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Robust and Active Trajectory Tracking for an 
Autonomous Helicopter under Wind Gust 

Adnan Martini, François Léonard and Gabriel Abba 
Industrial Engineering and Mechanical Production Lab, Ecole Nationale  

d’Ingénieurs de Metz  
France 

1. Introduction 

High levels of agility, maneuverability and the capability of operating in degraded visual 
environments and adverse weather conditions are the new trends of helicopter design 
nowadays. Helicopter flight control system should make these performance requirements 
achievable by improving tracking performance and disturbance rejection capability. 
Robustness is one of the critical issues which must be considered in the control system 
design for such highperformance autonomous helicopter, since any mathematical helicopter 
model, especially those covering large flight envelope, will unavoidably have uncertainty 
due to the empirical representation of aerodynamic forces and moments. 
The purpose of this chapter is to present the stabilization (tracking) with motion planning of 
a reduced-order helicopter model having 3DOF (Degrees Of Freedom) (see Fig.1). This last 
one represents a scale model helicopter mounted on an experimental platform. It deals with 
the problem of disturbance reconstruction acting on the autonomous helicopter, the 
disturbance consists in vertical wind gusts. The objective is to compensate these 
disturbances and to improve the performances of the control. Consequently, a nonlinear 
simple model with 3DOF of a helicopter with unknown disturbances is used. Three 
approaches of robust control are then compared via simulations: a robust nonlinear 
feedback control, an active disturbance rejection control based on a nonlinear extended state 
observer and a backstepping control. 
Design of control of autonomous flying systems has now become a very challenging area of 
research, as shown by a large literature (Beji & Abichou, 2005) (Frazzoli et al., 2000) (Koo & 
Sastry, 1998). Many previous works focus on (linear and nonlinear, robust, ...) control, 
including a particular attention on the analysis of the stability (Mahony & Hamel, 2004), but 
very few works have been made on the influence of wind gusts acting on the flying system, 
whereas it is a crucial problem for out-door applications, especially in urban environment: 
as a matter of fact, if the autonomous flying system (especially when this system is relatively 
slight) crosses a crossroads, it can be disturbed by wind gusts and leave its trajectory, which 
could be critical in a highly dense urban context. 
In (Martini et al., 2005) and (Martini et al., 2007a), three controllers (nonlinear, H∞ and robust 
nonlinear feedback) are designed for a nonlinear reduced-order model of a 3 DOF 
helicopter. In (Pflimlin et al., 2004), a control strategy stabilizes the position of the flying 
vehicle in wind gusts environment, in spite of unknown aerodynamic efforts and is based 
on robust backstepping approach and estimation of the unknown aerodynamic efforts. O
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Fig. 1. Helicopter-platform with wind gust 

In recent papers, feedback linearization techniques have been applied to helicopter models. 
The main difficulty in the application of such an approach is the fact that, for any 
meaningful selection of outputs, the helicopter dynamics are non-minimum phase, and 
hence are not directly input-output linearizable. However, it is possible to find good 
approximations to the helicopter dynamics (Koo & Sastry, 1998) such that the approximate 
system is inputoutput linearizable, and bounded tracking can be achieved. 
Nonlinear control designs previously attempted include neural network based controllers 
(McLean & Matsuda, 1998), fuzzy control (Sanders et al., 1998), backstepping designs 
(Mahony & Hamel, 2004), and adaptive control (Dzul et al., 2004). These methods either 
assume feedback linearizability, which in turn restricts the motion to be around hover, or do 
not include parametric uncertainties, or realistic aerodynamics. Specific issues such as 
unknown trim conditions that degrade the performance of the helicopter have not been 
addressed. While adaptive control schemes have been proposed in the aircraft and 
spacecraft control context, there is a lack of similar work on helicopter control. The non-
minimum phase nature of the helicopter dynamics adds to the challenge of finding a stable 
adaptive controller. (Wei, 2001) showed the control of nonlinear systems with unknown 
disturbances, using a disturbance observer based control (DOBC). In (Ifassiouen et al., 2007) 
a robust sliding mode control structure is designed using the exact feedback linearization 
procedure of the dynamic of a small-size autonomous helicopter in hover. 
This chapter is organized as follows. In section 2, a 3DOF Lagrangian model of the disturbed 
helicopter mounted on an experimental platform is presented. This model can be seen as 
made of two subsystems (translation and rotation). In section 3 two approaches of robust 
control design for the reduced order model are proposed. The application of three 
approaches of robust control on our disturbed helicopter is analyzed in section 4. Section 6 is 
devoted to simulation results and the study of model stability is carried out in section 5. 
Finally some conclusions are presented in Section 7. 

2. Model of the disturbed helicopter 

Helicopters operate in an environment where task performance can easily be affected by 

atmospheric turbulence. This chapter discusses the airborne flight test of the VARIO Benzin 
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Trainer helicopter in turbulent conditions to determine disturbance rejection criteria and to 

develop a low speed turbulence model for an autonomous helicopter simulation. A simple 

approach to modeling the aircraft response to turbulence is described by using an identified 

model of the VARIO Benzin Trainer to extract representative control inputs that replicate the 

aircraft response to disturbances. This parametric turbulence model is designed to be scaled 

for varying levels of turbulence and utilized in ground or in-flight simulation. Hereafter the 

nonlinear model of the disturbed helicopter (Martini et al., 2005) starting from a non 

disturbed model (Vilchis, 2001) is presented. The Vario helicopter is mounted on an 

experimental platform and submitted to a vertical wind gust (see Fig.1). It can be noted that 

the helicopter is in an Out Ground Effect (OGE) condition. The effects of the compressed air 

in take-off and landing are then neglected. The Lagrange equation, which describes the 

system of the helicopter-platform with the disturbance, is given by: 

 (1) 

where the input vector of the control u = [u1 u2]T and q = [z  Ǚ  Ǆ]T is the vector of generalized 
coordinates. The first control u1 is the collective pitch angle (swashplate displacement) of the 
main rotor. The second control input u2 is the collective pitch angle (swashplate 
displacement) of the tail rotor. The induced gust velocity is noted vraf. The helicopter altitude 

is noted z, Ǚ is the yaw angle and Ǆ is the main rotor azimuth angle. M ∈ R3×3 is the inertia 

matrix, C ∈ R3×3 is the Coriolis and centrifugal forces matrix, G ∈ R3 represents the vector of 

conservative forces, Q(q, q$ , u, vraf ) = [fz τz τǄ]T is the vector of generalized forces. The 

variables fz, τz  and τǄ  represent respectively, the total vertical force, the yaw torque and the 
main rotor torque in presence of wind gust. 
Finally, the representation of the reduced system of the helicopter, which is subjected to a 
wind gust, can be expressed as (Martini et al., 2005) : 

 

(2) 

where ci (i =0,...,17) are numerical aerodynamical constants of the model given in table 1 
(Vilchis, 2001). For example c0 represents the helicopter weight, c15 = 2ka1sb1s where a1s and b1s 

are the longitudinal and lateral flapping angles of the main rotor blades, k is the blades 
stiffness of main rotor. 
Table 2 shows the variations of the main rotor thrust and of the main rotor drag torque 
(variations of the helicopter parameters) operating on the helicopter due to the presence of 
wind gust. These variations are calculated from a nominal position defined as the 

equilibrium of helicopter when vraf = 0: $γ = −124.63rad/s, u1 = −4.588 × 10−5, u2 = 5 × 10−7,  

TMo = −77.3N and CMo = 4.6N.m. 
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Table 1. 3DOF model parameters 

 

 

Table 2. Variation of forces and torques for different wind gusts 

Three robust nonlinear controls adapted to wind gust rejection are now introduces in 

section 4.1, 4.2 and 4.3 devoted to control design of disturbed helicopter. 

3. Control design 

3.1 Robust feedback control 
Fig.2 shows the configuration of this control (Spong & Vidyasagar, 1989) based on the 
inverse dynamics of the following mechanical system: 

 (3) 

Since the inertia matrix M is invertible, the control u is chosen as follows: 

 (4) 

The term v represents a new input to the system. Then the combined system (3-4) reduces to: 

 (5) 

Equation (5) is known as the double integrator system. The nonlinear control law (4) is 

called the inverse dynamics control and achieves a rather remarkable result, namely that the 

new system (5) is linear, and decoupled. 

 (6) 

where  represent nominal values of M, h respectively. The uncertainty or modeling 

error, is represented by:  with system equation 

(3) and nonlinear law (6), the system becomes: 

 (7) 
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Fig. 2. Architecture of robust feedback control 

Thus q$$ can be expressed as 

 (8) 

Defining  and  then in state space the system (8) becomes: 

 (9) 

where:
 

 

Using the error vectors  and  leads to:  

 (10)

Therefore the problem of tracking the desired trajectory qd(t) becomes one of stabilizing the 
(time-varying, nonlinear) system (10). The control design to follow is based on the premise 
that although the uncertainty ǈ is unknown, it may be possible to estimate "worst case" 
bounds and its effects on the tracking performance of the system. In order to estimate a 
worst case bound on the function ǈ, the following assumptions can be used (Spong & 
Vidyasagar, 1989) : 

• Assumption 1:  

• Assumption 2: for some Ĵ, and for all q ∈Rn. 

• Assumption 3:  for a known function Ǚ, bounded in t. 
Assumption 2 is the most restrictive and shows how accurately the inertia of the system 
must be estimated in order to use this approach. It turns out, however, that there is always a 

simple choice for  satisfying Assumption 2. Since the inertia matrix M(q) is uniformly 

positive definite for all q there exist positive constants M and M such that: 

 (11)

If we therefore choose:  where , it can be shown that:  

. Finally, the following algorithm may now be used to generate a stabilizing 

control v: 
Step 1 : Since the matrix A in (9) is unstable, we first set: 
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 (12)

where K = [K1 K2 ]:, and : K1 = diag{ 2

1
ω , . . . , 2

n
ω  }, K2 = diag{2Ǉ1ǚ1, . . . , 2 Ǉ n ǚn}. The desired 

trajectory qd(t) and the additional term Δv will be used to attenuate the effects of the 

uncertainty and the disturbance. Then we have: 

 (13)

where  is Hurwitz and  
Step 2: Given the system (13), suppose we can find a continuous function ǒ(e, t), which is 

bounded in t, satisfying the inequalities: 

 (14)

The function ǒ can be defined implicitly as follows. Using Assumptions 1-3 and (14), we 

have the estimate: 

 
(15)

This definition of ǒ makes sense since 0 < Ĵ< 1 and we may solve for ǒ as: 

 
(16)

Note that whatever Δv is now chosen must satisfy (14). 

Step 3: Since A is Hurwitz, choose a n × n symmetric, positive definite matrix Q and let P be 

the unique positive definite symmetric solution to the Lyapunov equation: 

 (17)

Step 4: Choose the outer loop control Δv according to: 

 

(18)

that satisfy (14). Such a control will enable us to remove the principal influence of the wind 

gust. 

3.2 Active disturbance rejection control 
The primary reason to use the control in closed loop is that it can treat the variations and 

uncertainties of model dynamics and the outside unknown forces which exert influences on 

the behavior of the model. In this work, a methodology of generic design is proposed to 

treat the combination of two quantities, denoted as disturbance. A second order system 

described by the following equation is considered (Gao et al., 2001) (Hou et al., 2001): 

 (19)
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where f(.) represents the dynamics of the model and the disturbance, p is the input of 

unknown disturbance, u is the input of control, and y is the measured output. It is assumed 

that the value of the parameter b is given. Here f(.) is a nonlinear function. An alternative 

method is presented by (Han, 1999) as follows. The system in (19) is initially increased: 

 (20)

where  is treated as an increased state. Here f and f$ are 

unknown. By considering f(y, $y , p) as a state, it can be estimated with a state estimator. Han 

in Han (1999) proposed a nonlinear observer for (20): 

 
(21)

where: 

 

(22)

The observer error is  and: 

 
(23)

The observer is reduced to the following set of state equations, and is called extended state 
observer (ESO): 

 

(24)

 

Fig. 3. ADRC structure 
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The active disturbance rejection control (ADRC) is then defined as a method of control 

where the value of  is estimated in real time and is compensated by the control 

signal u. Since  it is used to cancel actively f by the application of:  

This expression reduces the system to:  The process is now a 

double integrator with a unity gain, which can be controlled with a PD controller. u0 = 

 where r is the reference input. The observer gains Li and the controller 

gains kp and kd can be calculated by a pole placement. The configuration of ADRC is 

presented in fig.3. 

4. Control of disturbed helicopter 

4.1 Robust feedback control 
4.1.1 Control of altitude z 
We apply this robust method to control the altitude dynamics z of our helicopter. Let us 

remain the equation which describes the altitude under the effect of a wind gust: 

 
(25)

 

 

 (26)

The value of |vraf | = 0.68m/s corresponds to an average wind gust. In that case, we have the 

following bounds: 5 × 10−5 ≤ M1
 ≤ 22.2 × 10−5; −2, 2 × 10−3 ≤ h1

 ≤ 1, 2 × 10−3. 

Note: We will add an integrator to the control law to reduce the static error of the system 

and to attenuate the effects of the wind gust which is located in low frequency (raf ≤7rad/s. 

We then obtain (Martini et al., 2007b): 

 
(27)

and the value of Δv becomes: Δv1 = − ǒ1(e, t) sign (287e1 + 220e2 + 62e3). Moreover 

 ǒ1 = 1.7&v1& + 184. 

4.1.2 Control of yaw angle ψ: 

The control law for the yaw angle is: 

 

(28)

We have: 
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(29)

Using (26) and with  we find the following values : 

−2.7 × 10−4
 ≤ M2 ≤ −6.1 × 10−5; −1.3 × 10−3

 ≤ h2 ≤ 0.16.  

We also add an integrator to the control law of the yaw angle (Martini et al., 2007b) : 

 
(30)

where  We obtain : ǒ2 = 1.7&v2& + 1614.6, the value of Δv 

becomes: Δv2 = −ǒ2(e, t)sign(217e1 + 87e2 + 4e3). 
On the other hand, the variation of inertia matrices M1(q) and M2(q) from their equilibrium 
value (corresponding to $γ  = −124.63rad/s) are shown in table 3. It appears, in this table, that 

when $γ  varies from −99.5 to −209, 4rad/s an important variation of the coefficients of 

matrices M1(q) and M2(q) of about 65% is obtained. 
 

 

Table 3. Variations of the inertia matrices M1 and M2 

4.2 Active disturbance rejection control 
Two approaches are proposed here (Martini et al., 2007a) . The first uses a feedback and 
supposes the knowledge of a precise model of the helicopter. For the second approach, only 
two parameters of the helicopter are necessary, the remainder of the model being regarded 
as a disturbance, as well as the wind gust. 

• Approach 1 (ADRC) : Firstly, the nonlinear terms of the non disturbed model (vraf = 0) 
are compensated by introducing two new controls v1 and v2 such as: 

 

(31)

Since vraf  ≠ 0, a nonlinear system of equations is obtained: 

 

(32)

• Approach 2 (ADRCM): By introducing the two new controls ú1 and ú 2 such as: 
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a different nonlinear system of equations is got: 

 

(33)

The systems (32) and (33) can be written as the following form: 

 (34)

with b = 1, u = v1 or v2 for the approach 1, whether: 

 

(35)

and b = 1, u = ú 1 or (ADRC) ú 2 for the approach 2, whether: 

 

(36)

Concerning the first approach, an observer is built: 

• for altitude z: 

 

(37)

where ez = z − ẑ 1 is the observer error, gi(ei, Ĵi, ĵi) is defined as exponential function of 
modified gain: 

 

(38)

with 0 < Ĵi < 1 and 0 < ĵi ≤ 1, a PID controller is used in stead of PD in order to attenuate the 
effects of disturbance: 

 
(39)

The control signal v1 takes into account of the terms which depend on the observer  

The fourth part, which also comes from the observer, is added to eliminate the effect of 
disturbance in this system. 

• for the yaw angle ψ: 
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(40)

where  is the observer error, with gi(eǙ, ĴiǙ, ĵi) is defined as exponential function 

of modified gain: 

 

(41)

and 

 
(42)

zd and ψd are the desired trajectories. PID parameters are designed to obtain two dominant 

poles in closed-loop: for 
 
and for  . The approach 2 uses 

the same observer with the same gain, simply (−ˆx3) and (−ˆx6) compensate respectively 

  

4.3 Backstepping control 

To control the altitude dynamics z and the yaw angle ψ, the steps are as follows: 

1. Compensation of the nonlinear terms of the nondisturbed model (vraf = 0) by 
introducing two new controls Vz and VǙ such as: 

 
(43)

with these two new controls, the following system of equations is obtained: 

 (44)

 (45)

2. Stabilization is done by backstepping control, we start by controlling the altitude z then 

the yaw angle ψ. 

4.3.1 Control of altitude z 

We already saw that z$$ = Vz + d1( $γ , vraf ). The controller, generated by backstepping, is 

generally a PD (Proportional Derived). Such PD controller is not able to cancel external 
disturbances with non zero average unless they are at the output of an integrating process. 
In order to attenuate the errors due to static disturbances, a solution consists in equipping 
the regulators obtained with an integral action (Benaskeur et al., 2000). The main idea is to 
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introduce, in a virtual way, an integrator in the transfer function of the process and t carry 
out the development of the control law in a conventional way using the method of 
backstepping. The state equations of z dynamics which are increased by an integrator, are 
given by: 

 

(46)

where  The introduction of an integrator into the process only increases the 

state of the process. Hereafter the control by backstepping is developed: 
Step 1: Firstly, we ask the output to track a desired trajectory x1d, one introduces the 
trajectory error: ξ1 = x1d − x1, and its derivative: 

 (47)

which are both associated to the following Lyapunov candidate function: 

 
(48)

The derivative of Lyapunov function is evaluated:  

The state x2 is then used as intermediate control in order to guarantee the stability of (47). 

We define for that a virtual control:   

Step 2: It appears a new error:  Its derivative is written as follows: 

 (49)

In order to attenuate this error, the precedent candidate function (48) is increased by another 
term, which will deal with the new error introduced previously: 

 
(50)

its derivative:  The state x3 can be 

used as an intermediate control in (49). This state is given in such a way that it must return 
the expression between bracket equal to  The virtual control 

obtained is:  its derivative: 

 
Step 3: Still here, another term of error is introduced: 

 
(51)

and the Lyapunov function (50) is augmented another time, to take the following form: 

 
(52)
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its derivative: 

 

(53)

The control Vz should be selected in order to return the expression between the precedent 

bracket equal to −a3ξ3 for d1 = 0: 

 

(54)

with the relation (47), we obtain:  These values, replaced in 

the control law, gives for   

 

(55)

If we replace (54) in (53), we obtain finally: 

 (56)

Step 4: It is here that the design of the control law by the method of backstepping stops. The 

integrator, which was introduced into the process, is transferred to the control law, which 

gives the final following control law: 

 
(57)

 

4.3.2 Control of yaw angle ψ: 

The calculation of the yaw angle control is also based on backstepping control (Zhao & 

Kanellakopoulos, 1998) dealing with the problem of the attenuation of the disturbance 

which acts on lateral dynamics. The representation of yaw state dynamics with the angular 

velocity of the main rotor is: 

 

(58)

The backstepping design then proceeds as follows: 
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Step 1: We start with the error variable: ξ4 = x4 − x4d, whose derivative can be expressed as: 
 here x5 is viewed as the virtual control, that introduces the following error 

variable: 

 (59)

where Ĵ4 is the first stabilizing function to be determined. Then we can represent $ξ 4 as: 

 (60)

In order to design Ĵ4, we choose the partial Lyapunov function  and we evaluate its 

time derivative along the solutions of (60):  The choice of: 

  

Step 2: According to the computation of step 1, driving ξ5 to zero will ensure that V$ 4 is 

negative definite in ξ4. We need to modify the Lyapunov function to include the error 
variable ξ 5: 

 
(61)

We rewrite $ξ 5: 

 

(62)

In this equation, $γ is viewed as the virtual control. This is a departure from the usual 

backstepping design which only employs state variables as virtual controls. In this case, 

however, this simple modification is not only dictated by the structure of the system, but it 

also yields significant improvements in closed-loop system response. The new error variable 

is  and Ĵ5 is yet to be computed. Then (62) becomes:  

  

 

(63)

From (63), the choice of:  provides: 

 (64)

Step 3: Similarly to the previous steps, we will design the stabilizing function w2 in this step. 
To achieve that, firstly, we define the error variable  its time derivative: 

 

(65)
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Therefore, along the solutions of $ξ 4, $ξ 5 and $ξ 6, we can express the time derivative of the 

partial Lyapunov function  as: 

 

(66)

In the above expression (66), our choice of ω$ 2 is: 

 
(67)

Then one replaces (67) in (65), to obtain:  the derivative 

of V6 becomes: 

 (68)

The integral of (67) provides w2 and VǙ= w2 + $γ . In this way, the yaw angle control is 

calculated.  

5. Stability analysis of ADRC control 

In this section, the stability of the perturbed helicopter controlled using observer based 

control law (ADRC) is considered. To simplify this study, the demonstration is done with 

one input and one output as in (Hauser et al. (1992)) and the result is applicable for other 

outputs. Let us first define the altitude error using equations (32) , (37) and the control (39): 

we can write: 

 

(69)

Where A is a stable matrix determined by pole placement, and η$  represents the zero 

dynamics of our system, ǈ = $γ − $γ eq, where $γ eq = −124.63rad/s is the equilibruim of the 

main rotor angular speed : 
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is the observer error. Hereafter, we consider the case of a linear observer, so that: 

 

(70)

which can be written as:  Where Â is a stable matrix determined by 

pole placement. 

Theorem: Suppose that:  

• The zero dynamics of the system η$  = ǃ(z, ǈ, vraf ) (where is represented by the $γ  

dynamics) are locally exponentially stable and  

• The amplitude of vraf is sufficiently small and the function f$ (z, ǈ, vraf ) is bounded and 

small enough (i.e l̂ u < 1/5, see equation (72) for definition of bound l̂ u).  

Then for desired trajectories with sufficiently small values and derivatives (zd, z$ d, z$$ d), the 

states of the system (32) and of the observer (37) will be bounded. 

Proof: Since the zero dynamics of model are assumed to be exponentially stable, a conserve 

Lyapunov theorem implies the existence of a Lyapunov function V1(ǈ) for the system: 

 η$ = ǃ (0, ǈ, 0) satisfying 
 

for some positive constants k1, k2, k3 and k4. We first show that e, ê , ǈ are bounded. To this 

end, consider as a Lyapunov function for the error system ((69) and (70)): 

 (71)

where P, P̂ > 0 are chosen so that: ATP +PA = −I and Â T P̂ + ˆP̂A  = −I (possible since A and 

Â  are Hurwitz), μ and ĵ are a positives constants to be determined later. Note that, by 

assumption, zd and its first derivatives are bounded:  

The functions, ǃ(z, ǈ, vraf ) and f$ (z, ǈ, vraf ) are locally Lipschitz (since f$ is bounded) with 

f$ (0, 0, 0) = 0 , we have:  

 
(72)

with lq and l̂ u 2 positive reals. Using these bounds and the properties of V1(.), we have: 

 

(73)

Taking the derivative of V (., ., .) along the trajectory, we find: 
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Define:  Then, for all μ ≤ μ0 and 

for ĵ2 ≤ ĵ ≤ ĵ1, we have: 

 

Thus, V$ < 0 whenever &e&, & ê & and &ǈ& is large which implies that & ê &, &e& and &ǈ& and, 

hence, &z&, & x̂ & and &ǈ& are bounded. The above analysis is valid in a neighborhood of the 

origin. By choosing bd and vraf sufficiently small and with appropriate initial conditions, we can 
guarantee the state will remain in a small neighborhood, and which implies that the effect of 

the disturbance on the closed-loop can be attenuated. Moreover, if vraf → 0 then l̂  u → 0 and ĵ1 

→ ∞; ĵ2 →1 + 4(&B&&P&)2, so that the constraint l̂ u < 1/5 is naturally satisfied for small vraf . 

6. Results in simulation 

Robust nonlinear feedback control (RNFC), active disturbance rejection control based on a 
nonlinear extended state observer (ADRC) and backstepping control (BACK) are now 
compared via simulations. 
1. RNFC: The various numerical values for the (RNFC) are the following: 

• For state variable z: {K1 = 84, K2 = 24, K3 = 80} for ǚ1 = 2rad/s which is the bandwidth 
of the closed loop in z (the numerical values are calculating by pole placement). 

• For state variable ψ: We have {K4 = 525, K5 = 60, K6 = 1250} for ǚ2 = 5rad/s which is 

the bandwidth of the closed loop in ψ. 

2. ADRC: The various numerical values for the (ADRC) are the following: 
a. For state variable z: k1 = 24, k2 = 84 and k3 = 80 (the numerical values are calculating 

by pole placement ). Choosing a triple pole located in ǚ0z such as ǚ 0z = (3 ∼ 5) ǚc1, 

one can choose  ǚ0z = 10 rad/s, Ĵ1 = 0.5, ĵ1 = 0.1, and using pole placement method 
the gains of the observer for the case |e| ≤ ĵ (i.e linear observer) can be evaluated: 

 

(74)
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which leads to: Li = {9.5, 94.87, 316.23}, i∈ [1, 2, 3]. 

b. For state variable ψ: k4 = 60, k5 = 525, k6 = 1250, ǚ0Ǚ = 25 rad/s, '2 = 0.5 and Ĵ2 = 0.025. 

And by the same method in (74) one can find the observer gains: Li = {11.86, 296.46, 

2.47 × 103}, i ∈ [4, 5, 6]. 
3. BACK: The regulation parameters (a1; a2; a3; a4; a5; a6) for the (BACK) controller was 

calculated to obtain two dominating poles in closed-loop such as ǚ 1 = 2 rad/s, which 

defines the bandwidth of the closed-loop in z, and ǚ 2 = 5 rad/s for ψ. 

        a.  The closed-loop dynamics of the z-dynamics with d1( $γ , vraf ) = 0 is given by  

               (Benaskeur et al., 2000): 

 

(75)

Eigenvalues of A0 can be calculated solving: 

 
(76)

If one gives as a desired dynamics specification, one dominant pole in −κ and the 

two other poles in −10κ, one must solve: 

 (77)

which leads to: 

 
 

For . = ǚ1 = 2 rad/s, and resolving the above equations, we find 4 positive solutions 
for every parameter (see Table 1). The solution: a1 = 21, a2 = 19, a3 = 1.95 has been 
used for simulation. 

 

 

Table 1. Regulation parameters of z and ψ-dynamics 

b.   The closed-loop dynamics of the ψ-dynamics with d3(Vz, $γ , vvraf ) = 0 is given by: 
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(78)

Eigenvalues of B0 can be calculated by solving: 

 
(79)

By using the same development as for z-dynamics, one can write: 

 

For κ= ǚ2 = 5 rad/s and resolving the above equations, we find again 4 positive 

solutions for every parameter (see Table 1). As justified in annex ?? the solution: a4 

= 4.97, a5 = 49, a6 = 51 has been used for simulation. 
The induced gust velocity operating on the principal rotor is chosen as (G.D.Padfield, 1996): 

 
(80)

where td1 = t − 70 and td2 = t − 220, the value of 0.042 represent  where V in m/s is the 

height rise speed of the helicopter and vgm = 0.68m/s is the gust density. This density 
corresponds to an average wind gust, and Lu = 1.5m is its length (see Fig.5). The take-off time 
at t = toff = 50 s is imposed and the following desired trajectory is used (Vilchis et al., 2003):  
 

         

Fig. 4. Trajectories in z and ψ                                        Fig. 5. Induced gust velocity vraf 

 

(81)
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where ta = 130s and tb = 20Ǒ + 130s, 

 

(82)

and tc = 120 s and td = 180 s. The following initial conditions are applied: z(0) = −0.2m, z$ (0) = 

0, ψ(0) = 0, $ψ (0) = 0 and $γ (0) = −99.5 rad/s. A band limited white noise of variance 3mm for 

z and 1o
 for ψ, has been added respectively to the measurements of z and ψ for the three 

controls. The compensation of this noise is done using a Butterworth second-order low-pass 

filter. Its crossover frequency for z is ǚcz = 12 rad/s and for ψ is ǚcǙ = 20 rad/s. Fig.4 shows the 

desired trajectories in z and ψ. 

One can observe that $γ  → −124.6 rad/s remains bounded away from zero during the flight. 

For the chosen trajectories and gains $γ  converges rapidly to a constant value (see Fig.7). 

This is an interesting point to note since it shows that the dynamics and feedback control 

yield flight conditions close to the ones of real helicopters which fly with a constant $γ  

thanks to a local regulation feedback of the main rotor speed (which does not exist on the 
VARIO scale model helicopter). One can also notice that the main rotor angular speed is 
similar for the three controls as illustrated in Fig.7. The difference between the three controls 
appears in Fig.6 where the tracking errors in z are less significant by using the (BACK) and 

(ADRC) control than (RNFC) control. For ψ it is the different. This is explained by the use of 

a PID controller for the (RNFC) and (ADRC) but a PD controller for the (BACK) controller of 

ψ (Fig.6). Here, the (ADRC) and (BACK) controls show a robust behavior in presence of 

noise. 
 

   

Fig. 6. Tracking error in z and in ψ.                        Fig. 7. Variations of the main rotor thrust TM  

                                                                                                                                 and the main rotor angular speed $γ . 
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One can see in Fig.7 that the main rotor thrust converges to values that compensate the 

helicopter weight, the drag force and the effect of the disturbance on the helicopter. The 

(RNFC) control allows the main rotor thrust TM to be less away from its balance position 

than the other controls, where the RNFC control is less sensitive to noise. Fig.9 represent the 

effectiveness of the observer: x̂ 3 and fz(y, y$ ,w) are very close and also x̂ 6 and fǙ(y, y$ ,w). 

Observer errors are presented in the Fig.8. 
 

    

Fig. 8. Observer error in z and in ψ                        Fig. 9. Estimation of fz and of f$ 

If one keeps the same parameters of adjustment for the three controls and using a larger 

wind gust (vraf = 3m/s), we find that the control (BACK) give better results than the two 

controls (ADRC) and (RNFC) (see Fig.10). 

 

 

Fig. 10. Large disturbance vraf = 3m/s 

Fig.11 shows the tracking error in z and ψ for two different ADRC controls. These errors are 

quite simular for approach 1 (ADRC) and approach 2 (ADRCM). Nevertheless ADRCM 

induces larger error at the take off, which can be explained by the fact that the control 

depends directly on the angular velocity of the main rotor: this last one need a few time to 

reach its equilibrium position as seen in Fig.6. The same argument can be invoked to explain 

the saturation of ADRCM control u1 and u2 as illustrated in Fig.12. 
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Fig. 11. Tracking error in z and ψ for both            Fig. 12. Inputs u1 and u2 for both approachs 

approachs 1 and 2 of ADRC control.                      1 and 2 of ADRC control. 

7. Conclusion 

In this chapter, a robust nonlinear feedback control (RNFC), an active disturbance rejection 
control based on a nonlinear extended state observer (ADRC) and backstepping control 
(BACK) have been applied for the drone helicopter control disturbed by a wind gust. The 
technique of a robust nonlinear feedback control use the second method of Lyapunov and 
an additional feedback provides an extra term Δv to overcome the effects of the uncertainty 
and disturbances. The basis of ADRC is the extended state observer. The state estimation 
and compensation of the change of helicopter parameters and disturbance variations are 
implemented by ESO and NESO. By using ESO, the complete decoupling of the helicopter is 
obtained. The major advantage of the proposed method is that the closed loop 
characteristics of the helicopter system do not depend on the exact mathematical model of 
the system. 
The backstepping technique should not viewed as a rigid design procedure, but rather as a 
design philosophy which can be bent and twisted to accommodate the specific needs of the 
system at hand. In the particular example of an autonomous helicopter, we were able to 
exploit the flexibility of backstepping with respect to the selection of virtual controls, initial 
stabilizing functions and Lyapunov functions. Comparisons were made in detail between 
the three methods of control. 
It is concluded that the three proposed controls algorithms produces satisfactory dynamic 
performances. Even for large disturbance, the proposed backstepping (BACK) and (ADRC) 
control systems are robust against the modeling uncertainties and external disturbance in 
various operating conditions. It is also indicated that (BACK) and (ADRC) achieve a better 
tracking and stabilization with prescribed performance requirements. 
For practical reasons, the second ADRC approach is the best one because it only requires to 
know some aerodynamic parameters of the helicopter (dimensions of the blades of the main 
and tail rotor and the helicopter weight), whereas the other approaches (first ADRC 
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approach, RNCF and BACK) depend on all the aerodynamic parameters which generate the 
forces and the couples that act on the helicopter. For first ADRC control, a stability analysis 
has been carried out where boundness of states of helicopter and observer are proved in 
spite of the presence of wind gust. 
As illustrated in tables 2 and 3, wind gust induces large variation of helicopter parameters, 
and the controls quoted in this work can efficiently treat these parameter deviations. 
As perspective, this work is carried on a model of a 7DOF VARIO helicopter, where ADRC 
and linearizing control will be tested in simulation. The first results using ADRC control on 
this 7DOF helicopter have been recently obtained (see (Martini et al., 2008) ). Moreover, our 
control methodologies will be also implemented on a new platform to be built using a Tiny 
CP3 helicopter. 
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