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1. Introduction      

One of the most used artificial neural networks (ANNs) models is the well-known Multi-
Layer Perceptron (MLP) [Haykin, 1998]. The training process of MLPs for pattern 
classification problems consists of two tasks, the first one is the selection of an appropriate 
architecture for the problem, and the second is the adjustment of the connection weights of 
the network.  
Extensive research work has been conducted to attack this issue. Global search techniques, 
with the ability to broaden the search space in the attempt to avoid local minima, has been 
used for connection weights adjustment or architecture optimization of MLPs, such as 
evolutionary algorithms (EA) [Eiben & Smith, 2003], simulated annealing (SA) [Jurjoatrucj et 
al., 1983], tabu search (TS) [Glover, 1986], ant colony optimization (ACO) [Dorigo et al., 
1996] and particle swarm optimization (PSO) [Kennedy & Eberhart, 1995]. The 
NeuroEvolution of Augmenting Topologies (NEAT) [Stanley & Miikkulainen, 2002] method 
turns the neural networks topology and connect weight simultaneioulsy using an 
evolutionary computation method. It evolves efficient ANN solutions quickly by 
complexifying and optimizing simultaneously; it achieves performance that is superior to 
comparable fixed-topology methods. In [Patan & Parisini, 2002] the stochastic methods 
Adaptive Random Search (ARS) and Simultaneous Perturbation Stochastic Approximation 
(SPSA) outperformed extended dynamic backpropagation at training a dynamic neural 
network to control a sugar factory actuator. Recently, artifical neural networks based 
methods are applied to robotic systems. In [Racz & Dubrawski, 1994], an ANN was trained 
to estimate a robot’s position relative to a particular local object. Robot localization was 
achieved by using entropy nets to implement a regression tree as an ANN in [Sethi & Yu, 
1990]. An ANN was trained in [Choi & Oh, 2007] to correct the pose estimates from 
odometry using ultrasonic sensors. 
In this paper, we propose an aritifucal neural networks learning method for mobile robot 
localization, which combines the two popular swarm inspired methods in computational 
intelligence areas: Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) 
to train the ANN models. ACO was inspired by the behaviors of ants and has many 
successful applications in discrete optimization problems. The particle swarm concept 
originated as a simulation of a simplified social system. It was found that the particle swarm 
model could be used as an optimizer. These algorithms have been applied already to solving 
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problems of clustering, data mining, dynamic task allocation, and optimization [Lhotska et 
al., 2006].  
The basic idea of the proposed SWarm Intelligence-based Reinforcement Learning (SWIRL) 
method is that ACO is used to optimize the topology structure of the ANN models, while 
the PSO is used to adjust the connection weights of the ANN models based on the 
optimized topology structure. This is designed to split the problem such that ACO and PSO 
can both operate in the environment they are most suited for. ACO is ideally applied to 
finding paths through graphs. One can treat the ANN’s neurons as vertices and its 
connections as directed edges, thereby transforming the topology design into a graph 
problem. PSO is best used to find the global maximum or minimum in a real-valued search 
space. Considering each connection plus one associated fitness score as orthogonal 
dimensions in a hyperspace, each possible weight configuration is merely a point in that 
hyperspace. Finding the optimal weights is thus reduced to finding the global maximum of 
the fitness function in that hyperspace. 
The chapter is organized as follows. Section 2 introduces two swarm intelligence based 
methods: ant colony optimiztion and particle swarm optimization. The proposed SWIRL 
method is described in Section 3. Simulation results and discussions using SWIRL method 
for mobile robot localization are presented in Section 4.  Conclusions are given in Section 5.  

2. Swarm intelligence  

2.1 Ant colony optimization 
Dorigo et al. [11] proposed an Ant Colony Optimization (ACO).  ACO is essentially a system 
that simulates the natural behavior of ants, including mechanisms of cooperation and 
adaptation. The involved agents are steered toward local and global optimization through a 
mechanism of feedback of simulated pheromones and pheromone intensity processing.  It is 
based on the following ideas. First, each path followed by an ant is associated with a 
candidate solution for a given problem. Second, when an ant follows a path, the amount of 
pheromone deposit on that path is proportional to the quality of the corresponding 
candidate solution for the target problem. Third, when an ant has to choose between two or 
more paths, the path(s) with a larger amount of pheromone are more attractive to the ant.  
After some iterations, eventually, the ants will converge to a short path, which is expected to 
be the optimum or a near-optimum solution for the target problem. 

2.2 Particle swarm optimization 
The PSO algorithm is a population-based optimization method, where a set of potential 
solutions evolves to approach a convenient solution (or set of solutions) for a problem. The 
social metaphor that led to this algorithm can be summarized as follows: the individuals 
that are part of a society hold an opinion that is part of a "belief space" (the search space) 
shared by every possible individual. Individuals may modify this "opinion state" based on 
three factors: (1) The knowledge of the environment (explorative factor); (2) The individual's 
previous history of states (cognitive factor); (3) The previous history of states of the 
individual's neighborhood (social factor).  
Therefore, the basic idea is to propel towards a probabilistic median, where explorative factor, 
cognitive factor (local robot respective views), and social factor (global swarm wide views) are 
considered simultaneously and try to merge these three factors into consistent behaviors for 
each robot.  The exploration factor can be easily emulated by random movement.   
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3. The SWIRL approach 

In the SWIRL approach, the ACO algorithm is utilized to select the topology of the neural 
network, while the PSO algorithm is utilized to optimize the weights of the neural network. 
The SWIRL approach is modeled on a school, with the ACO, PSO, and neural networks 
taking on the roles of administrator, teacher, and student respectively. Students learn, 
teachers train students, and administrators allocate resources to teachers. In the same 
fashion, the ACO algorithm allocates training iterations to the PSO algorithms. The PSO 
algorithms then run for their allotted iterations to train their neural networks. The global 
best score for all the neural networks trained by a particular PSO instance is then used by 
the ACO algorithm to reallocate the training iterations. 

3.1 ACO-based topology optimization 
ACO is used to allocate training iterations among a set of candidate network topologies.  
The desirability in ACO is defined as: 
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where h is the number of hidden nodes in neural network i.  τ (pheromone concentration) is 
initialized to 0.1, so that the ants' initial actions are based primarily on desirability. τ is then 
updated according to: 
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where ρ is the rate of evaporation, 
a
n  is the number of ants returning from neural network 

i, g(i) is the global best for i, and 
sum

g is the sum of all the current global bests.   

Each ant represents one training iteration for the PSO teacher.  During each major iteration 
(i.e. ACO step), the ants go out into the topology space.  The probability ant k goes to neural 
network i is given by: 
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where α and β  are constant factors that control the relative influence of pheromones and 

desirability, respectively. 

3.2 PSO-based weight adjustment 
The ANNs are then trained via the PSO algorithm for a number of iterations determined by 
the number of ants at that node.  Each PSO teacher starts with a group of networks whose 
connection weights are randomly initialized. The student ANNs are tested on the chosen 
problem and each receives a score. The PSO teacher keeps track of the global best 
configuration and each student’s individual best configuration. A configuration for an ANN 
with n connections can be considered as a point in an n+1 dimensional space, where the 
extra dimension is for the reinforcement score.  After every round of testing, the teacher 
updates the connection weights of the student ANNs according to the following equations: 
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where position and velocity vectors are denoted by x and v, respectively.  The big dot 

symbol is for Hadamard multiplication.  The ri represents vectors where each element is a 

new sample from the unit-interval uniform random variable.  Personal best, xpb, is the point 

in the solution-space where that particular student received its highest score so far.  Global 

best, xgb, is the point with the highest score achieved by any student of this PSO teacher.  The 

three constants, cinr, ccgn, and cscl, allow the adjustment of the relative weighting for the 

inertial, cognitive, and social components of the velocity, respectively. 

After exhausting its allotted training iterations, the PSO teacher reports the global best to the 

ACO administrator.  If/when it is allocated additional training iterations, the PSO teacher 

resumes training from exactly where it left off. 

3.3 The SWIRL method summary 
Pseudo-code for the SWIRL algorithm follows: 
 

procedure SWIRL 

 initialize ACO_Administrator 

 for(candidate topology i=1…N) 

  create PSO_Teacher(i) 

  for(ANN_Student j=1…M) 

   initialize ANN_Student 

  end for 

 end for 

 while(solution not found) 

  compute ant movement CDF 

  ants allocate training iterations 

  for(PSO_Teacher i=1…N) 

   while(iterations < allocation) 

    for(ANN_Student j=1…M) 

     test ANN_Student(j) 

    end for 

    for(ANN_Student j=1…M) 

     update weights ANN_Student(j) 

    end for 

   end while 

   return global best 

  end for 

  update pheromone concentrations 

 end while 

end 
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4. Simulation 

The SWIRL system is implemented in Java for simulation testing. There is a 5:1 ratio of ants 
to candidate network topologies. The candidates are 1 through 5 hidden nodes. The 
pheromone influence factor, desirability influence factor, and rate of pheromone 
evaporation are set to 2, 1, and 0.5 respectively. The initial pheromone level is 0.1 for all 
topologies.  Each PSO teacher has 100 students. The PSO particle velocity is capped at 5.  
The velocity factors are 0.8 for the inertial constant, 2 for the cognitive constant, and 2 for the 
social constant.  The neural networks are fully connected, with initial connection weights 
uniformly random in the range (-5,5).  Hyperbolic tangent is used as the transfer function. 
The SWIRL system was retrofitted into an existing Markov localization simulator, which 
required reimplementing SWIRL in C++.  Markov localization systems are typically divided 
into an odometry component and a sensory component which alternate updating the belief 
values for each location.  The SWIRL system was challenged with generating an ANN that 
could replace the sensory component in the Markov localization system. 
Fig. 1 shows a series of snapshots of a robot localization simulation using the SWIRL system.  

The red pentagon is the robot. The pale blue wedges represent the robot’s sonar sensors and 

the green rays are the robot’s laser rangefinders. The large green square is the goal to which 

the robot must navigate. The large orange square represents the location where the robot 

most strongly believes itself to be. The map is divided into a grid of squares, which are each 

divided into a black and red triangle. The black triangle and red triangle indicate the belief 

of the Markov algorithm and current best ANN, respectively, that the robot may be located 

in that particular square. Note that the red triangles do not show up underneath the pale 

blue wedges; this is merely a color layering issue in the simulator’s screen painter. The map 

is 1086 by 443 pixels in size. The Markov grid squares are 7 pixels on a side, and rotations 

are multiples of 10°. Note that this quantization applies only to the pose estimation in the 

localization system. The robot is simulated with a full range of motion using floating point 

x, y, and θ values. The robot has 4 sonar sensors and 19 laser rangefinders. The sonar sensor 

range is 75 pixels in the map, whereas the range of the laser rangefinders is 100 pixels. 

Fig. 1(a) shows the localization simulator at the beginning of a simulation run. Fig. 1(b) 

shows an early state of the simulation.  The blue pentagons are stamped periodically on the 

map to indicate the path taken by the robot. At this point, the robot has narrowed down its 

location to a few regions on the map. In Fig. 1(c), near the end of the simulation, the robot is 

certain of its general location. Finally, Fig. 1(d) shows the robot when it has successfully 

reached the goal. 
 

 

Fig. 1(a).  The initialization state of a simulation. 

Goal  
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Fig. 1(b).  An early state of a simulation.  

 

 

Fig. 1(c).  A late state of a simulation.  

 

 
 

Fig. 1(d).  The end of a simulation.  

Fig. 1.  Start of a simulation. Black = Markov value; Red = ANN value. The robot, shown as 

a red pentagon, must navigate from its initial position to the goal, the green square. The 

triangles indicate the likelihood that the robot is in that location according to the beliefs of 

the localization systems. The green lines show the robot’s laser rangefinders and the pale 

blue wedges show its sonar sensors. The orange square is the robot’s most likely position 

according to whichever localization system is currently in use for navigation. Blue 

pentagons are periodically stamped on the map to show the path taken by the robot.  

The sensory component of the Markov localization system computes the likelihood the 

robot is at a particular location by comparing the current sensor readings to the predicted 

sensor readings for that location which are generated from the map.  Sensor noise is the 

main source of difficulty.  The following pseudo-code describes this function: 
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function probability(location x) 
 prob_match=1.0 
 for(i=1…Number_Sensors) 
  j=normalize(reading(i)-predict(x,i)) 
  prob_match=prob(j)*prob_match 
 end for 
 return prob_match 
end 
 

These match probabilities are then used to update the robot’s location belief matrix. In place 
of this, the ANN generated by SWIRL should take a vector of j’s as the input, and give 
prob_match as the output. 
The obvious source of concern in this scenario is that ANNs inherently deal in weighted 
sums, whereas joint probability calls for a product. This is solved by taking advantage of the 

fact that j > 0 and 
( ) ( )ln lnx y

e xy
+ = for x,y > 0. Thus, a vector of ln(j)’s is used as the input, and 

eoutput is used as prob_match. 
In the simulation, a robot must navigate from an unknown starting position to a goal 
position that is specified on the map. Sensor noise is the main source of difficulty. The 
sensor noise has 3 components: bias, skew, and incidental. Each sensor has its own bias and 
skew values that are randomly initialized at the beginning of the simulation, but remain 
fixed thereafter. The incidental noise is a new Gaussian value generated each time the sensor 
is read. 
The SWIRL system is first trained over one or more training runs. The best ANN produced 
is then used to replace the sensory component of the Markov localization system for the 
testing run. For the purpose of training, another Markov localizer with access to noise-free 
sensors is used to produce the “solution set” for the fitness function. This enables the ANN 
(ideally) to weigh the sensors according to their relative accuracy. The simulation results are 
shown in Fig. 2, Fig. 3, and Fig. 4. The results are produced for 1 and 3 training runs. 
Unfortunately, the wavefront navigation system used by the Markov localization simulator 
introduces substantial variability into the robot’s performance, as demonstrated by the large 
standard deviations. Consequently, it would require an exorbitantly large number of tests to 
establish with a high degree of certainty whether the average SWIRL solution is slightly 
better or slightly worse than the Markov method. In any case, improving Markov 
localization is not the goal here. It is clear from the results that SWIRL can indeed produce 
ANNs that function comparably to the sensory component of the Markov localization 
system. 
SWIRL demonstrates its ability to generate effective solutions in the face of real-world 

complications such as noise and poor calibration.  After only a single test run, the SWIRL 

solution is already performing comparably to the Markov method.  The reason more fine-

grained progress is not presented is that the nature of Markov localization is such that early 

mistakes are compounded each cycle.  No matter how good the SWIRL solution gets, its 

mistakes from earlier in the run will prevent it from making accurate predictions.  To make 

the graphical display useful, every so often during training (only during training) SWIRL’s 

old belief matrix is overwritten with “correct” values so that one can see an estimate of how 

accurate the best ANN is at that point.  However, this obviously gives a rough estimate 

only, and is not appropriate for a numerical comparison with the Markov predictions. 
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7. Conclusion 

In this paper, a SWIRL algorithm is proposed to generate ANN solutions to tasks/problems 

amenable to reinforcement learning.  Basically, the ACO algorithm is applied to select the 

neural network topology, while the PSO algorithm is utilized to adjust the connection 

weights of the selected topology. The robot localization using the SWIRL algorithm have 

been efficiently conducted in a noisy, imprecise environment with large-scale number of 

input signals, as might be encountered in the real world.  As a result of its generality, the 

SWIRL method is scalable, robust, and can be applied to almost any real world task. This 

implementation is merely a simple proof-of-concept where the ACO algorithm chooses the 

number of hidden nodes. By limiting the scope to fully-connected feedforward neural 

networks, this single number fully defines the topology (since the input and output nodes 

are determined by the test problem).  These are limits of this test implementation only; not 

limits on the SWIRL method.   
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