 
that the use of such a solution allows the growth of knowledge of this kind of sites, and 
improves the capability of monitoring and preserving their relevant archaeological 
treasures. 
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