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1. Introduction

Polysaccharides are natural, non-toxic and biodegradable polymers that cover the surface of
most cells and play important roles in various biological mechanisms such as immune
response, adhesion, infection and signal transduction. Investigations on the alternative
treatments applied by different cultures throughout the history revealed the fact that the
utilized plants and fungi were rich in bioactive polysaccharides with proven immunomodu‐
latory activity and health promoting effects in the treatment of inflammatory diseases and
cancer. Hence considerable research has been directed on elucidating the biological activity
mechanism of these polysaccharides by structure-function analysis [1].

Hemicelluloses are structural polysaccharides which are the second most abundant hetero‐
polymers present in nature accounting for one third of total components available in the plants
(Figure 1) [2]. Mannans and xylans are the two most important hemicelluloses and hence a lot
of research is mainly focused on their value-added applications and hydrolysis [3]. Mannan
is a biodegradable and bioactive polysaccharide that has been a focus of interest by various
sectors due to its valuable properties. The film forming capacity and biodegradability of
mannans make them an interesting alternative to the petroleum-based materials. Mannan-
based films and coatings were shown to exhibit low oxygen and grease permeability and, in
some cases, relatively high tensile strength [4]. There are also interesting reports on the
successful use of mannan as a bioactive material in health related applications.

Mannans are linear polymers of 1,4-linked mannose residues and contain less than 5% of
galactose [5]. In nature, mannan is present in four different forms, each having a β-1,4-linked
backbone containing mannose (linear mannan) or a combination of glucose and mannose
residues (glucomannan) and occasional side chains of α-1,6-linked galactose residues (galac‐
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tomannan / galactoglucomannan). The mannose and glucose residues in the backbone are
sometimes acetylated at C-2 or C-3 (3,5).

Figure 1. Polysaccharide composition of plants

In plants, mannans have a structural role by binding cellulose, but also they serve a storage
function as a reserve carbohydrate in endosperm walls and vacuoles of seeds and vacuoles in
vegetative tissues [5]. Recently, mannan has also been proposed as a signaling molecule in
plant growth and development [6].

Mannan is a biodegradable and bioactive polysaccharide that has been a focus of interest by
various sectors due to its valuable properties. The film forming capacity and biodegradability
of mannans make them an interesting alternative to the petroleum-based materials. Mannan-
based films and coatings were shown to exhibit low oxygen and grease permeability and, in
some cases, relatively high tensile strength [4]. There are also interesting reports on the
successful use of mannan as a bioactive material in health related applications. Mannan
conjugated to vaccine preparations are already in the clinic [7,8]. Tang et al. [9] utilized a
mannan-based system to target DNA vaccines to antigen presenting cells and demonstrated
that it could induce far stronger immune responses in mice compared to naked DNA immu‐
nization. By further studies, they could explain the molecular basis of the observed immune
enhancing attributes of mannan-based DNA vaccination [9]. Successful use of carboxylic
mannan-coated iron oxide nanoparticles in targeting immune cells for in vivo lymph node-
specific Magnetic Resonance Imaging was also reported recently [10]. Moreover, to target
mannose receptor expressed on the surface of antigen-presenting cells, biocompatible self-
assembled mannan nanogels were designed to provide a therapeutic or vaccine delivery
platform [11,12]. In a recent review on oral drug delivery research in Europe, mannan based
nanogels were considered as a new approach for the oral delivery of labile molecules [13].

In this chapter, after a brief description of mannan, its production by algae, fungi, bacteria and
other eukaryotic microorganisms will be mentioned with special focus on microbial resources.
Then, use of mannan as a bioactive material in nanocarrier systems for drug delivery appli‐
cations will be covered in detail by giving examples from literature and industry. The final
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section of the chapter will involve conclusions and future prospects on microbial mannan
production and its potential uses in nanotechnology.

2. Structure of mannans

Mannan is one of the important member of the hemicellulose family and can be divided to
four subfamilies: linear mannan, glucomannan, galactomannan, and galactoglucomanan [14].
Mannan is present in different forms, each having a β-1,4-linked backbone containing mannose
(linear mannan) or a combination of glucose and mannose residues (glucomannan) and
occasional side chains of α-1,6-linked galactose residues (galactomannan / galactoglucomann‐
an) (Figure 2). In the backbone, mannose and glucose units can also be acetylated at C-2 or C-3
(3,5) .

Figure 2. Four different forms of mannan

Glucomannan is mainly a straight-chain polymer, with a small amount of branching. The
component sugars are β-(1,4)-linked D-mannose and D-glucose with a reported ratio of 1.6:1
[15], or 1.4:1 [16]. Softwoods and hardwoods consist of glucomannan with a glucose/mannose
ratio of 1:3 and 1:1.5–2, respectively [17-20]. There is a significant similarity between confor‐
mation of glucomannan chains and those of cellulose A two-fold screw axis was observed
because of the extended chains. Due to axial position of the hydroxyl group at C-2 of mannose,
the interaction between C-6 and O-2 atoms of contiguous residues is prevented, and the chains
are loosened, weakening the packing and organization [17]. Different structures were reported
for glucomannans isolated from different sources. For example, (1 →  4)-linked structure, acetyl
groups at C-2, C-3 positions and O-acetyl group at C-6 position were reported for glucomannan
extracted from seeds of Lupinus [21]. Irregular distribution of acetyl groups was reported for
pine glucomannan [22]. Studies on a nonionic glucomannan with a main chain of β-(1 →  4)-
linked mannopyranosyl units to which D-glucopyranosyl units are linked by α-(1 →  6)
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linkages, isolated from seeds of Bryonia lacinosa was also reported [23]. Galactomannans are
polysaccharides consisting of 1,4-linked β-D-mannopyranose backbone with side chains of
single 1,6-linked α-D-galactopyranose attached along the chain [24-26]. Galactose to mannose
ratio show differences among different sources. More than 5% galactose residues can be
considered as galactomannans [27].They are mainly found in the seeds of the family of
Leguminoseae [28,29]. They are also present in the species of Annonaceae, Convolvulaceae,
Ebenaceae, Loganiaceae, and Palmae [29]. Unusual backbone structure, containing (1 →  3)-linked
residues together with a small proportion of (1 →  4)-linked β-D-mannopyranosyl residues
with galactopyranosyl units attached at position 6, of galactomannan isolated from Retama
raetam was reported in 2004 [30]. Presence of arabinosyl and glucosyl residues in the structure
of galactomannans was observed in the studies of green and roasted coffee [31]. Several lichen
species have been also reported as a source of galactomannan [32]. (1 →  6)-α-D-mannopyra‐
nosyl backbone with a different substitution pattern at O-2 and O-4 was observed in galacto‐
mannans isolated from lichens. The four major galactomannans of commercial importance in
food and non-food industries are guar gum (GG, Cyamopsis tetragonolobo, M/G ratio: 2:1), tara
gum (TG, Caesalpinia spinosa,M/G ratio: 3:1), locust bean gum (LBG, Ceratonia siliqua, M/G ratio:
3.5:1) and Fenugreek (Trigonella foenum-graecum L., M/G ratio: 1:1) [33].

Galactoglucomannan consists of a backbone of randomly distributed (1 →  4)-linked mannose
and glucose units with (1 →  6)-linked galactose units attached to mannose units. The hydroxyl
groups in locations C2 and C3 in mannose are partially substituted by acetyl groups [34,18].
Molar ratio of mannose, glucose and galactose was reported as 3:1:1 in the study of Puls and
Schuseil [35]. Some of the mannosyl units are partially substituted by O-acetyl groups, equally
distributed between C-2 and C-3 on the average one group per three to four hexose units [18,
36]. 5.9%-8.8% acetyl content was also observed [18].

The acetylated galactoglucomannan is mainly found in hemicellulose of softwoods. They can
be either galactose rich or galactose poor with 10-15% and 5-8% of the dry woods respectively
[36-38]. Acetylation at C-2 and C-3 positionsin the ratio of 2.2:1 was reported for galactoglu‐
comannan backbone from native Norway spruce wood [36]. Formation of strong hydrogen
bonds due to large content of D-galactose side-chains prevents the macromolecules from
aligning themselves and hence galactoglucomannan is soluble in water [39].

3. Sources of mannans

Mannan is the predominant hemicellulosic polysaccharide in softwoods from gymnosperms,
but is the minor hemicellulose in hardwood from angiosperms [35]. Unsubstituted beta-1,4-
mannan, composed of a main chain of beta mannopyranose residues, is an important structural
component of some marine algae [40] and terrestrial plants such as ivory nut [41] and coffee
bean [42].

A variety of plants store energy in the form of mannans in their endosperm tissue, including
members of the Palmae, Liliaceae, Iridaceae, and Leguminosae families [43,44]. Glucomannans
also are used for energy storage in corms of plants within the genus Amorphophallus. In
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addition to carbohydrate storage and structure, mannans serve a variety of other functions. In
fern roots, mannans are deposited as constituents of cell wall appositions as a defense
mechanism to limit microbial ingress [45]. Besides plants, algae are also a viable resource for
mannan polysaccharides. In particular, the Dasycladalean alga Acetabularia acetabulum, also
known as ‘mannan weed’, has long been known to contain mannan-rich walls [46]. Moreover,
mannans are a common feature of fungal walls and a recent review points to the importance
of cell surface mannans of pathogenic Candida species since they were found to participate in
the adhesion to the epithelial cells, recognition by innate immune receptors and development
of pathogenicity. Hence, clarification of the precise chemical structure of Candida mannan was
reported as indispensable for understanding the mechanism of pathogenicity, and for
development of new antifungal drugs and immunotherapeutic procedures [47]. Also, some
yeast species stand out for their capability for excreting mannan to the fermentation medium.
Yeast Rhodotorula acheniorum MC bioreactor cultures have been reported to produce 6.2
g/L mannan when grown for 96 hours in sucrose containing media [48]. Moreover, psychro‐
philic Antarctic yeast Sporobolomyces salmonicolor AL1 reached maximum glucomannan
yield of 5.64 g/L in medium containing sucrose after a 5 days of fermentation [49]. Mannan
synthesized by R. acheniorum MC, as well as the glucomannan, synthesized from strain S.
salmonicolor AL1 were both found to form stable emulsions making them suitable for various
applications in pharmaceutical and cosmetic sectors [50]. On the other hand, studies also point
to adverse toxic effects of fungal mannans when administered [51].

Although mannan production is established by numerious algal, fungi and other eukaryotic
microorganisms, they are not normally products of bacteria [52]. There are only very few
reported examples on extracellular mannan production by bacteria. Gram negative phytopa‐
thogenic bacterium Pseudomonas syringae pv. ciccaronei was reported to produce a highly
branched phytotoxic mannopyranose polymer, which consisted of a backbone of α-(1,6)-linked
mannopyranose units with 80% substituted at C-2 by mono-, di-and trisaccharide side chains
[53]. Then, to understand the role of this mannan polymer in the activation of plant defence
responses, various concentrations of the polymer was infiltrated in the abaxial side of tobacco
leaves. Mannan polysaccharide was found to induce chlorotic and necrotic symptoms even at
very low concentrations very effectively suggesting that it was identified by the plant cells as
a signal of pathogen attack or environmental perturbation [54]. Two mannans at different chain
lengths were reported to be produced by the marine bacterium Edwardsiella tarda, an oppor‐
tunistic pathogen in human, and the polysaccharides were found to have good antioxidant
and hydroxyl and DPPH radicals scavenging activities [55]. The lower molecular weight
mannan was associated with higher antioxidant activity than the longer mannan and could be
used as possible food supplement or ingredient in the pharmaceutical industry [55]. Recently,
about 20-fold increase in mannan production has been reported in the pathogenic, constitutive
biotin-producing Pseudomonas mutabilis bacteria [56]. The rheological properties of the highly
branched mannan isolated from P. mutabilis T6 showed that its viscosity was over 30 times
greater than that of the wild type P. mutabilis ATCC 31014.

Table 1. illustrates mannan producer organisms.
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Source Organism Mannan type Reference

Plant Ebenaceae family Galactomannan [29]

Plant Arabidopsis thaliana Mannan [57]

Plant
seeds of the family of

Leguminoseae
Galactomannan [28,29]

Plant Caesalpinia spinosa Kuntze Galactomannan [33]

Plant Annonaceae family Galactomannan [29]

Plant Amorphophallus konjac Glucomannan [58]

Plant Ceratonia siliqua Galactomannan [33]

Plant Convolvulaceae family Galactomannan [29]

Plant Cyamopsis tetragonoloba Galactomannan [33]

Plant Loganiaceae family Galactomannan [29]

Plant Senna tora seed Galactomannan [59]

Plant Trigonella foenum-graecum L. Galactomannan [33]

Plant Palmae family Galactomannan [29]

Plant Picea abies Galactoglucomannan [60]

Plant Cercis siliquastrum Galactoglucomannan [61]

Plant Nicotiana plumbaginifolia Galactoglucomannan [62]

Yeast Hansenula holstii Phosphorylated mannan [63]

Yeast Rhodotorula acheniorum Mannan [48]

Yeast Sporobolomyces salmonicolor Glucomannan [64]

Yeast Saccharomyces cerevisiae Mannan [65]

Yeast Meyerozyma guilliermondii Mannan [66]

Yeast Brewers dried yeast Mannan [67]

Yeast Candida utilis Glucomannan [68]

Algae Porphyra umbilicalis Mannan [69]

Algae Acetabularia acetabulum Mannan [46]

Algea Charophyceae Mannan [70]

Fungus Dactylium dendroides Galactoglucomannan [71]

Fungus Pseudocyphellaria clathrata Galactoglucomannan [72]

Bacteria Pseudomonas mutabilis Mannan [56]

Bacteria
Pseudomonas syringae pv.

ciccaronei
Mannopyronose [53]

Bacteria Edwardsiella tarda Mannan [55]

Bacteria Pseudomonas aeruginosa Mannan [73]

Bacteria Brevibacillus thermoruber Mannan [74]

Table 1. Mannan producer organisms

Application of Nanotechnology in Drug Delivery316



4. Biosynthesis of mannans

Mannans are synthesized from activated nucleotide sugars such as GDP-mannose, GDP-
glucose, and UDP-galactose [75]. Enzymes necessary for the nucleotide sugar conversion from
sucrose to GDP-mannose and UDP-galactose have been reported in planta. However, the
enzyme for the formation of GDP-glucose has not been identified [76]. Golgi-localized
glycosyltransferases (GTs) utilize the activated nucleotide sugars and synthesize the polymer
by facilitating the formation of the specific linkage between the monomers [77,78].

The cellulose synthase-like family A (CSLA) genes are considered the best candidates to encode
enzymes that polymerize the backbones of β-linked noncellulosic polysaccharides [79,80].
Experimental evidence to support this hypothesis for the CslA family came first from Dhugga
et al. [81]. In this research, the first β-mannan synthase (ManS), a member of the cellulose
synthase-like family A (CSLA) from GT family 2, was identified in guar seeds (CtManS in
Cyamopsis tetragonoloba, a AtCSLA9 ortholog) including the demonstration of its in vitro
ManS activity [82]. One year later, three Arabidopsis CSLA genes were expressed in Droso‐
phila Schneider 2 (S2) cells and demonstrated that the resulting CSLA proteins were capable
of producing mannans when supplied with GDP-Man and glucomannans when provided with
a mixture of GDP-Man and GDP-Glc [75]. CSLA genes appear to be present in all land plants,
and ancestral genes with characteristics similar to CSLA sequences have been identified in a
number of green algal genomes, in which they are thought to represent a homolog of the
progenitor gene from which CSLA genes evolved [76]. In developing Trigonella foenum-
graecum (Fenugreek) endosperm, a deep sequencing approach was used to identify genes
involved in galactomannan biosynthesis [83]. This research reported a CSLA family protein
involved in mannan backbone synthesis and a preference towards GDP-mannose as a donor
substrate was observed from the activity assays with the heterologously expressed protein.
Heterologously expressed CSLA proteins from a variety of species show mannan or gluco‐
mannan synthase activity in vitro [6,75,81,83]. Analysis of Arabidopsis CSLA mutants and
over-expressing plants further confirmed that CSLA proteins function as glucomannan
synthases in vivo [84]. Despite this progress in identifying and characterizing the enzymes
responsible for galactoglucomannan biosynthesis, it is likely that other important enzymes are
required, and many aspects of this process need to be better understood.

In tissues of Arabidopsis, that take role in tip-growth such as root hairs CSLD, (AtCSLD2, 3 and
5) proteins were found to mediate mannan biosynthesis [85-92]. In Fenugreek, it was found
that additional genes were involved in mannan biosynthesis, such as a golgi-localized mannan
synthesis-related (MSR) gene that was observed in the fenugreek endosperm [83,93]. TfMSR
protein in Fenugreek and its homologs AtMSR1 and AtMSR2 in Arabidopsis were highly co-
expressed with the ManS of the CSLA family. Glucomannan and ManS activity were signifi‐
cantly decreased in stems of AtMSR knock-out mutants [93]. While the biochemical activity of
MSR proteins remains unknown, hypotheses include a role in primer synthesis to initiate
mannan biosynthesis, the synthesis of oligosaccharides linked to CSLA or promoting folding,
stability or activity of a mannan synthase complex [93].
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Edwards et al. identified a mannan:galactosyltransferase (GalT) in Trigonella foenum-graecum
[94], an enzyme that facilitates mannan O-acetylation. However, discovery of the involvement
of a large plant-specific family of Trichome birefringence-like (TBL) proteins in O-acetylation
of wall polymer as specific O-acetyltransferases suggested that this gene family encompassed
a mannan O-acetyltransferase [95]. A highly expressed (among the 10 most abundant ESTs)
homolog of AtTBL25 in the Amorphophallus konjac deep sequencing database [96] revealed that
this protein or the closely related AtTBL26 could represent mannan O-acetyltransferase(s) in
Arabidopsis [95].

5. Polysaccharide-based materials in drug delivery

Many properties of polysaccharides such as biocompatibility, solubility, potential for modifi‐
cation, and innate bioactivity provide great potential for their use in drug delivery systems
(Figure 3).

Figure 3. Properties of polysaccharides for potential use in drug delivery systems

Despite  many  synthetic  polymers,  polysaccharides  have  very  low  or  no  toxicity  levels
[97-100]. For example, dextrans are biopolymers composed of glucose with α-1,6 linkages,
with possible branching from α-1,2, α-1,3, and α-1,4 linkages, that exhibit low toxicity and
high biocompatibility, that makes them biocompatible hydrogels for controlled prolonged
therapeutic  release  [101]  and  microspheres  with  no  inflammatory  response  following
subcutaneous injection into rats [102]. Since polysaccharides are naturally present in the body,
most of them are degraded enzymatically. Through enzyme catalysis, polysaccharides can
be broken down to their monomer or oligomer building blocks and recycled for use as storage,
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structural support, or even cell signaling applications [103]. As a result, mechanism of release
for  therapeutics  associated  with  polysaccharide-based  carrier  systems  is  provided  by
enzymatic degradation [104].

The functional groups of polysaccharides such as hydroxyl and amine groups yield high
aqueous solubility. However, this solubility can often be adjusted via monomer modification.
For example, O-acetylation of glucomannan can be used to modulate the formation of
intermolecular hydrogen bonds with water, thereby altering aqueous solubility [105].

Due to the presence of various derivable groups on molecular chains, polysaccharides can be
easily modified chemically and biochemically, resulting in many kinds of polysaccharide
derivatives. These modifications can change the character of the polysaccharides. For instance,
hydroxyl group oxidation enhances biodegradability, while sulfonation generates a heparin-
like polysaccharide with increased blood compatibility [106]. Quaternization of the primary
amines with various alkyl groups can be used to enhance solubility and alter bioactivity
[107-109].

Many polysaccharides possess innate bioactivity, particularly mucoadhesive, antimicrobial,
and anti-inflammatory properties. Positively charged polysaccharides are capable of binding
to the negatively charged mucosal layers through charge interactions [110-112]. For neutral or
negatively charged polysaccharides, hydrogen bonding provides an alternative mechanism
for mucoadhesion [113]. Nanoparticle carriers made of bioadhesive polysaccharides could
prolong the residence time and therefore increase the absorbance of loaded drugs [114]. Several
polysaccharides are also antimicrobial in nature, such as chitosan [115]. Other polysaccharides
are known to reduce inflammation. Anti-inflammatory activity is thought to be due to binding
with immune-related acute phase and complement proteins [111,116] and polysaccharides are
known to interact with a variety of proteins.

Nanocarriers are nanoparticle drug delivery systems that are used to deliver drugs or biomo‐
lecules. Nanocarriers are sub-micro particle structures smaller than 100 nm in at least one
dimension and cover nanospheres, nanocapsules, nanomicelles, nanoliposomes, and nano‐
drugs, etc. Nanoparticle drug delivery systems have noticeable advantages. Due to the ultra-
tiny volume of nanoparticle they can pass through the smallest capillary vessels and avoid
rapid clearance by phagocytes, that lead to greatly prolonged duration in blood stream. Due
to small dimensions, nanocarriers are able to cross the blood-brain-barrier (BBB) and operate
on cellular level. They can easily penetrate cells and tissue gap to arrive at target organs such
as spleen, spinal cord, liver, lung, and lymph. Because of the biodegradability, pH, ion and/or
temperature sensibility of materials, they could show controlled release properties. They can
improve the utility of drugs and reduce toxic side effects; etc. As drug delivery system,
nanocarriers can entrap drugs or biomolecules into their interior structures and/or absorb
drugs or biomolecules onto their exterior surfaces. Presently, nanoparticles have been widely
used to deliver drugs, polypeptides, proteins, vaccines, nucleic acids, genes and so on.

In recent years, a large number of studies have been conducted on polysaccharides and their
derivatives for their potential application as nanoparticle drug delivery systems [114,117-120]
and among them, mannan is a very promising bioactive material for drug nanocarrier systems
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since an amphiphilic form of mannan can spontaneously incorporate proteins and other
agents, potentially providing a new nanostructure drug delivery system.

6. Medical potential of mannans as a drug nanocarrier systems

Glucomannans have a variety of applications, including food industry used as an emulsifier
and thickener and medicine as a preventative of chronic disease and weight control agent [21].
Likewise, galactomannans also found many applications in food industrial as a thickener and
food additive due to their rheological properties [121]. Moreover, galactomannans are widely
used as versatile materials in industries such as textiles, paper, pharmaceutics, cosmetics,
petroleum, drilling and explosives [93,122].

Galactomannans have also significant potential in medical applications such as innate immune
system stimulation. On the other hand, the mannooligosaccharides (MOS) derived from these
polysaccharides have also prebiotic activity for selective growth of Bifidobacterium spp., and
Lactobacillus spp. [123]. They have also been described to present anticoagulation and
fibrinolytic activity [124] and the MOS may prevent adherence of toxic bacteria to the intestinal
wall, mediated by lectins, thus presenting anti-infectious potential [123,125,126].

In the research of Apostolopoulos et al. oxidized mannan conjugated to MUC1 fusion protein
(M-FP) was used as a target for tumour immunotherapy and M-FP appeared to confer the
survival/disease-free interval advantage in patients with early stage breast cancer [8].

In another study, the factors important to gene delivery and DNA vaccination that could
contribute to the improved immunogenicity of oxidized mannan poly-L-lysine (OMPLL)–
DNA and reduced mannan poly-L-lysine (RMPLL)–DNA immunization were investigated [9].
It was shown that OMPLL and RMPLL were able to complex with DNA to form particles that
were taken up by charge dependent binding and endocytic pathways. High possibility of
delivery of DNA was observed since the particles formed were able to protect DNA from
DNase I digestion. More significantly, direct effect of OMPLL and RMPLL was observed on
the antigen presentation of dentritic cells (DCs).

In 2010, Guo et al. reported that marine bacterium Edwardsiella tarda produced two extracellular
polysaccharides ETW1 and ETW2, mannans with different molecular mass, that exhibited
strong antioxidant activities [55]. To investigate the antioxidant activities of the two polysac‐
charides, antioxidant properties based on hydroxyl, DPPH radical scavenging and lipid
peroxidation inhibition assays were carried out. The scavenging abilities of ETW1 and ETW2
on DPPH radicals, hydroxyl radicals and lipid peroxidation inhibition were concentration-
dependent.

In 2011, Ferreira et al. prepared nanogel made of mannan [11]. The properties of the resulting
nanogel were characterized and cytocompatibility was tested by using two cell lines, namely,
mouse embryo fibroblasts 3T3 and mouse macrophage-like J774. The results of study revealed
that the mannose receptor binds ligands at the cell surface and these receptor-ligand complexes
were internalized via the endocytic pathway. Internalization of the nanogel caused cytotoxicity
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since the non-phagocytic cell line was not affected and internalization was confirmed with
J774. The high nanogel toxicity observed with the macrophage cell line indicated that the cell
line J774 was not suitable for studies with mannan-C16 nanogel and primary cultures of
macrophages that do not exhibit cytotoxicity should be used instead.

In 2012, the mannan nanogel cytocompatibility was tested in mouse embryo fibroblast cell line
3T3 and mouse bone marrow-derived macrophages (BMDM). [12]. The essential focus of the
study was to assess nanomaterial cytocompatibility and to analyze the internalization by
macrophages. The results of this study indicated that the mannan nanogel was biocompatible
to mouse embryo fibroblast 3T3 cells and mouse BMDM. Essentially, no cytotoxic effect was
observed with mannan nanogel up to about 0.4 mg/mL in in vitro experiments. Cell survival
rate only dropped significantly at higher tested concentration after 48 h of incubation. Comet
assay, under tested conditions, revealed no DNA damage in mouse embryo fibroblast 3T3 cells
but possible DNA damage in mouse BMDM. Upon internalization by mouse BMDM mannan
nanogel was localized in vesicles, as judged by the non-even distribution over the cytoplasm,
and concentration of the fluorescence in internalized structures. Exit of nanogel from the
mouse BMDM was observed when cells were incubated in fresh medium. Confocal colocali‐
zation image analysis denoted that the entrance and exit of nanogel and FM 4-64 might occur
by the same processes – endocytosis and exocytosis – in BMDM.

Sato et al. [127] examined the adhesion inhibitory effect of mannan coating on acrylic denture
surfaces against Candida albicans and Candida glabrata. The outermost layer of the Candida cell
wall is covered with hydrophilic polysaccharides, such as mannan or galactomannan [128].
These mannans on the fungal surface function as adhesins, which are involved not only in the
adhesion to the host cell [129,130] but also in the adsorption to plastic plates. On the other
hand, when the plastic surfaces of culture dishes were coated with mannan, the adherence of
C. albicans to the dishes was significantly inhibited [131,132]. The results of this study indicated
that mannan inhibited the adhesion of Candida in a concentration-dependent manner, but
mannose was not able to inhibit Candida adhesion even at a high concentration. The application
of 0.1 mg/mL of mannan coating overnight showed inhibitory effects on the adhesion of the
hyphal form of C. albicans. In the case of C. glabrata, the inhibitory effect was also observed to
occur in a concentration-dependent manner, and the 10 mg/mL of mannan led to significantly
higher anti-adhesive effects. This indicated that mannan effectively prevented the adhesion of
two major Candida species to the denture surface, indicating the possibility of applying such
a coating for clinical dentistry.

Superparamagnetic iron oxide nanoparticles (SPIONs) have been used as a contrast agent in
magnetic resonance imaging (MRI) or as a carrier platform in the applications of drug
[133-135] and gene delivery [137,138]. It was previously reported that mannan-coated SPION
(mannan-SPION) could be specifically targeted to macrophages by the interaction with
mannose receptors on antigen-presenting cells (APCs) [139]. Vu-Quang et al., [10] investigated
the physicochemical properties, the in vitro and in vivo uptakes of carboxylic mannan-coated
SPION (CM-SPION) using MRI and assessment of systemic toxicity. Results of the study
showed that CM-SPION achieve longer circulation than mannan-SPION without compromis‐
ing specificity. The intracellular accumulation of CM-SPION in macrophages was higher than
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those of either PVA-SPIONs or Dex-SPIONs. The intracellular localization of CM-SPIONs was
pre-dominantly observed in the cytoplasm of APCs. In the light of these results, authors
claimed that CM-SPION could be regarded as a safe and potential contrast agent in LN-
targeted MR imaging.

The effective conjugation of iron oxide nanoparticles with various biomolecules has been used
for novel therapeutic-and drug delivery purposes [139-142]. Ultrasmall superparamagnetic
iron oxide (USPIO) targets biomarkers of atherosclerotic plaques and improvements of USPIO
make possible to obtain better plaque images at lower doses. Mannose units of mannan
polysaccharides are recognized by mannose receptors on immune macrophages and they lack
of significant toxicity. As a result, in the study of Tsuchiya [143], MRI-and histologic analyses
were performed to compare the uptake by the rabbit atherosclerotic wall of four types of SPIO
particles, i.e. SPIO, mannan-coated SPIO (M-SPIO), ultrasmall SPIO (USPIO), and mannan-
coated USPIO (M-USPIO). Resuts of study reveal that mannan-coated iron particles had a
greater affinity for active atherosclerotic plaques than non mannan-coated iron particles.
Intracellular iron uptake was also higher in cells treated with M-USPIO than USPIO.

Glucomannans have diverse applications in biomedical and pharmaceutical areas due to the
advantages of the polysaccharide such as weigt loss in obesity, decreased carbohydrate
absorption in diabetes type 2, antitumor activity against sarcoma in cancer, decreased LDL
levels in cholesterol, recognition of mannose receptors in targeting, antiseptic coating and
sustained release profiles, increase of stability, improvement of the interaction between
polmers, enhancement protein association of pharmaceutical forms of glucomannan. Gluco‐
mannan has been investigated as a pharmaceutical excipient in tablets, films, beads and
hydrogels, due to its gelling, solubility and biodegradable properties [143-146].

Electrostatic interaction between the negative carboxylic groups of carboxymethylated-GM
and the positive amino groups of chitosan was used for the preparation of nanoparticles made
of carboxymethylated-GM and chitosan [147]. These nanoparticles were within size range of
50–1200 nm and exhibited a positive charge. Additionally, these nanoparticles elicited an
ability to entrap and release bovine serum albumin (BSA) [147,148] The objection of use of GM
in these nanoparticles was to increase their stability and their controlled release properties.
Sande et al. reported that the introduction of GM into the nanoparticles lead to a facilitated
interaction with the intestinal epithelium both in vitro and in vivo [149, 150]. The results of
studies revealed that GM–chitosan nanoparticles offer attractive features as carriers for
transmucosal drug delivery applications.

In the report of Zhang et al., use of konjac glucomannan (KGM) in oral colon targeting drug
delivery system (OCDDS) was reviewed [151]. Based on the previous studies of KGM, it could
be considered as a significant natural polysaccharide in OCDDS. It was known that KGM gel
systems were able to maintain integrity and control the release of theophylline and diltiazem
for 8 hours [152]. KGM hydrolysate was reported to have prebiotic potential for beneficial gut
microbiota [153,154]. KGM is a water soluble polysaccharide because of hydrogen bonding in
its structure [155,156]. The stronger the hydrogen bonding between their molecules, the harder
for it to dissolve in water. Water solubility can be either advantageous or disadvangeous
according to its application. Due to the high water adsorption rate, deficiency of free water in
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gastrointestinal tract occurs and leads to diarrhea when KGM was used in the applications
such as pharmaceutical excipients or drugs. On the other hand, when prepared as styptic
sponge, which used to stop bleeding, the higher the water adsorption rate of it, the better the
hemostasis effect may be. Modifications of KGM lead to alteration in the water adsorption of
it. Moreover, KGM have gel-forming and film-forming properties [157].

In the previous studies, it was reported that KGM can be specifically degraded by colon β-
mannanase [158], an enzyme generated by human colon bacteria [159]. On the other hand,
based on the toxicity tests Ancui et al. reported KGM as a stable and safety material for
medicinal purposes [160].

Invention of a novel hydrogel systems designed for colon-targeting drug delivery was
reported in 2004 [158]. This hydrogel was composed of KGM, copolymerized with acrylic acid,
and crosslinked by the aromatic azo agent bis(methacryloylamino)-azobenzene. Chen, Liu and
Zhuo, copolymerized KGM and acrylic acid (AA) with N, N-methylene-bis-(acrylamide)
(MBAAm) to form a novel hydrogel system [161]. Studies on swelling behaviors and degra‐
dation showed that the gel is pH-sensitive and could be degraded by Cellulase E0240 con‐
taining β-mannanase. Further researches demonstrated that the IPN hydrogel composed of
KGM and poly(acrylic acid) (PAA) and cross-linked by N, N-methylene-bis-(acrylamide)
(MBAAm) was still pH-sensitive and a potential carrier for colon-targeting drug delivery. Xu
et al., prepared oxidized konjac glucomannan (OKG) for OCDDS which was pH-sensitive and
could be used without the destruction of drugs in gastric acid [162]. Furthermore, Korkiati‐
thaweechai et al., prepared controlled release of diclofenac sodium (DFNa) film from CTS
(chitosan)-OKG [163]. This study suggested that the proportion of OKG in the formulation
may affect the release profile and the formulation may be used for further study as a long term
intestine controlled release drug model (at least 3 days), including as colon targeting drug
carrier.

Guar  gum  derived  from  the  seeds  of  Cyamopsis  tetragonolobus  is  a  naturally  occuring
galactomannan polysaccharide that consists of 80% galactomannan, 12% water, 5% protein,
2% acid insoluble ash, 0.7% ash and 0.7% fat. Guar gum has been reported as an inexpen‐
sive and flexible carrier for oral extended release drug delivery [164].  Guar gum can be
used for colon delivery since it can be degraded by specific enzymes in this region of the
gastrointestinal tract. GG provides protection to the drug in the environment of the stomach
and small intestine, and drug delivery to the colon where it is degraded by the enzymes
excreted by specific microorganisms. Guar gum shows high potential as a carrier for oral
controlled release matrix  systems.  Furthermore,  excipients  to GG can be used to modu‐
late drug release from these matrix systems [165].

Locust bean gum also known as Carob bean gum consists mainly of a neutral galactomannan
polymer made up of 1,4-linked D-mannopyranosyl units and every fourth or fifth chain unit
is substituted on C6 with a D-galactopyranosyl unit. Locust bean gum is a neutral polymer
and its viscosity and solubility are therefore little affected by pH changes within the range of
3-11 [166]. Locust bean gum was used to produce matrix tablets with and without the cross-
linker, glutaraldehyde [101]. A commercially available tablet system (TIMERx®) developed
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by Penwest Pharmaceuticals Company consisting of locust bean gum and xanthan gum
showed both in vitro and in vivo controlled release potential [167].

Guar gum hydrates and swells in cold water [168]. This gelling cause to retardation of the drug
release from the tablets [169,170]. Guar gum is being used to deliver drug to the colon due to
its drug release retarding property and susceptibility to microbial degradation in the large
intestine [171,172]. Guar gum based matrix tablets of dexamethasone and other antinflamma‐
tory agents were prepared and used in colon targeting [173]. Whereas negligible drug release
was observed in simulated gastric and intestinal fluids, significant increase in drug release was
reported in simulated colonic fluid.

Colonic drug delivery system based on pectin (polygalactronic acid) and galactomannan
coating was reported by Lee et al. [174] and Pai et al. [175]. These two polysaccharides, pectin
and galactomannan, were used as coating material of a conventional tablet or capsule. The
coating of pectin/galactomannan mixture was shown to be strong, elastic and insoluble in
simulated gastric and intestinal fluids such that it would protect drug from being released in
the upper GI tract. Researches revealed that in the colon, bacterial degradability was preserved.
Moreover, extended film resistance to hydration, subsequent solubilization, film degradation
rate by enzymes and drug release rate were found to depend on the varying ratio of pectin to
galactomannan. Higher galactomannan percentage caused to decreased bacterial degradation
in the colon and prolonged duration of negligible drug release in the upper GI tract. Compared
with the combination of pectin and ethyl cellulose [176] or amylose and ethyl cellulose [177],
combination of pectin and galactomannan was advantageous due to faster in vivo degradation
of both pectin and galactomannan by microflora in the colon.

Matrix tablet of indomethacin with guar gum was prepared and the suitability of guar gum
as a carrier in colonic drug delivery was investigated in another study [178]. The results
indicated the specificity of these matrices for enzymes triggered the drug release in the colon.
In another in vivo study, matrix tablets containing around 77% guar gum were loaded with
technetium-99m-DTPA as tracer and scintigraphs were taken at regular intervals in six healthy
human male volunteers [179]. These tablets were found to remain intact releasing only small
amount of tracer in the stomach and the small intestine. However, bulk of the tracer was
released in the ascending colon thereby suggesting that the enzyme triggered degradation by
colonic bacteria.

Rubinstein and Gliko-Kabir investigated a biodegradable property of guar gum cross-linked
with borax [180]. The time required for degradation of these crosslinked guar gum and borax
showed that release of drug would be in proximal colon. The same group analysed phosphated
cross-linked guar gum hydrogels for their potential as colon drug carriers in vitro and in vivo
in 2000 [181]. In vitro studies revealed that these hydrogels loaded with hydrocortisone were
able to resist the release of 80% of the drug for 6 h in phosphate buffer. In vivo studies in rat
showed that degradation of modified guar gum by enzymes was concentration dependent.
Thus, the phosphated crosslinked guar gum could be considered suitable for colon drug
delivery.
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Alginate is a non-toxic polysaccharide that have properties such as pH sensitivity. This pH
sensitivity is favorable for intestinal delivery of protein drugs. However, drug leaching during
hydrogel preparation and rapid dissolution of alginate at higher pH are major limitations
since when it enters the intestine, these limitations cause to very low entrapment efficiency
and burst release of entrapped protein drug. To overcome these limitations, George and
Abraham used another natural polysaccharide, guar gum which is included in the alginate
matrix along with a cross linking agent to ensure maximum encapsulation efficiency and
controlled drug release [182].

In the study of Coviello et al. [101], two galactomannans, guar gum and Locust bean gum, have
been investigated for their possible use as matrices for modified drug delivery. They were
crosslinked with glutaraldehyde (Ga) and then used for the preparation of tablets. This
preparations increased the rate of release of small guest molecules due to the fact that the
chemical reaction with Ga introduced meshes with a size larger than those present in the
simply entangled systems.

In the study of Voepel et al. [183], hydrogels based on acetylated galactoglucomannan
(AcGGM) were synthesized and examined for their properties in drug-release systems using
two model substances of different molecular weight, size, and polarity (caffeine and vitasyn
blue). AcGGM was synthetically modified to yield a polysaccharide with either neutral or ionic
pendant groups. These precursors were formulated to produce either a neutral, covalent
hydrogel or a physically cross linked hydrogel. Neutral and ionic hydrogels based on HEMA-
Im– modified AcGGM (M-AcGGM) and maleic anhydride modified M-AcGGM (CM-
AcGGM) were studied in view of their chemical, physical and drug release properties. In the
case of the neutral hydrogels, half of the total drug release (50 wt % release) was reported to
occur between 13 and 35 min and 50 to 90 min for caffeine and vitasyn blue, respectively. The
majority of the caffeine (80 wt %) was released between 40 and 120 min, on the other hand, the
majority of vitasyn blue was released between 125 and 250 min. When maleic anhydride was
added to the M-AcGGM, ionic poly(CM-AcGGMco-HEMA) hydrogels could be achieved.
Slower release of caffeine was found in these hydrogels, especially at acidic conditions because
of the pH responsitivity obtained through the introduced carboxylic functionalities.

Roos et al. synthesized hydrogels from O-acetyl-galactoglucomannan (AcGGM) with encap‐
sulated bovine serum albumin (BSA), to investigate the influence of substitutions and the
feasibility of BSA-release mediated by the addition of β-mannanase to hydrolyze the hydrogel
[184]. Hydrogels were prepared from AcGGM substituted with various amounts of 2-
hydroxyethylmethacrylate groups and loaded with BSA. The degree of substitution of HEMA
and the presence of β-mannanase AnMan5A were two parameters that influenced the release
of BSA from the hydrogels in water. Increasing HEMA substitutions on the glucomannan
backbone from 0.1 to 0.36 caused lesser spontaneous release of BSA. However, the addition of
β-mannanase AnMan5A increased the BSA release due to enzymatic hydrolysis of AcGGM.
The hydrogel with DSHEMA (degree of sustitution) 0.36 released almost all remaining BSA from
the hydrogel within 8 h after addition. The results of the study provided significant insights
into further developments of AcGGM-based hydrogels for the application of drug delivery
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Bioadhesive poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles were reported as promising
drug delivery systems [185], and surface modification of nanocarriers was provided by
application of mannan-based PE-grafted ligands (MAN-PEs) [186]. Kong et al. investigated
MAN-PE-modified bioadhesive PLGA nanoparticles as active targeting gene delivery system
using plasmid enhanced green fluorescent protein (pEGFP) as the model gene [187]. In the
reported study, in order to achieve active targeting to the liver, surface of of PLGA nanopar‐
ticles was modified by the application of MAN-PEs. In vitro and in vivo behavior of mannan-
modified DNA-loaded PLGA nanoparticles were compared with nonmodified DNA-loaded
PLGA nanoparticles. Spherical shapes were observed for nonmodified DNA-NPs while the
mannan-modified MAN-DNA-NPs had a dark coat on the white balls, that indicated the
successful coating of mannan-PE. The mean particle size of NPs was around 100–200 nm, which
was ideal for the nanoparticulate system. MAN-PEs-modified pEGFP-loaded bioadhesive
PLGA-NPs could be targeted to the liver and successfully transfected the Kupffer cells (KCs).

In the study of Wu et al., mannan-PEG-PE (MN-PEG-PE) modified bioadhesive PLGA
nanoparticles were obtained as a targeted gene delivery system [188]. Mannan was the target
part that bind to the mannose receptor (MR) in the macrophage, and PEG-PE was the spacer
linked into the surface of NPs. The results of this study confirmed that mannose-mediated
targeting could successfully deliver genes into MR expressing cells. Improved transfection
efficiency was observed in the case of mannose containing targeting ligands, such as in DNA
loaded PLGA NPs. The results supported the active targeting ability of mannan containing
PEG-PE modified bioadhesive PLGA nanoparticles, and the resulting vectors would be very
useful in gene delivery both in vitro and in vivo.

In the study of Kaur, sustained and targeted release nanoparticles of didanosine were formu‐
lated using gelatin as polymer and mannan-coating to further enhance its macrophage uptake
and its distribution in organs that act as major reservoirs of HIV [189]. Coating of nanoparticles
with mannan further retarded the drug release (42.5 ± 1.7% over 24 h) and increased the cellular
uptake of nanoparticles (N-C3-M) as was evident by higher staining intensity and complete
lysis within 2 h of incubation. The better cellular uptake of mannan-coated nanoparticles might
be due to the presence of mannosyl receptor predominantly on the macrophage cell surface,
which was used by the cells for endocytosis and phagocytosis [190,191]. The results showed
higher accumulation of didanosine in brain when administered through mannan-coated
nanoparticles. Didanosine is a hydrophilic drug and its ability to cross the blood brain barrier
was very low; however, mannan-coated nanoparticles provided enhanced delivery of dida‐
nosine to brain. Hence, mannan-coated gelatin nanoparticles resulted in a significantly higher
concentration of didanosine in spleen, lymph nodes and brain.

7. Future prospects

Overview of literature clearly shows the high potential of mannan-based biomaterials in health
related applications. In these studies though, the monomer composition and structure of
mannan polysaccharide plays the key role for a successful design. It is well known that the
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composition of polysaccharides is highly influenced by the environmental conditions and
strictly depends on the availability of the activated sugar monomers. Currently, main sources
for mannan are plants, algae and fungi where production may take months and greatly
depends on geographical or seasonal conditions. On the other hand, microbial sources could
be a feasible alternative for the sustainable and economical production of mannan at industrial
scale. Microbial fermentation would not only enable the use of low-cost resources for the
economical production, but also provide control over the chemical structure, monomer
composition and physicochemical and rheological properties of the final product. There are
only few reports on microbial mannan production and from these, thermophiles stand out
with their high production rates due to their high metabolic activity. Moreover, such simple
systems enable the effective application of systems-based approaches to obtain tailor-made
polymers.

Finally, mannan is a very promising bioactive material for drug nanocarrier systems since its
amphiphilic structure can incorporate diverse biomolecules, potentially providing novel
nanostructure drug delivery systems. Hence, development of high mannan producer cell
factories would overcome the problems associated with the sustainable production of this
important biomaterial.
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