We are IntechOpen, the world's leading publisher of Open Access books Built by scientists, for scientists

6,900

186,000

200M

Downloads

154
Countries delivered to

Our authors are among the

 $\mathsf{TOP}\:1\%$

12.2%

most cited scientists

Contributors from top 500 universitie

WEB OF SCIENCE

Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com

Notations and Abbreviations

The following abbreviations and symbols are used in this book:

Symbol	Description	
	The heat flux vector	
[p]	Isobaric Conditions	
[T]	Isothermal Conditions	
A	Frequency factor [s ⁻¹]	
a, b, c, α, β, γ	Parameters of phase unit cell	
$B_{i,j}$	The primary breakage distribution	
C° _{pm}	Standard isobaric molar thermal capacity [J·K-1·mol-1]	
C _i	Reaction Species, Reactant or Product	
D	Diameter of mill	
E _a	Activation energy [J·mol-1]	
ETC, Λ	Effective thermal conductivity	
F	The Number of Phases in Given Thermodynamic System	
f_{i}	The feed rate of size fraction [$t \cdot h^{-1}$]	
G	Gibbs Energy	
g(a)	Kinetic function $(g(a) = kt)$	
h	The order of matrix of constitution coeficients	
HAC	High Alumina Cement	
HCV	High Caloric Value [J∙mol⁻¹]	
K	Boltzmann Constant, $k = R/N_A = 8.314/6.023 \cdot 10^{23} = 1.381 \cdot 10^{-23} \text{ J} \cdot \text{K}^{-1}$.	
k	The constant of reaction rate	
K	Equilibrium constant	
$k_{\scriptscriptstyle \mathrm{B}}$	Boltzmann constant	
LCV	Lower Caloric Value [J·mol ⁻¹]	

Symbol	Description		
LHV	Lower Heating Value [J·mol-1]		
M_A	Alumina module		
M _H	Hydraulic Module of Clinker		
$M_{\rm H}$	Hydraulic module		
N	Number of Moles [mol].		
n	Kinetic factor (kinetic exponent)		
n ₊ , n ₋	The number of cations, anions		
$\overline{N_A}$	Avogadros number (6.02214·10 ²³ mol ⁻¹)		
NCV	Net Caloric Value [J∙mol ⁻¹]		
P	Pressure [Pa]		
$P_{\rm c}, F_{\rm c}$	The sieve size passing 80% of clinker after and before crushing		
PC, OPC	Portland Cement, Ordinary Portland Cement		
$\overline{P_{D}}$	The partial pressure of water vapor [Pa]		
PSD	Particle packing density		
R	Universal Gas Constant, $R = p_{st} \cdot V_{st} / T_{st} = 1.0325 \cdot 10^5 \cdot 22.414 \cdot 10^{-3} / 273.15 = 8.314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$.		
R	Number of independent reaction in the system (according to the Gibbs stoichiometric law).		
R_{c}	Critical Energy Transfer Distance in Blasse's Theory		
S	Number of Species in Given Thermodynamic System		
S° _m	Standard molar entropy [J·K ⁻¹ ·mol ⁻¹]		
SD_{SrO}	Strontium saturation factor		
SI	The shape index of peak		
S _i	Specific rate of breakage		
T	Temperature [K]		
t	Time [s]		
T_{m}	The temperature of peak [K]		
T _{pw}	The temperature of wet point [°C]		
V	Number of Degrees of Freedom (according to the Gibbs phase law).		
V	Volume		
w/c	The water to cement ratio		
$W_{1/2}$	The half-width of peak [K]		
$\overline{W_{A}}$	Absolute humidity of air [kg·m ⁻³]		
$\overline{W_{c}}$	The energy consumed for crushing the clinker [kWh \cdot t $^{-1}$]		

Symbol	Description	
$\overline{W_{m}}$	The mill specific output motor power [kWh·t-1]	
$\overline{W_{R}}$	Relative humidity of air [%]	
$\overline{W_{s}}$	Specific air humidity [kg _w ·kg _{air} -¹]	
<i>X</i> _c	Critical Concentrations.	
$\overline{x_j}$	Molar Ratio (dimensionless, or 100 x, [%])	
Z	Number of formula per unit cell of phase	
Z	Stoichiometric factor	
X	Pauling's electronegativity	
$\Delta_{c}H^{\circ}$	Heat of Combustion [J·mol ⁻¹]	
$\Delta_f H^\circ$	The standard enthalpy of formation [J·mol ⁻¹]	
∆ G [#]	Gibbs energy of activated complex [J]	
	Enthalpy of activated complex [J]	
$\Delta_r G^\circ$	The standard Gibbs energy of reaction [J]	
$\Delta_r G^{\circ \text{(bo)}}$	The standard Gibbs energy of reaction recalculated to one mol of basic oxides [J·mol-1]	
$\Delta_r H^\circ$	The standard enthalpy of reaction [J]	
Δ _r S°	The standard entropy of reaction [J·K ⁻¹]	
∆ S#	Entropy of activated complex [J·K ⁻¹]	
Θ	Heating rate [°C∙min⁻¹]	
α	The fractional conversion or degree of conversion (normalized on range from 0 to 1 or from 0 to 100 %)	
ε	Porosity	
ϕ_{ij}	The structure composition factor.	
λ	The coefficient of thermal conductivity	
$\overline{\lambda_{e}}$	The effective thermal conductivity of porous materials	
μ_{i}	Chemical Potential	
μ_{i}°	Standard Chemical Potential	
$\overline{\nu_{\rm i}}$	Stoichiometric coefficient for species C _i	
$\overline{v_{\rm i}}$	Stoichiometric coefficient	
ρ	Density [kg·m ⁻³]	
τ	The fraction of condensation energy transferred to the reactant at interface	

The following cement chemistry notation is used in this book:

Oxide/ compounds	Formula	Abbreviated symbol
Aluminium oxide	Al_2O_3	А
Calcium oxide	CaO	C
Carbon dioxide	CO_2	_ C
Iron oxide	Fe ₂ O ₃	F
Calcium fluoride	CaF ₂	
Water	H_2O	
Potassium oxide	K ₂ O	K
Magnesium oxide	MgO	М
Sodium oxide	Na ₂ O	N
Phosphorus oxide	P_2O_5	Р
Silicon oxide	SiO ₂	S
Sulfur oxide	SO ₃	_ S
Titanium oxide	TiO ₂	Т

