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1. Introduction 

Recently, neural-network-based adaptive control technique has attracted increasing 
attentions, because it has provided an efficient and effective way in the control of complex 
nonlinear or ill-defined systems (Duarte-Mermoud et al., 2005; Hsu et al., 2006; Lin and Hsu, 
2003; Lin et al., 1999; Peng et al. 2004). The key elements of this success are the 
approximation capabilities of the neural networks. The parameterized neural networks can 
approximate the unknown system dynamics or the ideal tracking controller after learning. 
One must distinguish between two classes of control applications – open-loop identification 
and closed-loop feedback control. Identification applications are similar to signal 
processing/classification, so that the same open-loop algorithms may often be used. 
Therefore, a tremendous amount of training data must be used and considerable training 
time undertaken is required. On the other hand, in closed-loop feedback applications the 
neural network is inside the control loop, so that special steps must be taken to ensure that 
the tracking error and the neural network weights remain bounded in the closed-loop 
system. The basic issues in neural network closed-loop feedback control are to provide on-
line learning algorithms that do not require preliminary off-line tuning. Some of these 
learning algorithms are based on the backpropagation algorithm. However, these 
approaches have difficulties to guarantee the stability and robustness of closed-loop system 
(Duarte-Mermoud et al., 2005; Lin et al., 1999). Another learning algorithms are based on the 
Lyapunov stability theorem. The tuning laws have been designed to guarantee the system 
stability in the Lyapunov sense (Hsu et al., 2006; Lin & Hsu, 2003; Peng et al., 2004).  
However, these neural networks are feedforward neural networks; they belong to static 
mapping networks. Without aid of tapped delay, a feedforward neural network is unable to 
represent a dynamic mapping. The recurrent neural network (RNN) has superior 
capabilities as compared to feedforward neural networks, such as their dynamic response 
and their information storing ability (Lee & Teng, 2000; Lin & Hsu, 2004). Since an RNN has 
an internal feedback loop, it captures the dynamic response of a system with external 
feedback through delays. Thus, an RNN is a dynamic mapping network. Due to its dynamic 
characteristic and relatively simple architecture, the recurrent neural network is a useful tool 
for most real-time applications (Lin & Chen, 2006; Lin & Hsu, 2004; Tian et al., 2004; Wai et 
al. 2004). 
Although the neural-network-based adaptive control performances are acceptable in above 
literatures; however, the learning algorithm only includes the parameter learning, and they O
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have not considered the structure learning of the neural network. If the number of hidden 
neurons is chosen too large, the computation load is heavy so that they are not suitable for 
practical applications. If the number of hidden neurons is chosen too small, the learning 
performance may be not good enough to achieve desired control performance. To tackle this 
problem, several self-structuring neural networks, consisting of structure and parameter 
learning phases, have been proposed (Huang et al., 2004; Leung & Tsoi, 2005; Lin et al, 
2005). These learning phases not only decide the structure of neural network but also adjust 
the parameters of neural network. Recently, some self-structuring neural networks have 
been applied to solve several control problems (Lin et al., 2001; Gao & Er, 2003; Park et al., 
2005). Lin et al. (2001) used a similarity measure method to avoid the newly generated 
membership function being too similar to the existing ones; however, the structure would 
grow large as the input data has large variations. Gao & Er (2003) proposed an error 
reduction ratio with QR decomposition to prune the hidden neurons; however, the design 
procedure is overly complex. Park et al. (2005) proposed a self-structuring neural network 
which can create new hidden neurons to increase the learning ability; unfortunately, the 
proposed approach can not avoid the structure of neural network growing unboundedly. 
This paper proposes a recurrent-neural-network-based adaptive control (RNNAC) method, 
which combines neural-network-based adaptive control, robust control and self-structuring 
approach, for a class of unknown nonlinear systems. The proposed RNNAC system is 
composed of a neural controller and a robust controller. The neural controller uses a self-
structuring recurrent neural network (SRNN) to approximate an ideal tracking controller. 
The learning process of SRNN includes the structure learning and parameter learning. In the 
structure learning, the SRNN can online create new hidden neurons as the incoming data is 
far away the existing hidden neurons, and cancel hidden neurons as the hidden neurons is 
inappropriate. Thus the learning capability and flexibility can be upgraded. In the parameter 
learning, the controller parameters can be online tuned based on the Lyapunov function, so 
that the stability of the closed-loop system can be guaranteed. The robust controller is 

designed to recover the residual of the approximation error to achieve 2L  tracking 
performance with desired attenuation level. Finally, the proposed RNNAC system is 
applied to control a nonlinear dynamic system. Simulation results are performed to 
demonstrate the effectiveness of the proposed design method. 

2. Problem statement and ideal tracking control 

The model of many practical nonlinear systems can be expressed in the nth-order form as 

 ufx n += )()(
x  (1) 

where Tnxxx ],,,[ )1( −= …$x  is the state vector of the system, which is assumed to be available 

for measurement, )(xf  is the nonlinear system dynamics which can be unknown, and u  is 

the input of the system. The tracking control problem of the system is to find a control law 
so that the state trajectory x  can track a reference command 

c
x  closely. The tracking error is 

defined as 

 xxe
c
−= . (2) 

If the exact model of the controlled system is well known, there exists an ideal tracking 
controller to achieve favorable control performance by possible canceling all the system 
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uncertainties (Slotine and Li, 1991). Assume that the parameters of the controlled system in 
(1) are well known, there exits an ideal tracking controller  

 EKx
Tn

c
xfu ++−= )(* )(  (3) 

where Tneee ],,,[ )1( −= …$E  and T

n
kkk ],,,[

12
A=K . Applying the ideal tracking controller (3) to 

system (1) results in the following error dynamics 

 0)1(

1

)( =+++ − ekeke
n

nn A . (4) 

If 
i
k , ni ,,2,1 A=  are chosen such that all roots of the polynomial 

n

nn kskssh +++Δ − A1

1
)(  

lie strictly in the open left half of the complex plane, then it implies that 0lim =
∞→
e

t

 for any 

starting initial conditions. The error dynamics (4) can be rewritten in a vector form as 

 AEE =$  (5) 

where 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

=

− 11

100

0

0010

kkk
nn

A
A

DDDB
A

A . However, since the system dynamics )(xf  may be 

unknown or perturbed in practical applications, the ideal tracking controller (3) can not be 
precisely obtained. 

3. Design of RNNAC 

For achieving a favorable tracking performance and a specified attenuation level 
simultaneously, the developed recurrent-neural-network-based adaptive control (RNNAC) 
system with structure adaptation algorithm shown in Fig. 1 is assumed to take the following 
form 

 
rcncanc
uuu +=  (6) 

where 
nc
u  is the neural controller and 

rc
u  is the robust controller. The neural controller 

using a self-structuring recurrent neural network (SRNN) to approximate the ideal tracking 
controller is the principal controller; and the robust controller is designed to achieve a 

specified 2L  robust tracking performance. The detail will be described as follows: 

3.1 Description of SRNN 

Radial basis function (RBF) networks have gained much popularity due to their ability to 
approximate complex nonlinear mappings directly from the input-output data with a 
simple topological structure. RBF is different from neural network with sigmoidal activation 
functions utilizing basis functions, which are locally responsive to input stimulus. Each 
output of RBF has a radially symmetrical response around the center vector. Although the 
RBF neural-network-based adaptive control performances are acceptable, the structure of 
the RBF network is determined by trial-and-error, and RBF network is unable to represent a 
dynamic mapping. To tackle this problem, a three-layer SRNN is shown in Fig. 2, which 
comprises of an input layer, a hidden layer with a feedback unit, and an output layer.  
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Fig. 1 Block diagram of self-constructing RNNAC system. 
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Fig. 2 The structure of self-structuring recurrent neural network. 
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The recurrent feedback is embedded in the network by adding feedback connections in the 
hidden layer. Then, the developed SRNN captures the dynamic response with external 
feedback through delays. The output of SRNN with m neurons for an input vector 

T

l
xxx ],...,,[

21
=x  is given by 

 ∑
=

−Θ=
m

k

kkkkk
rwy

1

),,( scx  (7) 

where Tl

kkkk
ccc ]....[ 21=c  and Tl

kkkk
sss ]....[ 21=s  are the center and width vectors of RBF, 

respectively; 
k
r  is the internal feedback gain of RBF; 

k
w  represents the connection weights 

between the hidden layer; and ),,(
kkkk
rscx −Θ  represents the firing weight of the k-th 

hidden neuron which is given as 

 ∏
=

−Θ+−=−Θ
l

i

i

k

i

kkkpikkkk
scrxr

1

22 ]/)(exp[),,( scx  (8) 

where i

k
c  and i

k
s  are the center and width of RBF in the k-th term of the i-th input variable 

i
x , respectively; and 

kp
Θ  is the output signal of the k-th hidden neuron in the previous time. 

Define the vectors c , s  and r  collecting all parameters of the hidden layer as 

 TT

m

TT ]....[
21

cccc =  (9) 

 TT

m

TT ]....[
21

ssss =  (10) 

 T

m
rr ][

1
A=r . (11) 

Then, the output of the SRNN can be represented in a vector form 

 ),,,(),,,,( rscxΘwwrscx
Ty =  (12) 

where T

m
www ]...[

21
=w  and T

m
]...[

21
ΘΘΘ=Θ . 

If the number of the hidden neurons m  is chosen too large, the computation load is heavy 

so that they are not suitable for online practical applications. If the number of the hidden 
neurons m  is chosen too small, the learning performance may be not good enough to 

achieve desired performance.  
To solve this problem, this paper proposes an online structuring learning algorithm. The 

first step of the structure learning is to determine whether or not to add a new hidden 

neuron (Lin et al., 2001). In the growing process, the firing weight of a hidden neuron for 

each incoming data ix  can be represented as the degree to which the incoming data belong 

to the existing hidden neurons. According to the degree measure, the criterion of generating 

a new hidden neuron for new incoming data is described as follows. Find the maximum 

degree 
max

Θ  defined as 

 
k

tmk
Θ=Θ

≤≤ )(1
max

max  (13) 
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where )(tm  is the number of the existing hidden neurons at the time t. It can be observed 

that if the maximum degree 
max

Θ  is small as the incoming data is far away the existing 

hidden neurons. If 
th

Θ≤Θ
max

 is satisfied, where )1,0(∈Θ
th

 is a pre-given threshold, then a 

new hidden neuron is generated. The 
th

Θ  denotes the adding threshold value. If 
th

Θ  is 

chosen to be large, the hidden neurons of SRNN can be easily created; on the other hand, if 

th
Θ  is chosen to be small, the hidden neurons of SRNN can be difficulty created. For the 

practical implement, as the unknown control system dynamics are too complex, the 
th

Θ  

should be chosen as a large value so that more hidden neurons can be created to increase the 
learning ability. The number )(tm  is incremented 

 1)()1( +=+ tmtm . (14) 

The parameters associated with the new hidden neuron are given by 

 
( 1)

new

i m i
c x+ =  (15) 

 
( 1)

new

i m
s σ+ =  (16) 

 
( 1) ( 1)

0new new

m m
w r+ += =  (17) 

where 
i
x  is the new incoming data and σ  is the width of a radial basis function. 

Then, to prevent the structure growing unboundedly, the structure learning considers 
whether or not to prune the existing hidden neurons which are inappropriate. A significance 
of the k-th hidden neuron is defined as (Hsu, 2007) 

 
⎩
⎨
⎧

≥Θ
<Θ−

=+
δ
δτ

kk

kk

k

iftI

iftI
tI

,)(

),exp()(
)1( , )(,...,2,,1 tmk =  (18) 

where the initial value of 
k
I  is 1; δ  is the threshold value; and τ  is the elimination speed 

constant. The pruning algorithm is derived from the observation that if the significance gets 
fading when the firing weight 

k
Θ  is smaller than the threshold value δ . If 

thk
II ≤  is 

satisfied, where 
th
I  a pre-given threshold, then the k-th hidden neuron is cancelled. 

th
I  

denotes the significance threshold value. If 
th
I  is chosen to be large, the neurons of SRNN 

can be easily canceled. For practical implement, as the computation load is the important 
issue, 

th
I  should be chosen as a large value so that more hidden neurons can be pruned. 

Hence, the computation load can be decreased. In summary, the flow chart of the structure 
learning algorithm is shown in Fig. 3. The major contribution of SRNN is that it can operate 
directly without spending much time on pre-determining the structuring of neural network. 

3.2 SRNN approximation 

Let the number of optimal hidden neurons be *m  and can divide into two parts. The first 
part contains m  hidden neurons which are the activated part, and the secondary part 

contains mm −*  hidden neurons which do not exist yet. Thus, by the universal 
approximation theorem, an optimal SRNN approximator can be designed to approximate 
y , such that (Park et al., 2005) 
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Fig. 3 The flow chart of the structure learning algorithm for SRNN. 

 y Δ++= ),,,(),,,( **********

uuuuu
rscxΘwrscxΘw

TT  (19) 

where *
w , *Θ , *

c , *
s  and *

r  are activated parts of optimal weights; *

u
w , *

u
Θ , *

u
c , *

u
s  and *

u
r  

are inactivated parts of optimal weights; and Δ  is the approximation error. Since these 

optimal parameters are unobtainable, a SRNN estimator ŷ  is defined as 

 )ˆ,ˆ,ˆ,(ˆˆˆ rscxΘw
Ty =  (20) 

where ŵ , Θ̂ , ĉ , ŝ  and r̂  are the estimated values of *
w , *Θ , *

c , *
s  and *

r , respectively. 

Define the estimated error y~  as 
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 yyy ˆ~ −= ΘwΘwΘw
uu

ˆˆ**** TTT −Δ++= Δ++++= **
~~~

ˆˆ~
uu

ΘwΘwΘwΘw
TTTT  (21) 

where www ˆ~ * −=  and ΘΘΘ ˆ~
* −= . In this study, a method is proposed to guarantee the 

closed-loop stability and perfect tracking performance, and to tune the center and the width 
of the radial basis function and the recurrent weight on line. For achieving this goal, 
linearization technique is employed to transform the nonlinear functions into partially linear 

form so that the expansion of Θ
~

 in a Taylor series to obtain (Lin and Chen, 2006) 

 hrTsTcTΘ
rsc

+++= ~~~~
TTT  (22) 

where ccc ˆ~ * −= , sss ˆ~ * −= ; rrr ˆ~ * −= ; 
ccc

cc
T

ˆ

1 | =⎥
⎦

⎤
⎢
⎣

⎡
∂
Θ∂

∂
Θ∂

= mA ; 
sss

ss
T

ˆ

1 |
=⎥

⎦

⎤
⎢
⎣

⎡
∂
Θ∂

∂
Θ∂

= mA ; 

rrr

rr
T

ˆ

1 |
=⎥

⎦

⎤
⎢
⎣

⎡
∂
Θ∂

∂
Θ∂

= mA ; and h  is a vector of higher-order terms. Substituting (22) into (21), it 

is obtained that 

y~ Δ+++++++= **
~~)~~~(ˆˆ~

uursc
ΘwΘwhrTsTcTwΘw
TTTTTTT  

 ε++++= wTrwTswTcΘw
rsc

ˆ~ˆ~ˆ~ˆ~ TTTT  (23) 

where wTccTw
cc

ˆ~~ˆ TTT = , wTssTw
ss

ˆ~~ˆ TTT =  and wTrrTw
rr

ˆ~~ˆ TTT =  are used since they are scales; 

and the uncertain term Δ+++≡ **
~~ˆ

uu
ΘwΘwhw
TTTε . 

3.3 RNNAC design 

By substituting (6) into (1) and using (3) and (23), the tracking error dynamic equation can 
be obtained as follows 

)( *

rcnc
uuu −−+= bAEE$  

 )ˆ~ˆ~ˆ~ˆ~(
rc

TTTT u−+++++= εwTrwTswTcΘwbAE
rsc

 (24) 

where T]100[ …=b . In case of the existence of ε , consider a specified 2L  tracking 

performance (Lee et al., 2005; Lin and Lin 2002; Wang et al., 2002) 

 ++++≤∫
321

0 

)0(~)0(~)0(~)0(~)0(~)0(~
)0()0( 

ηηη
ssccww

PEEQEE
TTT

T
T

T dt ∫+
T

T

dt
 

0 

22

4

 
)0(~)0(~

ερ
η

rr
 (25) 

where 
1

η , 
2

η , 
3

η  and 
4

η  are the positive constants, ],0[ ∞∈T  and 2L∈ε . The κ  is a design 

gain, ρ  is a prescribed attenuation level, and the positive definite matrices P  and Q  

satisfy the following Riccati-like equation 

 0PbPbQPAPA =−+++ TT

κρ
)

21
(

2
 (26) 
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with κρ ≥22 . The design objective is to tune the parameters of SRNN to specify an 

adequate control law so that the worst effect of approximation error ε  on tracking error 

vector E  is guaranteed to be less than or equal to prescribed attenuation level ρ . If the 

system starts with initial conditions 0)0( =E , 0)0(~ =w , 0)0(~ =c , 0)0(~ =s  and 0)0(~ =r , then 

the 2L  tracking performance in (25) can be rewritten as 

 ρ
εε

≤

∫
∫

∈
T

T
T

TL dt

dt

0 

2

0 

],0[  

 
sup

2

QEE
. (27) 

where the 2L -gain from ε  to the tracking error E  must be equal to or less than ρ . The 

following theorem can be stated and proved. 
Theorem 1: Consider an nth-order nonlinear system expressed by (1). The control system is 
designed as (6), in which the adaptation laws of the neural controller are designed as 

 ΘPbEww ˆ~ˆ
1

Tη=−= $$  (28) 

 wPbTEcc
c
ˆ~ˆ

2

Tη=−= $$  (29) 

 wPbTEss
s
ˆ~ˆ

3

Tη=−= $$  (30) 

 wPbTErr
r
ˆ~ˆ

4

Tη=−= $$  (31) 

and the robust controller is designed as 

 PEb
T

rc
u

κ
1

=  (32) 

then the stability of the system can be guaranteed. 
Proof: 
Consider a Lyapunov function in the following form 

 
4321
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~~
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~~
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2

1
)~~~~(

ηηηη
rrssccww

PEEr,s,c,wE,
TTTT

TV ++++= . (33) 

Differentiating (33) with respect to time and using (24) and (28) ~ (31), it can be obtained 
that 
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1
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TTT u−++= εPbEEPAPAE . (34) 

Using (26) and (32), equation (34) can be rewritten as 

εε PbEPEbEPPbbPAPAErsmwE
TTTTT

κ
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2
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ερ+−≤ QEE
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where 0)
1

()
1

( ≥−− ρεε PEbPEb
TTT

ρ
ρ

ρ
 and εε PbEPEb

TTT =  are used. Integrating the above 

equation from 0=t  to Tt = , yields 

 ∫∫ +−≤−
TT

T dtdtVTV
0 

22

0 

 
2

1
 

2

1
)0()( ερQEE  (36) 

Since 0)( ≥TV , the above inequality implies the following inequality 

 ∫∫ +≤
T
T

T
T dtVdt

 

0 

2
 

0 

 
2

1
)0( 

2

1
εερQEE  (37) 

Using (34), this inequality is equivalent to inequality (25). Since )0(V  is finite if the 

approximation error 2L∈ε , that is ∞<∫
T

d
0

2 τε , it implies that 0lim =
∞→

E
t

. 

In the following, the design algorithm of RNNAC with structure adaptation algorithm is 
summarized as follows: 
Step 1: Initialize the pre-defined parameters of RNNAC. 
Step 2: The tracking error is given in (2). 
Step 3: The neural controller is given as (20), where the parameter are estimated by (28)-(31), 
respectively. 
Step 4: The robust controller is given as (32). 
Step 5: The control law is given as (6). 
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Step 6: Determine whether or not to add a new hidden neuron by 
th

Θ≤Θ
max

 condition, and 

determine whether or not to cancel a existing node by a significance index 
k
I . 

Step 7: Return to Step 2. 

4. Simulation results 

Consider a second-order chaotic system such as the Duffing’s equation describing a special 
nonlinear circuit or a pendulum moving in a viscous medium (Chen and Dong, 1993; Jiang, 
2002) 

 ufx += )(x$$  (38) 

where =)(xf )cos(3

21
tqxpxpxp ω+−−− $  is the system dynamics, t is the time variable, ω  is 

the frequency, u  is the control effort and p , 
1
p , 

2
p  and q  are real constants. The chaotic 

dynamic system can be observed in many nonlinear circuits and mechanical systems. 
  

q=1.65

(a)
x

x$

q=1.65

(a)
x

x$ x$

 

q=5.35

(b)
x

x$

q=5.35

(b)
x

x$ x$

 

Fig. 4 Phase plane of uncontrolled chaotic system. 

Recently, control of the chaotic dynamic system has become a significant research topic in 
the physics, mathematics and engineering communities. Chaotic dynamic system is a 
nonlinear deterministic system that displays complex, noisy-like and unpredictable 
behavior. Depending on the choice of these constants, it is known that the solutions of (38) 
may exhibit periodic, almost periodic and chaotic behavior. For observing the chaotic 

unpredictable behavior, the open-loop system behavior with 0=u  was simulated with 
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4.0=p , 1.1
1

−=p , 0.1
2
=p  and 8.1=ω . The phase plane plots from an initial condition 

point (0, 0) are shown in Figs. 4(a) and 4(b) for 65.1=q  (chaotic) and 35.5=q  (period 1), 

respectively (Chen and Dong, 1993). It is shown that the uncontrolled chaotic dynamic 
system has different chaotic trajectories with different q values. The interest in the chaotic 
equation is the problem of how to design a controller to drive a chaotic trajectory to track a 
reference command closely. 
The proposed RNNAC with structure adaptation algorithm is applied to control a nonlinear 
dynamic system. It should be emphasized that the development of the proposed control 
method does not need to know the system dynamics of the control system. A SRNN 
approximator is used to online estimate an ideal tracking controller with the online 
structuring and parameter learning algorithms. The structure learning possesses the ability 
of both adding and pruning hidden neurons, and the parameter learning adjusts the 
interconnection weights of neural network to achieve favorable approximation performance. 

The parameters of RNNAC are selected as 1
1
=k , 2

2
=k , 50

1
=η , 10

432
=== ηηη , 0.2=σ , 

5.0=Θ
th

, 01.0=τ , 2.0=δ , and 1.0=
th
I . The choices of these values are through some trials 

to achieve satisfactory control performance considering the requirement of stability and 

possible operating conditions. Properly choosing the values of 
1
k  and 

2
k , the desired 

system dynamics such as rise time, overshoot, and settling time can be easily designed by 

the second-order system shown in (4). The parameters 
1

η , 
2

η , 
3

η  and 
4

η  are the leaning 

rates of the interconnection weights. If the leaning rates are chosen to be small, then the 
parameters convergence of RNNAC will be easily achieved; however, this will result in slow 
learning speed. On the other hand, if the leaning rates are chosen to be large, then the 
learning speed will be fast; however, the RNNAC system may become more unstable for the 

parameter convergence. For a choice of IQ = , solve the Riccati-like equation (26) with 

κρ =22 , then 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

5.05.0

5.05.1
P . (39) 

The simulation results of the RNNAC system with 0.1=κ  for 65.1=q  and 35.5=q  are 

shown in Figs. 5 and 6, respectively. The tracking responses of state x  are shown in Figs. 

5(a) and 6(a); the tracking responses of state x$  are shown in Figs. 5(b) and 6(b); the 

associated control efforts are shown in Figs. 5(c) and 6(c); and the numbers of hidden 
neurons are shown in Figs. 5(d) and 6(d), respectively. Simulation results show that the 
robust tracking performance of the proposed RNNAC system has been achieved. To 

attenuate an arbitrarily desired level via 2L  tracking design technique as small as possible. 

The simulation results of the proposed RNNAC system with 1.0=κ  for 65.1=q  and 

35.5=q  are shown in Figs. 7 and 8, respectively. The tracking responses of state x  are 

shown in Figs. 7(a) and 8(a); the tracking responses of state x$  are shown in Figs. 7(b) and 

8(b); the associated control efforts are shown in Figs. 7(c) and 8(c); and the numbers of 
hidden neurons are shown in Figs. 7(d) and 8(d), respectively. From these simulation 
results, it can be seen that robust tracking performance can be also achieved without any 
knowledge of system dynamic functions; moreover, better system performance can be 
achieved as soon as the robust gain κ  is decreased. 
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Fig. 5 Simulation results for 65.1=q  with 0.1=κ . 
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Fig. 6 Simulation results for 35.5=q  with 0.1=κ . 
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Fig. 7. Simulation results for 65.1=q  with 1.0=κ . 
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Fig. 8 Simulation results for 35.5=q  with 1.0=κ . 
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5. Conclusions 

This paper develops a recurrent-neural-network-based adaptive control (RNNAC) system 
with structure adaptation algorithm, which is composed of a neural controller and a robust 
controller. In the neural controller design, a self-structuring recurrent neural network 
(SRNN) is utilized to mimic an ideal tracking controller. In the SRNN approximator, a 
dynamic generating and pruning mechanism of the neural stricture is developed to cope 
with the tradeoff between the approximation accuracy and computation load. The robust 
controller is designed to attenuate the effects of the approximation error on the tracking 

performance using 2L  tracking technique. Finally, the developed RNNAC system is used to 
control a nonlinear chaotic dynamic system to demonstrate its effectiveness. Simulation 
results indicate that a small attenuation level can be achieved if the magnitude of weighting 
factor κ  is chosen small. 
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