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1. Introduction 

In the past decades, Recurrent Neural Network (RNN) has attracted extensive research 

interests in various disciplines. One important motivation of these investigations is the 

RNN's promising ability of modeling time-behavior of nonlinear dynamic systems. It has 

been theoretically proved that RNN is able to map arbitrary input sequences to output 

sequences with infinite accuracy regardless underline dynamics with sufficient training 

samples [1]. Moreover, from biological point of view, RNN is more plausible to the real 

neural models as compared to other adaptive methods such as Hidden Markov Models 

(HMM), feed-forward networks and Support Vector Machines (SVM). From the practical 

point of view, the dynamics approximation and adaptive learning capability make RNN a 

highly competitive candidate for a wide range of applications. See [2] [3] [4] for examples. 

Among the various applications, the realtime signal processing has constantly been one of 
the active topics of RNN. In such kind of applications, the convergence speed is always an 
important concern because of the tight timing requirement. For example, the conventional 
training algorithms of RNN, such as the Backpropagation Through Time (BPTT) and the 
Real Time Recurrent Learning (RTRL) always suffer from slow convergence speed. If a large 
learning rate is selected to speed up the weight updating, the training process may become 
unstable. Thus it is desirable to develop robust learning algorithms with variable or 
adaptive learning coe±cients to obtain a tradeoff between the stability and fast convergence 
speed. 
The issue has already been extensively studied for linear adaptive filters, e.g., the famous 

Normalized Least Mean Square (N-LMS) algorithm. However, for online training 

algorithms of RNN this is still an open topic. Due to the inherent feedback and distributive 

parallel structure, the adjustments of RNN weights can affect the entire neural network state 

variables during network training. Hence it is difficult to obtain the error derivative for 

gradient type updating rules, and in turn difficulty in the analysis of the underlying 

dynamics of the training. So far, a great number of works have been carried out to solve the 

problem. To name a few, in [5], B. Pearlmutter presented a detail survey on gradient 

calculation for RNN training algorithms. In [6] [7] , M. Rupp et al introduced a robustness O
pe
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analysis of RNN by the small gain theorem. The stability was explained from the energy 

point of view that the ratio of output noise against input noise was guaranteed to be smaller 

than unity. In [8], J. Liang and M. Gupta studied the stability of dynamic back-propagation 

training algorithm by the Lyapunov method. An auxiliary term was appended to augment 

the learning error. The convergence speed was improved by introducing an extra increment 

in the updating rule. Later, A. Atiya and A. Parlos used a generalized steepest descent 

method to obtain a unified error gradient algorithm [9]. Recently, Q. Song et al proposed a 

simultaneous perturbation stochastic approximation training method for neural networks 

and robust stability is established by the conic sector theorem [10] [11]. 

The work presented in this chapter investigate the stability and robustness of the gradient-

type training algorithms of RNN in the discrete-time domain. A Robust Adaptive Gradient 

Descent (RAGD) training algorithm is introduced to improve the RNN training speed as 

compared to those conventional algorithms, such as the BPTT, the RTRL and the 

Normalized RTRL (N-RTRL). The main feature of the RAGD is the novel hybrid training 

concept, which switches the training patterns between the standard online Back Propagation 

(BP) and the N-RTRL algorithm via three adaptive parameters, the hybrid adaptive learning 

rates, the adaptive dead zone learning rates, and the normalization factors. These 

parameters allow RAGD to locate relatively deeper local attractors of the training and hence 

obtain a faster transient response. Different from the N-RTRL, the RAGD uses a specifically 

designed error derivatives based on the extended recurrent gradient to approximate the true 

gradient for realtime learning. Also the RAGD is different from the static BP in terms that 

the former uses the extended recurrent gradient to extend the instantaneous squared 

estimation error minimization into recurrent mode, while the latter is strictly based on the 

instantaneous squared estimation error minimization without specifically considering the 

recurrent signal. 

Weight convergence and robust stability of the RAGD are proved respectively based on the 

Lyapunov function and the Cluett's law, which is developed from the conic sector theorem 

of input- output system theory. Sufficient boundary conditions of the three adaptive 

parameters are derived to guarantee the L2 stability of the training. Different from precedent 

results [12], the present work employs the input-output systematic approach in analysis. 

This is because the input-output theory on basis of functional analysis requires minimal 

assumptions about the training statistics. Although the results are also derivable from 

conventional analysis method, we emphasize that input-output systematic scheme can 

provide an in-depth understanding of RNN training dynamics from different aspect. 

In addition to the theoretical analysis, we carried out three case studies of the applications in 
realtime signal processing via computer simulations, including time series prediction, 
system identification, and attractor learning for pattern association. With these case studies, 
we are able to qualify the effectiveness of the RAGD and hence justify that the algorithm 
outperforms other counterparts. 
The overall chapter is organized as follows: In Sections 2, we briefly introduce the structure 
of the RNN and the RAGD training algorithm. In Section 3, the robustness analysis of the 
RAGD is carried out for the Single-input Single-Output and Multi-input Multi-output RNN 
respectively. In addition, the conic sector theorem is introduced as the theoretical 
foundation of the analysis. Computer simulations are presented in Section 4 to show the 
efficiency of our proposed RAGD. Section 5 draws the final conclusions. 
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2. RAGD learning algorithm 

Consider a RNN with l output nodes and m hidden neurons. In discrete-time domain, the 

network output ŷ  at time instant k can be written as 

 (1) 

where V̂ (k) ∈ Rl×m and Ŵ  (k) ∈ Rm×n are output and hidden layer weights respectively (in 

matrix form), Φ(·) ∈ Rm×1 is a vector of nonlinear activation functions, and x̂ (k) ∈ Rn×1 is the 

state vector that consists of external input u(k) and n - 1 delayed output feedback entries 

 (2) 

in which T denotes transpose operation. To simplify the expression, we use notation Φ (k) 

instead of Φ (Ŵ (k) x̂ (k)) hereafter. When estimating a command signal d(k), the 

instantaneous modeling error of RNN can be defined by 

 (3) 

Note a disturbance term ε (k) ∈ Rl×1 is taken into account in (3). Without loss of generality, 

there is no assumption on the prior knowledge of ε (k) and its statistics. The training 

objective of RNN is to update the weight parameters step by step to minimize certain cost 

function f(e(k)), with the most convenient form being the squared instantaneous error e2(k)/2. 
Specifically, in an environment of time-varying signal statistics, a gradient based sequential 
training algorithm can be used to recursively reduce the f(e(k)) by estimating the weights at 
each time instant 

 

(4) 

where α is the learning rate of RNN, and Ŵ i(k) is the ith row of hidden layer weight matrix, 

with i = 1, 2, …, m. Note subscript i denotes ith row for matrices or ith entry for vectors. As 
for the above algorithm, a widely recognized problem is the slow convergence speed 
because of small learning rates for purpose of preserving weight convergence. So far the 
commonly accepted solution of this problem is to employ normalization, e.g., the N-RTRL 
algorithm [13] [1]. Indeed, the solution can be further improved if we can find effective 
boundary conditions of learning rates and normalization factors as will be shown in later 
sections. Moreover, hybrid learning rates can be employed to obtain the tradeoff between 
the transient and steady state response. Now based on the RNN model (1) and the gradient-
based training equation (4), we propose the RAGD learning algorithm as follows 

 

(5) 
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where Φ’(k) is the vector of activation function derivatives, αv(k), αw(k) are adaptive dead 

zone learning rates, βv(k), βw(k) are hybrid learning rates, ρv(k), ρw(k) are normalization 

factors, and Â (k), B̂ (k) are residual error gradients. These variables are defined in the 
following. 

(a) Φ’(k) ∈ Rm×1 

 (6) 

(b) Â (k) ∈ R1×m and B̂ (k) ∈ R1×n 

 
(7) 

 (8) 

where 
 
are block diagonal matrices 

with sub-matrix diag{Φ’ (k)} and Ŵ (k) on the diagonal respectively 

 

 

are long vector versions of the weight matrices V̂ (k) 

and Ŵ (k) respectively 

 

and the Jacobian  
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in which are sub-matrices. 

(c) β v(k) and β w(k) 

 (9) 

 (10)

where  is a small positive constant, I is the identity matrix, and I is employed to ensure the 

matrix and positive definite. 

(d) ρ v(k) and ρ w(k) 

 (11)

 
(12)

where  are positive constants, μ max is the maximu value of the 

activation function, and . Note we are using an inner 

product induced norm, the Frobenius norm, as the norm of weight matrices in this work. 

(e) αv(k) and αw(k) 

 

(13)

 

(14)

where   and sgn(�) function is defined by 

 

(15)

Remark 1 The RAGD algorithm uses the specific designed derivative as shown in (5). The state 

estimators are taken into account in the second terms of the partial derivatives on the right side of the 

equation. Further, to make the proposed algorithm realtime adaptive and recurrent, the D̂ v(k) and 

the D̂ w(k) in the partial derivatives are calculated on basis of the data from previous training steps, 

which is similar to that of the N-RTRL algorithm [14]. It is noteworthy only when the convergence 

and stability requirements (details will be given in Section 3) are met, they hybrid learning rate β will 

be turned on. In this case, since we have estimated the best available gradient at each step k, the 

combination of weights and state estimates in (5) should provide a relatively deeper local attractor of 

the nonlinear iteration, and hence to speed up the training. 
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3. Robust stability analysis 

In this section, we present detail analysis of robust stability of the RAGD algorithm. Proofs 
of weight convergence and L2 stability are derived on basis of Lyapunov function and input-
output systematic approach respectively. The boundary conditions on the three adaptive 
parameters, the hybrid learning rate, the adaptive dead zone learning rates, and the 
normalization factors, are obtained for the optimized transient response of the training. For 
better understanding of the algorithm, a simple case of Single-input Single-output (SISO) 
RNN is firstly given as an example. Then the results are extended to the more complicated 
case of Multi-input Multi-output (MIMO) RNN. Before proceeding, we introduce the 
Cluett's law and mathematical preliminaries. 

3.1 Cluett's laws 
The main concern of this work is discrete signals which are infinite sequences of real 
numbers. Each signal may be considered an element of a set known as a linear vector space. 
To provide a clear explanation, an immediate review is given on several mathematical 

notations. Let the x(k) ∈ Rn×1 denotes the series {x(1), x(2), …}, then 

i) The L2 norm of x(k) is defined as 
 

ii) If the L2 norm of x(k) exists, the corresponding normed vector spaces are called L2 spaces; 

iii) The truncation of x(k) is defined as  

iv) The extension of a space L2, denoted by L2e is the space consisting of those elements x(k) 

whose truncations are all lie in L2, i.e., , for all N ∈Z+ (the set of positive 

integers). 

Note • denotes the Euclidean norm of a vector, and • 2 for the L2 norm of a signal (could 

be either a vector or a scalar). Let's consider the closed loop system shown in Figure 1 
 

 

Figure 1. A general closed loop feedback system 

 

(16)

where operators H1;H2 : L2e →L2e, discrete time signals e0(k); e(k); φ(k) ∈ L2e and ε(k) ∈ L2. 

Theorem 1 (Cluett's Law-1) If the following two conditions hold 
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i)  

ii)  

for some α, β ∈ R, which are independent of k and N, and γ ≥ 0, η > 0, which are 

independent of N, then the closed loop feedback system of (16) is stable in the sense of e(k), 

 φ (k) ∈ L2. 

Proof: By the inequality i) and using e0(k) = ε(k) -φ (k) 

 

(17)

Combining inequality ii) and equation (17) 

 

(18)

Using the Schwartz inequality 

 

 
(19)

Assume as N→∞, then from equation (19) we derive η ≤0. This is 

a contradiction. Therefore is bounded for all N ∈ Z+, i.e., φ(k), e(k) ∈ L2. ■ 

Theorem 2 (Cluett's Law{2) For the feedback system (16), if 
i) H1 : e0(k) - e(k) satisfies 

 

ii) H2 : e(k) - φ (k) satisfies 

 

for some γ ≥ 0, η > 0, which are independent of N, and  ∈ (0, 1], which is independent of k 

and N, then the closed loop signals e(k), φ (k) ∈ L2. 
Proof: See corollary 2.1 in [15]. ■ 
Remark 2 As a matter of fact, the operator H1 represents the nonlinear mapping and H2 is a dynamic 
linear transfer function. When condition (i) and (ii) are satisfied, H2 is guaranteed to be passive and 

1

1
H

−
 is strictly interior conic (c1, r1), where c1 = 1 and r1 = (1- )1/2, or equivalently H1 is strictly 

interior the conic (c2, r2) where c2 =  -1
 and r1 =  -1

 (1 - )1/2 as long as  < 1 holds. Hence the 
feedback loop is L2-stable by the conic sector theorem. This conic relation is illustrated in Figure 2 
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Figure 2. Illustration of interior and exterior conic relations of H1 

3.2 Output layer analysis of SISO RNN 
In this and next section, we consider the RNN model of (1) with only one output node, i.e., 
l = 1. Such simplification is favorable for us to put more concentration on the basic ideas of 
the proof rather than the pure mathematics. Moreover, the results for SISO RNN will also be 
extended to the more general case of MIMO RNN in later sections. On the other hand, in a 
multi-layered RNN, it may not be able to update all the estimated weights within a single 
gradient approximation function. Hence we shall partition the training into different layers. 
Now with the assumption of SISO RNN, the training for output layer can be re-written as 

 
(20)

In order to analyze the dynamics of this training equation via input-output approach, the 
first step is to restructure (20) into an error feedback loop, which should be the same as that 
in Figure 1. Further, the weight estimation error must be referred as the output signal. For 
this purpose, define the estimation error 

 (21)

where V* ∈ R1×m and V# (k) = V (k) - V* are the ideal weight vector and estimation error 

vector of output layer respectively, and Φ*(k) is defined in analogous to Φ (k) as 

 (22)

where x*(k) ∈ Rn×1 is the ideal input state, W* ∈ Rm×n is the ideal weight matrix of hidden 
layer of the RNN. Then the training error of RNN can be expanded as 
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(23)

Because the term V* Φ*(k) - V* Φ (k) is temporarily constant in case of output layer training, 

we can define ε# v(k) = ε  (k) + V* Φ*(k) - V* Φ (k). Then (23) can be transformed as 

 (24)

Equation (24) has a similar form as the feedback path of the system (16), with ev(k) and e(k) 
corresponding to e(k) and e0(k) in Figure 1 respectively, and here the feedback gain is unity, 
i.e., H2 = 1. 

There is an important implication in the relation of (24). The ev(k), e(k) and ε# v(k) correspond 

to the weight estimation error, the RNN modeling error and the disturbance, respectively. 
Hence the training error is directly linked to the disturbance, and in turn, the parameter 
estimating error of the RNN output layer. If we further establish a nonlinear mapping from 

the original disturbance ε# v(k) to the parameter estimation error ev(k), the relationship 

between L2-stability of training algorithm and learning parameters can subsequently be 
studied by imposing the conditions of Theorem 2. 
Theorem 3 If the output layer of the RNN is trained by the adaptive normalized gradient algorithm 

(20), the weight V̂ (k) is guaranteed to be stable in the sense of Lyapunov 

 (25)

with V# (k) = V (k) - V*. Also the training will be L2-stable in the sense of ev(k) ∈ L2 if αv(k) ≠0 

for all k ∈ Z+. 
Proof: Subtracting V*and then squaring both sides of (20) 

 

 
 
 
 

(26)

Regarding the first term on the right side of (26), we find that it may be easily associated 

with the term ev(k) due to the explicit appearance of V# (k) and Φ(k). Following this idea, we 

need to apply certain transformation to β v(k) Â (k)T , such that Φ(k) can be extracted from the 
summation. When it comes to this point, our first thought is to left multiply 

 However, the transformation is not valid 

because Φ(k) Φ(k)T is not an invertible matrix (Φ(k) is a column vector). Fortunately, inspired 
by the approximation method of classical Gauss-Newton iteration algorithm [2] (pp.126-
127), we can add the term Φ(k) Φ(k)T by a small positive constant  to expand it into 
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 (27)

Such that the singular matrix problem can be avoided. On this basis, we have the following 

derivations 

  

         

                
(28)

 

           
(29)

where (29) is obtained by substituting (24) into (28). Then based on the triangular inequality 

 (29) can be further deducted as 

 
 

By the definition of βv(k), we may derive that  

Furthermore, because that  as defined in (11) which lead 

to 1 -  > 0, and by the definition of αv(k), the convergence of V# (k) can 

be derived 
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(30)

Next considering the case that the assumption αv(k) ≠0 holds for all k ∈ Z+, we can divide 

both sides of (28) by  and then sum 

up to N steps 

 

 

(31)

where the normalized error signals are defined as 

 

and the cone satisfies 

 

which prevents the vanishing radius problem, i.e., σ v is strictly smaller than one [15]. 

Because for each k the Lyapunov function (30) is guaranteed smaller or equal to zero, we 
have 
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Due to the specific selection of the normalization factor in (11), the normalized error signals 

guarantee that the original signals e(k) and ev(k) are bounded according to the original 

operators H
v

1 and H2 [15]. Now the operator H
v

1 represented by (31) satisfies the condition 

(i) of Theorem 2, and condition (ii) is guaranteed to hold due to H2 = 1. Thus we conclude 

that ev(k) ∈ L2. ■ 

Remark 3 According to the theoretical analysis, the three adaptive parameters αv(k), β v(k) and ρv(k) 

play important roles in the design of the RAGD. The adaptive learning rate αv(k) is based on the 

standard adaptive control system to solve the weight drift problem [10]. The normalization factor  

ρ v(k) prevents the so-called vanishing cone problem of the conic sector theorem [15], which also has a 
similar role to the local stability condition as in [8] to bound the gradient in (20). The specific 

designed hybrid adaptive learning rate β v(k) can be further interpreted as activating the recurrent 

learning fashion in case  It implies that the recurrent 
training of the RAGD will be active only if the second term of the derivative in (20) gives the negative 
gradient direction, i.e., a relatively deeper local attractor, otherwise the RAGD training procedure 
will be the same as a static BP algorithm and likely escape this undesired local attractor since it is 
unfavorable in the recurrent training. This design is especially effective for accelerating the training 
of the RNN when the iteration is near the bottom of basin of a local attractor, where the derivatives 

are changed slowly. With β v(k) = 1, the approximation of D̂ v(k) is more accurate to meet the 
convergence and stability requirements. 
Remark 4 The idea of the RAGD is similar to the existing works [16] [17] [14]. If we calculate the 

derivative in (20) exactly by unfolding the recurrent structure and force β v(k) = 0, i.e, pursuing all N 
steps back in the past, then the algorithm will recover the static BP [17] [18]. Moreover, based on the 
assumption that the model parameters do not change apparently between each iteration [16], then we 
can derive a similar approach as the N-RTRL [14]. However, the key difference between the RAGD 

and the N-RTRL is that we use the hybrid learning rate β v(k) to guarantee the weight convergence 
and system stability. 

3.3 Hidden layer analysis of SISO RNN 
This section presents the stability analysis for the hidden layer training of the RAGD. 
Apparently the analysis for the hidden layer is more di±cult than the one of the output 
layer, because the dynamics between the weight and modeling error is nonlinear. The 
derivation of error gradient must be carried out through one layer backward, which 
involves the derivative of activation function. In the following analysis, we show that the 
nonlinearity can actually be avoided by using the mean value theorem. On the other hand, 
as mentioned in section 2, the Frobenius norm is employed as weight matrix norm in the 

proof, e.g., ˆ ( )
F

W k . A direct benefit of this expression is that the proof and the training 

equation can be presented in matrix forms, while not in a manner of row by row. However 
question arises, it is difficult to derive the Jacobian in this framework. We find that it is 
feasible to extend the Jacobian into a long vector form on the row basis. Next, similar to the 
output layer analysis, the hidden layer training of the RAGD of SISO RNN can be simplified 
as follows 

 
(32)
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Expanding the modeling error around the hidden layer weight 

 

 
 
 
 
 
 
 
 
 
 

(33)

where is the vector difference 

between the ith row of \hat W(k) and the ideal weight W*, μi(k) is the mean value of the ith 

nonlinear activation function, and Ψ (k) is 

 

Defining 

 (34)

then equation (33) can be simplified as 

 (35)

Because the output layer weight is always updated before the hidden layer weight, and 

V̂ (k) of the RAGD is bounded as already proved in Section 3.2, then definitely the error 

signal ε# w(k) is also bounded for every step k. Furthermore, since H2 = 1 is inside any cone, 

thus we only need to study the operator H1 to analyze the stability of the training. 

Theorem 4 If the output layer of the RNN is trained by the adaptive normalized gradient algorithm 

(32), the weight matrix Ŵ (k) is guaranteed to be stable in the sense of Lyapunov 

 

 

with W# (k) = Ŵ (k) – W*. Also the hidden layer training of the RAGD will be L2-stable in the sense 

of e w(k) ∈ L2 if α w(k) ≠ 0 for all k ∈ Z+. 

Proof: Subtracting W* from both sides of (32) 

 
(36)

Squaring both sides of (36) 
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(37)

By the definition of Frobenius norm 

 

where Trace {�} function is defined as the sum of the entries on the main diagonal of the 
associated matrix. The following equation can be derived then 

 

     
(38)

Using the trace properties, the first term on the right side of (38) can be transformed as 

 

 
(39)

where the third equality to the last is derived by the similar perturbation method as the one 

in the output layer training (adding a small constant diagonal matrix I to to 

make it invertible, see the proof in Section 3.2). 
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Before proceeding, let's consider a RNN with scalar weight Ŵ (k). The relation of the local 

attractor basin of the instantaneous square error against the W# (k) can be presented by 

, as illustrated in Figure 3 [10]. Extend this result to the RNN with a matrix 

weight Ŵ (k), we have a similar presentation by the local attractor basin concept 

 
(40)

By the local attractor basin properties in (40) 

 

 
(41)

The right side of (39) can be enlarged as 

 

 

 
(42)

 

 

Figure 3. Illustration of a local attractor basin of the RNN against a scalar estimated weight Ŵ (k) 

Substituting (42) into (39) 
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(43)

Substituting (35) into (43) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(44)

By the definition of ρw(k) and α w(k) in (12) and (14) respectively, we can draw that 

 (45)

Again, consider the extreme case with the assumption of nonzero α w(k). Dividing both sides 

of (43) by 

 
and then summing up to N steps 

 

 
(46)

where the normalized error signals are  
and the cone is 
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(47)

and ΔW is greater than zero because for each k the Lyapunov function (45) is guaranteed 
smaller than or equal to zero, i.e. 

 

                  
(48)

Due to the specific selection of the normalization factor in (12), the original signals e(k) and 

ew(k) are guaranteed to be bounded according to the original operators 
1

H
w and H2 [11] [15]. 

Now the operator 
1

H
w

represented by (46) satisfies the condition (i) of Theorem 2. Thus we 

conclude that ew(k) ∈ L2 in case of α w(k) ≠ 0, ∀k ∈ Z+. ■ 

3.4 Robustness analysis of MIMO RNN 
In this section, we discuss the RAGD training for the RNN of Multi-Input Multi-Output 

(MIMO) types. As mentioned in the introduction, the RNN with multiple output neurons 

can be regarded as consisting of several single output RNNs. Thus the training of MIMO 

RNN can be studied by decomposition. In detail, for the output layer training, we may 

calculate the gradient of each output neuron with respect to weight parameters, and then 

obtain the total weight updating by summing these individual gradient. As for the hidden 

layer, we also use this method to take into account the influence of multi-output neurons on 

total weight updating. Following this idea, the extension of the stability analysis from SISO 

to MIMO is straight forward. 

Theorem 5 If the RNN is trained by the adaptive normalized gradient algorithm (5)-(15), then the 

weight V̂ (k) and Ŵ (k) are guaranteed to be stable in the sense of Lyapunov. 

Proof: (i) Output layer analysis: To study the stability of the RAGD, we need to establish the 

error dynamics of the training algorithm. First of all, define the estimation error 

 (49)

where V*∈R l 
× m is the ideal output layer weight, and 

 

Then we expand e(k) ∈ Rl×1 with respect to the output layer weight as 
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                                  (50)

with ε# v(k) = V *Φ*(k) - V *Φ(k) + ε (k). In (50), we restructure the output layer training of the 
RAGD algorithm into a closed loop form same as that of (16) , by which the weight 

estimation error ev(k) is referred as the output signal. Subtracting V* and squaring both sides 
of the output layer training equation in (5) 

 

        
(51)

By the matrix trace properties 

 
Again, we employ the customary practice by using a small positive perturbation constant  
to make I + Φ(k)Φ(k)T full rank and then apply the approximation as 
 

 

          
(52)

Substituting (50) and (52) into (51) 

 

 

 
 
 
 
 
 
 
 

(53)
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(54)

     

 
 
 
 
 
 
 
 
 
 
 
 

(55)

where (54) is because of the triangular inequality  
and (55) is due to 

 

Combining the inequality (55) with the definition of ρ v(k) and α v(k) in (11) and (13) 

respectively, the Lyapunov equation of output layer estimation error can be derived 

 (56)

(ii) Hidden layer analysis: Expanding e(k) with respect to the estimation error of hidden layer 
weight 

 

                  

(57)

where W*(k) ∈ Rm×n is the ideal hidden layer weight matrices, x*(k) ∈ Rn×1 is the ideal state 
vector, μi(k) is the mean value of the ith nonlinear activation function at instant k, and  

W# j(k) =Ŵ j(k)- *

j
W . Using the local attractor basin concept that similar to (40) 
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(58)

Substituting W*and squaring both sides of hidden layer training equation of the RAGD in 
(5), we can derive the Lyapunov function of the hidden layer weight of MIMO RNN based 
upon (58) as 

 

 
 
 
 
 
 
 
 
 

(59)

 

www.intechopen.com



A New Supervised Learning Algorithm of Recurrent Neural Networks and  
L2 Stability Analysis in Discrete-Time Domain 

 

189 

   

 

(60)

Summarizing (56) and (60), we can conclude the proof. ■ 

Theorem 6 If a MIMO RNN is trained by the adaptive normalized gradient algorithm (5)-(15), and 

α v(k), α w(k) are nonzero for all k ∈ Z+, then the training will be L2-stable in the sense of  

e v(k), e w(k) ∈ L2. 
Proof: Respectively, dividing both sides of (53) and (59) by the following two factors (since  

α v(k); α w(k) ≠0) 

 

(61)

 

Summing both inequalities up to N steps, then for the output layer 

 

 
(62)

and for the hidden layer 

 

 
(63)

where 
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and the normalized signals are defined by 

 

 

Due to the specific selection of the normalization factor ρv(k) and ρw(k) as in (11) and (12), the 

normalized error signals e v(k), e v(k), e w(k), and e w(k) are guaranteed to be bounded. 

Now, for each V̂  (k) and W  (k), applying the Cluett's law, we found that the operator 
1

H
v

 

and 
1

H
w

 represented by (62) and (63) satisfy the condition (i). Further, H2 = 1 ensures 

condition (ii) holds, thus ev(k)and ew(k) are L2 stable with αv(k), αw(k) ≠ 0, ∀k ∈ Z+. ■ 

3.5 Summary 
In Section 3, we introduce a novel RAGD training algorithm of RNN. Because conventional 
gradient type algorithms most likely suffer from slow convergence when dealing with 
statistically non-stationary inputs, the RAGD aims at overcoming such shortcomings via a 
series of new training parameters. Moreover, the robust local stability of the RAGD has been 
addressed for three layer RNN based upon the Cluett's law. Theoretical analysis shows that 
the proposed adaptive parameters improve the training performance in terms of a deeper 
gradient descent direction updating, which leads to a better transient response. Further, 
compared to BPTT, the RAGD algorithm requires limited backward unfolding, which 
reduces the computational complexity. The flow chart of the overall training procedure of 
the RAGD is summarized in Figure 4. 

4. Applications in realtime signal processing 

This section presents quantitative studies of the RAGD algorithm via computer simulations. 
We choose three of the most representative applications of RNN to verify the effectiveness 
of the RAGD. By default, the RNN is constructed with 50 hidden neurons and 5 input 
nodes. The 5- dimensional input vector consists of current and last sample of time sequence 
u(k) and RNN output feedback with 1 to 3 steps delay respectively. Both hidden and output 
layer weights are initialized as uniformly distributed in the interval of (-1, 1). Sigmoid 
function is chosen as activation function, which is monotonic increasing, and both first and 
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second order differentiable. The function and its first order derivative are given in equation 
(64), including the boundaries 

 

(64)

For the purpose of comparison, in most of the simulations we also provide the results of 
other training algorithms, such as the Truncated BPTT (T-BPTT) and the N-RTRL etc. 
 

 

Figure 4. Flow chart of the RAGD training algorithm for SISO RNN 

4.1 Time series prediction 
In the first simulation, the performance of the RAGD is evaluated via time series prediction 

problems. The RNN is employed to predict the next sample (one step) of a real sequence 

{y(k)}, which is generated by the following process 
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(65)

where u(k) is white Gaussian input sequence. The model of (65) is chosen from the 
benchmark problem in [1] (pp.159). Two data groups are generated in simulations. One is 
the training data set, and the other is for evaluation purpose. The traces of the time series for 
training and evaluation are displayed in Figure 5. 
 

 

Figure 5. Sequences of the time series for training and evaluation 

To provide a comparative idea, we have also implemented the N-RTRL in simulations with 
constant C = 0 and C = 0.2 respectively. All the simulations run for 10000 steps. In order to 
present a clear illustration on both transient and steady state performance of each training 
algorithm, the training errors are displayed by the first 100 steps and the full 10000 steps 
separately as shown in Figure 6 and 7. Moreover, the squared training errors of the first 100 
 

 

Figure 6. Squared training errors of the first 100 steps with the same set of random 
initializations for different algorithms 
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steps are plot in logarithmic format to provide a further better comparison. The steady state 
training errors are expressed in dB (20 times the logarithm of the amplitude ratio between 
error and signal) such that performance difference between the RAGD and the N-RTRL can 
be more explicit. The traces of the normalization factors are shown in Figure 8. The 
trajectories of the Frobenius norms of RNN weights with the RAGD training are displayed 
in Figure 9. 
 

 

Figure 7. Squared training errors of full 3000 steps for different algorithms 

 

 

Figure 8. Traces of normalization factors ρv(k) and ρw(k) 

The results show that the RAGD algorithm is successfully stabilized in the sense that the 
Frobenius norms of the weights converge. The convergence of the RAGD is faster than the 
N- RTRL with both parameter values. Moreover, the RAGD can achieve better steady state 
error (mean squared training error 5.79e-3) than the N-RTRL (mean squared training errors 
6.67e-3 and 8.28e - 3 respectively). 
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Figure 9. Traces of the Frobenius norms of RNN weights with the RAGD training 

In addition to the proposed adaptive training parameters, we also investigate how the 
training is affected by the number of hidden layer neurons and the exponential factor of 
activation functions. The statistics with respect to various values of this two parameters are 
given in Table 1 and 2 respectively. The data are obtained by averaging the results of 50 runs 
(each have 10000 steps). 
All simulations start with same initial weights, which can make a same starting point of the 
training error such that we can make a convincing comparison. The results indicate that the 
steady state performance is slightly improved as the λ increases. A possible reason is that 
transition slope of linear region of activation function becomes higher (faster) with larger λ. 
A similar phenomena is also observed in [7] (pp.617). In contrast, there is no obvious 
influence of the neuron number on the training performance. 
 

 

Table 1. Statistics of squared training errors of the RAGD with different λ 

 

Table 2. Statistics of squared training errors of the RAGD with di®erent neurons 
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4.2 Output tracking of Hammerstein-Wiener model 
In the second example, the RAGD is evaluated using a system identification problem. In this 
simulation, the “unknown” plant consists of a dynamic linear block followed by a static 
nonlinearity, which is a so-called Hammerstein-Wiener model. Furthermore, the model 
dynamics is supposed to vary with time in terms of the time-varying coefficients of linear 
part, which can be expressed in a polynomial form as [19] 

 

(66)

The objective of the simulation is to model the plant's input-output behavior by the RNN. 
The command signal was given by u(k), and the RNN attempts to emulate the plant output 
d(k) as close as possible. The estimation error between actual plant output and reference 
signal e(k) = d(k)-y(k) is fed back to RNN to adjust the weight parameters. One of the most 
crucial tasks in system identification is the design of appropriate excitation signals. It is 
important that the training data cover the entire range of plant operation due to non 
accurate extrapolation of RNN. In this simulation, Amplitude Modulated Pseudo Random 
Permutation (AMPRP) sequence are generated as training set, with the data uniformly 
distributed in the range of (0, 1), see Figure 10. We have also implemented the T-BPTT 

algorithm in simulations. The learning rate α = 0.05 (tuned by trial-and-error) was used for 

T-BPTT.We present the squared training error of first 1000 (transient) and 1000-5000 (steady 
state) steps separately in Figure 11 and 12. Results show that the RAGD converges within 
200 steps while T-BPTT takes around 1000 steps. In addition, the steady state error of the 
RAGD is smaller than T-BPTT. Hence we say the RAGD is capable of providing a faster 
response to the changes of system dynamics. The traces of the normalization factors of the 
RAGD are provided in Figure 13. 
 

 

Figure 10. Trace of AMPRP input for model identification 
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Figure 11. Squared training errors of the first 1000 steps 

 

Figure 12. Squared training errors of steady state: 1000-5000 steps 

4.3 Pattern association of binary image 
In the last simulation, we study the problem of stable equilibrium point learning associated 
with a discrete-time RNN using the RAGD algorithm. In the applications of visual 
processing and pattern recognition, RNN plays an important role due to the feature of 
associative memory. The work presented in this section is inspired by an earlier paper of 
Liang and Gupta [8]. In [8], the authors considered absolute stability of BPTT for a general 
class of discrete time RNN by the Lyapunov first method. In this work the RAGD will be 
incorporated in place of BPTT to develop a stable learning process. To present comparison 
with the precedent works [20], we implement a similar simulation case of binary pattern 
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Figure 13. Traces of the normalization factors ρv(k) and ρw(k) 

association as well as BPTT algorithm, where the target pattern is a 10×10 binary image as 
shown in the first picture of Figure 14. The training of RNN is to store the target pattern 
directly as a local attractor, i.e., an equilibrium point of RNN. Since the state vector is 100 
dimensional (number of pixels in target pattern) and there are no external inputs, RNN is 
configured with 100 inputs and outputs. As a matter of fact, this structure is analogous to 
the conventional Hopfield type network. RNN is utilized as an auto-associator and we aim 
at studying self-organizing behavior with the RAGD training algorithm. In order to 
demonstrate the changing of the binary image corresponding to the state of RNN during 
learning process, a filter layer based on sign function is added to observe the RNN output 
pattern, which represents the binary image at the iterative instant. The training process of 
the RAGD is shown in Figure 14. As mentioned, we also implement the BPTT algorithm to 
 

 
Figure 14. The binary patterns correspond to the state evolution of RNN during the training 
process using the RAGD algorithm. 
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provide comparison. The learning rate for the BPTT is 0.028. Similar to previous sections, 
this value is obtained by trial-and-error tuning method without violating stability constraint. 
The changing process of the binary image corresponding to the state vector of RNN is 
shown in Figure 15. 
 

 

Figure 15. The binary patterns correspond to the state evolution of RNN during the training 
process using the BPTT algorithm. 

From Figure 14 and 15, we see that using the RAGD training method, the dynamic learning 
process is completed within 300 steps, which is superior to the 500 steps of the BPTT 
algorithm. Further, we provide the squared error during the dynamic learning process of 
the RAGD and BPTT in Figure 16. The results indicate that the convergent process of the 
BPTT (about 450 iterations) is longer than the RAGD (about 280 iterations). 
 

 
Figure 16. Comparison of the squared error curves between the RAGD and BPTT training 
procedures. 
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With these training results, we evaluate the association performance upon a distorted test 
pattern. The target image pattern is assumed to be disturbed by a white Gaussian noise with 
the noise level about 40% pixels, as shown in the first picture of Figure 17. This image is 
utilized as initial state of RNN to test the capability of recalling the associative memory. The 
recovered binary images at each time instant during recalling procedure of the two RNN 
trained by the RAGD and BPTT are given in Figure  17 and 18 respectively. The results show  
 

 

Figure 17. The binary patterns correspond to the state evolution of association process of 
RNN trained b the BPTT algorithm. 
 

 
Figure 18. The binary patterns correspond to the state evolution of association process of 
RNN trained b the RAGD algorithm. 
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that the 10×10 binary pattern is successfully stored as a stable equilibrium point of the RNN 

by both algorithms. And there is no obvious difference of recall duration between two 

schemes (both within 10 iterations). 

4.4 Summary 

We have presented quantitative studies of the proposed RAGD algorithm in this section. 

Computer simulations are synthesized to justify the effectiveness of the RAGD. We give 

three examples which are the most frequent application areas of RNN: i) One-step 

prediction of non-statistical time series, which is generated by benchmark process model; 

ii) Identification of a nonlinear dynamic plant and the training data set is generated by a 

time-varying Hammerstein-Wiener model; iii) Pattern association of binary images. 

Further, we provide comprehensive comparisons between the RAGD and various other 

algorithms such as the N-RTRL, the T-BPTT, and the BPTT. In most results of these 

simulations, RNN trained by the RAGD demonstrates explicit advantages in the transient 

response speed, e.g., see Figure 6, 11 and 16. Some of the results also indicates that the 

RAGD can achieve better steady state responses, such as those in Figure 7 and 12. Hence 

by these experiment results, we conclude that the performance of the RAGD training 

algorithm of RNN is improved. 

5. Conclusion 

In this chapter, a Robust Adaptive Gradient Descent training algorithm of RNN with 

improved convergence speed is investigated. The major feature of the RAGD is the three 

adaptive parameters that switch the training patterns in a hybrid learning mode. Weight 

convergence and robust stability of the algorithm are analyzed via Lyapunov and input-

output systematic approach respectively. We show how the training algorithm can be 

decomposed into a nonlinear feedforward operator H1 and a linear feedback operator H2, 

and thus form a closed loop (H1, H2). Then, by restricting the cone conditions of each 

operator, sufficient boundary conditions of L2 stability of the training are obtained. In 

addition, we obtain the knowledge in which way we can adaptively change the learning 

rates of gradient training algorithms, or equivalently re-scale the corresponding error 

derivatives under stability preservation, such that the learning is ensured to be within the 

stable range. Such techniques are specially important for deriving a fast transient 

response. Another important contribution of this work lies in that we obtain a unified 

framework for the analysis of training algorithms of RNN by taking this systematic 

approach. Such an approach avoids the direct analysis of nonlinear functions in the 

feedforward path by applying the sector conditions. Computer simulations are also 

synthesized to justify the effectiveness of the RAGD. We give three examples which are 

most frequent application areas of RNN. The evaluation results indicate that with the 

proposed adaptive training parameters, the RAGD can obtain better transient and steady 

state responses than that of the conventional algorithms such as the BPTT, the RTRL, and 

the N-RTRL etc. 
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